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ABSTRACT
Most research studies on scheduling problems assume that a job visits certain machines only one time. 
However, this assumption is invalid in some real-life situations. For example, a job may be processed 
by the same machine more than once in semiconductor wafer manufacturing or in a printed circuit 
board manufacturing machine. Such a setting is known as the “re-entrant flowshop”. On the other 
hand, the importance of learning effect present in many practical situations such as machine shop, in 
different branches of industry and for a variety of corporate activities, in shortening life cycles, and in 
an increasing diversity of products in the manufacturing environment. Inspired by these observations, 
this paper addresses a re-entrant m-machine flowshop scheduling problems with time-dependent 
learning effect to minimize the total tardiness. The complexity of the proposed problem is very difficult. 
Therefore, in this paper we first present four heuristic algorithms, which are modified from existing 
algorithms to solve the problem. Then, we use the solutions as four initials to a genetic algorithm. 
Finally, we report experimental performances of all the proposed methods for the small and big 
numbers of jobs, respectively.

1. Introduction

There is a common point in traditional scheduling problems, in 
which most researchers assume that each job can be processed 
by each machine only at one time. However, this constraint may 
not be valid in some real production applications. Applications 
can be seen in semiconductor wafer manufacturing (Vargas-
Villamil & Rivera, 2001), in signal processing (Wang, Sethi, & 
van de Velde, 1997), and in printed circuit board manufactur-
ing (Bengu, 1994; Bispo & Tayur, 2001; Kubiak, Lou, & Wang, 
1996; Uzsoy, Lee, & Martin-Vega, 1992). In such situations, 
each job may be processed by the same machine several times. 
This is called the “re-entrant flowshop” in the literature.

In the re-entrant flowshop scheduling problem, researchers 
considered that jobs in the shop must be processed on all m 
machines, every job follows the route of M1, M2, …, Mm; M1, 
M2, …, Mm; …; and M1, M2, …, Mm, with r re-entrants, and the 
job sequence is the same on any machine at each level (Pan and 
Chen (2003); Chen (2006); Chen, Pan, and Wu (2007); Xu, Li, 
Hu, and Li (2014)). Taking the minimization of the makespan 
criterion, Pan and Chen (2003) applied mixed binary integer 
program formulations, several heuristic algorithms, and the 
Lingo optimizer for this problem. In solving the same prob-
lem, Chen (2006) proposed five lower bounds to be used in 
a branch-and-bound algorithm to solve it. Chen et al. (2007) 
built a hybrid tabu algorithm for the problem. Recently Xu 
et al. (2014) adopted the CPLEX solver and a memetic algo-
rithm (MA) for the problem. For more works of the re-entrant 
flowshop scheduling problem in different settings, the readers 
might refer to Choi and Kim (2009), Alfieri (2009), Rau and 
Cho (2009), Chu, Chu, and Desprez (2010), Liu (2010), and 

Boudhar and Meziani (2010). In addition, the reader might 
refer to three good surveys of the re-entrant scheduling prob-
lems by Bellman and Ernest (1982), Uzsoy et al. (1992), and 
Lin and Lee (2011).

Most of classical scheduling models considered that the job 
processing time was fixed and constant. However, it is invalid 
in many practical situations. For example, a steady decline in 
processing times usually takes place by performing the same 
task repeatedly (Biskup, 1999). Another example is each basic 
operation used in the manufacture of a product has its own 
learning function (Nadler & Smith, 1963). In such a situation, 
the processing time of a job maybe constantly occurring and 
the dynamic feature taken into consideration, or called “the 
learning effect”.

The importance of the learning effect is present in many 
practical situations. Applications of the learning effect can be 
found in machine shop (Nadler & Smith, 1963), in different 
branches of industry and for a variety of corporate activities 
(Yelle, 1979), and in shortening life cycles and an increas-
ing diversity of products in the manufacturing environment 
(Higgins, Le Roy, & Tierney, 1996). However, the notion of 
learning was not introduced to the field of scheduling until 
Biskup (1999), and Cheng and Wang (2000). Since then, sched-
uling with learning considerations has received more attention 
in the scheduling research community for only fifteen years. 
For details of research results on variants of the scheduling 
problem with different learning settings, the reader might refer 
to a good survey paper by Biskup (2008).

 Existing literature released show that most scheduling with 
learning effects considered a single-machine case (Yang, Hsu, 
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and Yang (2010), Yin, Xu, and Wang (2010), Yin and Wang 
(2011), Wang (2010), Yang and Yang (2012), Wang and Guo 
(2010), Wang, Zhou, Zhang, Ji, and Wang (2013)), yet the con-
cept of learning process on scheduling flowshop are still rela-
tively limited. For example, Wang and Xia (2005) provided the 
worst-case bound of the shortest processing time first (SPT) 
rule for the makespan and total completion time problems for 
the flowshop scheduling problem with a learning effect. Wu 
and Lee (2009) considered a permutation flowshop scheduling 
problem with a learning effect to minimize the sum of com-
pletion times. They proposed a dominance rule and several 
lower bounds used in the branch-and-bound algorithm to solve 
the problem. Wang and Wang (2011) considered the process-
ing time of a job as an exponential function of its position in 
a processing permutation and discussed the worst cases for 
four regular performance criteria, namely; the total completion 
time, the total weighted completion time, the discounted total 
weighted completion time, and the sum of the quadratic job 
completion times for flowshop scheduling problems. Chung 
and Tong (2012) discussed a bi-criteria scheduling problem in 
an m-machine permutation flowshop environment with varied 
learning effects on different machines, where the objective is to 
minimize the weighted sum of the total completion time and 
makespan. They proposed a dominance criterion and a lower 
bound to accelerate the branch-and-bound algorithm for deriv-
ing the optimal solution. Kuo, Hsu, and Yang (2012) assumed 
that the time-dependent learning effect of a job was a function 
of the total normal processing time of jobs scheduled before 
the job and investigated worst-case analysis for the objective 
functions such as; the makespan, the total flowtime, the sum 
of weighted completion times, the sum of the kth power of 
completion times, and the maximum lateness on the flowshop 
setting. Cheng, Wu, Chen, Wu, and Cheng (2013) studied a 
two-machine flowshop scheduling problem with a truncated 
learning function where they considered the actual processing 
time of a job as a function of the job’s position in a schedule 
and the learning truncation parameter, their objective function 
is to minimize the makespan. They proposed a branch-and-
bound and three crossover-based genetic algorithms (GAs) to 
find the optimal and approximate solutions for the problem. 
Cheng (2013) considered a permutation flowshop scheduling 
problem with a position-dependent exponential learning effect 
to minimize the performance criteria of the makespan and 
total flow time. He showed Johnson’s rule is not an optimal 
algorithm for the two-machine flow shop case and used the 
shortest total processing times first (STPT) rule to construct 
the worst-case performance ratios for the problems. For more 
papers with learning considerations, we refer the reader to the 
state of the art research concerning these problems by Janiak, 
Krysiak, and Trela (2011), and several recent learning studies 
by Yin, Xu, Sun, & Li, 2009; Yin, Xu, & Wang, 2010a, 2010b; 
(2011, 2012), and Zhang, Liu, Yin, and Wu (2016).

As far as the authors know, there is only research on sched-
uling with the learning effects in the re-entrant flowshop 
setting. Xu et al. (2016) studied the re-entrant permutation 
flowshop scheduling problem with a position-based function 
to minimize the mean flow time. Wu et al. (2016) considered 
the re-entrant permutation flowshop scheduling problem with 
a sum-of-processing-times-based learning function to min-
imize the makespan. They developed a simulated annealing 
(SA) algorithm to find near-optimal solutions for the prob-
lem. In view of these observations, in this paper we study the 
re-entrant permutation flowshop scheduling problem with a 

sum-of-processing-times-based learning function to minimize 
the total tardiness, which is a criterion popularly considered in 
the field of scheduling.

The organization of this paper is as follows: In Section 2, we 
define some notations and describe the problem. In Section 3, 
we build a genetic algorithm by combining four well-known 
rules in solving the flowshop scheduling problem with learn-
ing considerations to search for approximate solutions. In 
Sections 4 and 5, we conduct extensive experimental results, 
which are included some small-job size and big-size jobs to test 
the performance of the proposed algorithms when changing 
the number of machines, the learning effects, and the number 
of re-entrant times. Finally, we provide some conclusions in 
Section 6.

2. Problem Statement

Consider an m-machine flowshop in which there are n jobs to 
be processed on the m machines (i.e., M1, M2, … Mm) in the 
same order and the job sequence is the same on all machines. 
Consider that n jobs are ready at time zero for all machines 
throughout the scheduling period and no preemption is 
allowed. Suppose that the waiting space between the machines 
is unlimited for the n jobs to be processed. In the re-entrant 
permutation flowshop setting, each job visits the m machines 
following the same order, that is; M1, M2, …, Mm; M1, M2, …, 
Mm; …; and M1, M2, …, Mm, with up to l re-entrant times (or 
levels), starting on machine M1 and ending on Mm, and the job 
sequence is the same on any machine at each level. For clarifica-
tion, we assume that each level has its own sum-of-processing-
times-based learning effect, i.e., the actual processing time of a 
job Jj to be scheduled in the kth position of a given schedule at 

level l on machine Mi is given by pli[k] = plij ⋅

�

1 +
k−1
∑

t=1

pli[t]

�a

, 

where plij denotes the normal processing time of a job Jj on 
machine Mi at level l, [k] denotes the job scheduled in the kth 
position of a sequence of jobs, i = 1, 2, …, m; j  =  1, 2, …, n;  
l  =  1, 2, …, r, and a < 0 is the learning index. The objective  
of this paper is to minimize the total tardiness.

Let dj be the due date of a job Jj and Cl
i[k] denotes the comple-

tion time of a job scheduled in the kth position of a sequence 
of jobs on machine Mi at level l. Therefore,

and the total tardiness is
n
∑

k=1

Tr
m[k], where 

Tr
m[k] = max{0,Cr

m[k]
− d[k]}.

To illustrate the working of the above definition, we provide 
an example in the following.

An illustrative example. Table 1 shows the data of a problem 
instance with n  =  3 jobs, m  =  2 machines, and r  =  2 re-en-
trant times, and the learning index is a  =  –0.01.

Cl
i[k] = max

(

Cl
i−1,[k],C

l
i,[k−1]

)

+ pli[k],

Table 1. the Illustrative Data.

l J1 J2 J3

M
1

1
49 46 39

M
1

2
20 52 56

M
2

1
86 77 34

M
2

2
49 67 45

dj 280 343 352
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Consider a job sequence (J1, J2, J3) as the example. The com-
pletion times of three jobs on machine M2 at level one are given 
as follows:

In what follows, the completion times of three jobs on machine 
M2 at level two are given as follows:

In addition, Figure 1 represents the details of computing the 
completion times of three jobs on two machines at two lev-
els. Therefore, total tardiness of the job sequence (J1, J2, J3) is 
3
∑

j=1

max{0,C2

2[j] − d[j]} = 56.9.

3. Four Heuristic-based Genetic Algorithms

The proposed problem without a learning effect is NP-hard 
(Koulamas (1994)). Therefore, it requires an advantage policy 
to consider an effective heuristic or metaheuristic for a good 
quality solution.

Genetic algorithm (GA) is one of the most popular meta-
heuristics. The procedures of the GA are composed of an initial 
population, a fitness function, crossover and mutation oper-
ators, a selection mechanical to choose next generation, and 

C 1

2[1] = C 1

1[1] + p 1

2[1] = 49 + 20 = 69

C1

2[2] = max
(

C1

1[2],C
1

2[1]

)

+ p1
2[2] = max(93.2, 69) + 50.4 = 143.6

C1

2[3] = max
(

C1

1[3],C
1

2[2]

)

+ p1
2[3] = max(129.5, 143.6) + 53.6 = 197.2

C 2

2[1] = max
(

C 2

1[1],C
1

1[3]

)

+ p 2

1[2] = max(216.5 , 197.2) + 49 = 265.5

C 2

2[2] = max
(

C 2

1[2],C
2

2[1]

)

+ p 2

2[2] = max (290.1, 265.5) + 364.4 = 354.5

C 2

2[3] = max
(

C 2

1[3],C
2

2[2]

)

+ p 2

2[3] = max (322.4 , 354.5) + 42.9 = 397.4

a stopping rule. In order to obtain the better initial solutions 
as the input of GA, we consider four heuristics. The first two 
heuristic rules (algorithms) shown below are priority-relevant 
rules, and the third and the fourth are the earliest due date 
heuristic and an (adapted) Johnson’s algorithm.

For a job Jj, let TPj[k] =
r
∑

l=1

m
∑

i=1

plik, k = 1, 2,⋯ , n, be the total 
processing time without considering a learning effect if job 
Jj to be scheduled in the position k, and TT be the total of all 
process times, i.e. TT =

r
∑

l=1

m
∑

i=1

n
∑

j=1

plij, moreover, let STk be the 

starting time of a job to be scheduled in a position k of a job 
sequence, and ST1=0.

3.1. Cost Over Time (COVERT) Rule

There are three steps for the COVERT rule.
Step 1: Calculate a priority order to be 

scheduled in the position k for jobs. (i) If 
dj <

(

STk + TPj[k]

)

, definePRj = 1. (ii) if dj  >  (STk  +  TPj[k]) 

and dj < TT , define ∕,PRj = (TT − dj)∕
(

RT − TPj[k]

)

, 
where RT is the sum of the yet unscheduled jobs. (iii) If 
dj ≥ TT , define PRj = 0.

Step 2: Calculate CFj  =  PRj/TPj[k] for unscheduled jobs.
Step 3: Select the job with the maximum CF and place this 

job to position k.

3.2. Critic Ratio (CR) Rule

Define CRj  =  (dj - STj)/TPj[k]. The critical ratio rule is to select 
the job with the smallest value of CR and place this job in the 
first position of a sequence of jobs, where ST1 = 0. This job 
is marked as being scheduled. Then select the smallest value 
of CR among the unscheduled jobs and place this job in the 
second position, where ST2 is the starting time of the second 
job. Continue this process until all the n jobs are arranged in 
a sequence of jobs.

Figure 1. the flow of three jobs on two machines with two re-entrant times.

Table 2. the performance of four Heuristic Algorithms for n = 8.

COV-
ERT+GA CR+GA EDD+GA

JOHN-
SON+GA

parameters labels Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst
τ 0.25 0.0010 1.4054 8.8850 0.0011 1.3598 8.5064 0.0012 1.3479 8.0603 0.0010 1.2606 7.6429

0.5 0.0007 1.1893 7.1717 0.0009 1.2230 7.2748 0.0008 1.1972 7.3350 0.0009 1.1086 6.5060
R 0.25 0.0010 1.5178 9.6502 0.0010 1.5053 9.3008 0.0012 1.4820 9.1667 0.0013 1.3829 8.2719

0.5 0.0008 1.3123 7.9651 0.0012 1.3271 8.4307 0.0010 1.2755 7.8353 0.0009 1.2148 7.3848
0.75 0.0008 1.0619 6.4698 0.0009 1.0418 5.9403 0.0008 1.0601 6.0910 0.0007 0.9559 5.5666

a −0.1 0.0010 1.3632 10.254 0.0013 1.3166 10.012 0.0012 1.3563 8.7541 0.0014 1.2813 8.9501
−0.01 0.0007 1.2742 7.268 0.0008 1.2913 7.0298 0.0008 1.2452 6.6141 0.0007 1.1554 6.2256
−0.001 0.0008 1.2547 6.5634 0.0010 1.2663 6.6300 0.0009 1.2157 6.6687 0.0008 1.1169 6.0476

m 2 0.0006 0.6784 6.4481 0.0007 0.6403 5.6444 0.0008 0.6080 5.6731 0.0008 0.5940 5.0481
3 0.0007 1.2583 7.6422 0.0011 1.2578 8.4391 0.0011 1.2053 7.7831 0.0008 1.1011 6.6990
5 0.0012 1.9554 9.9947 0.0013 1.9761 9.5883 0.0011 2.0042 9.6368 0.0014 1.8586 9.4763

l 2 0.0012 1.7036 11.129 0.0018 1.6798 10.827 0.0015 1.6501 10.852 0.0016 1.4493 9.2993
3 0.0008 1.2263 7.4186 0.0007 1.2258 7.0745 0.0009 1.2271 6.932 0.0009 1.1572 6.8069

　 4 0.0005 0.9623 5.5371 0.0006 0.9686 5.7704 0.0006 0.9405 5.309 0.0005 0.9472 5.1171
Average 　 　 1.2974 　 　 1.2914 　 　 1.2725 　 　 1.1846 　
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makespan minimization problem. For simplification, we 
only applied the Johnson’s algorithm to the first and the last 
machines, and took re-entrant times into consideration. The 
steps of adapted Johnson rule are as follows:

Step 1: For a job Jj, calculate A
1j =

r
∑

l=1

pl
1j, and Amj =

r
∑

l=1

plmj, 
for j ∈ {1, 2,⋯ , n}.

Step 2: Find the minimum among the pool of A1j’s and Amj’s. 
If the minimum is from A1j’s, then place the corresponding job 
in the earliest position. If the minimum is from Amj’s, then place 
the corresponding job in the latest position.

Step 3: Indicate the job as being scheduled and efface the 
associated A1j’s and Amj’s.

Step 4: If all n jobs are place in the sequence, we output a 
complete sequence of jobs; otherwise, go to Step 2.

In order to speed the search quality, we adopted a local 
improvement process. The idea of this process is similar to 
the NEH algorithm (Nawaz, Enscore, and Ham (1983)), yet 
the jobs were not sorted by their total processing times at the 
beginning, instead a feasible sequence of jobs constructed by 
the above four rules was used. Let S be a feasible sequence of 

Note that the details of Cost Over Time (COVERT) Rule 
and Critic Ratio (CR) Rule, readers can refer to a book by Sule 
(1997) on pages 14–17.

3.3. Earliest Due Date (EDD) Rule

The earliest due date (EDD) is a very popular algorithm for 
due date scheduling problems. We thus employ EDD as the 
third rule.

Select the job with the earliest due date among the n jobs 
and place this job in the first position. Then select the earliest 
due date among the jobs not yet to be scheduled and place it 
in the second position. Continue this process until the jobs are 
arranged in a sequence of jobs. The resulting sequence of jobs 
will be in an ascending order of their due dates.

3.4. (Adapted) Johnson’s Rule

The Johnson’s rule is a powerful algorithm to generate a min-
imum makespan for the two-machine flowshop scheduling 

Table 3. the performance of four Heuristic Algorithms for n = 10.

COV-
ERT+GA CR+GA EDD+GA

JOHN-
SON+GA

parame-
ters labels Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst
τ 0.25 0.0023 1.8777 9.0275 0.0016 1.8461 8.7031 0.0024 1.8392 8.6195 0.0021 1.7178 7.8363

0.5 0.0018 1.6248 7.4445 0.0066 1.6462 7.5387 0.0016 1.6001 7.2441 0.0018 1.4819 6.5870
R 0.25 0.0021 2.0466 9.7134 0.0068 2.0598 9.6683 0.0025 2.0579 9.3983 0.0026 1.8810 8.6161

0.5 0.0018 1.7835 8.2012 0.0013 1.7570 8.2469 0.0019 1.6777 7.7791 0.0021 1.6141 7.0621
0.75 0.0023 1.4236 6.7933 0.0042 1.4217 6.4475 0.0016 1.4233 6.6180 0.0012 1.3044 5.9567

a −0.1 0.0020 1.8923 10.8835 0.0023 1.9188 10.6919 0.0027 1.9317 10.4050 0.0028 1.8727 9.6576
−0.01 0.0023 1.6703 6.9335 0.0067 1.6558 6.7822 0.0016 1.6219 6.6000 0.0015 1.4778 6.0367
−0.001 0.0019 1.6910 6.8908 0.0034 1.6638 6.8886 0.0017 1.6054 6.7904 0.0016 1.4490 5.9406

m 2 0.0006 0.9656 6.1769 0.0008 0.9204 6.2213 0.0008 0.8986 5.6733 0.0009 0.8297 5.1972
3 0.0019 1.6958 8.2449 0.0016 1.6740 8.1852 0.0021 1.6402 8.3790 0.0015 1.5119 7.1392
5 0.0037 2.5923 10.2861 0.0099 2.6440 9.9562 0.0031 2.6201 9.7431 0.0035 2.4580 9.2985

l 2 0.0033 2.4007 12.055 0.0020 2.3551 11.6770 0.0028 2.3108 11.0434 0.0029 2.1679 9.8663
3 0.0014 1.5968 7.3753 0.0044 1.6099 7.4313 0.0020 1.5702 7.1434 0.0014 1.4595 6.7141

　 4 0.0015 1.2563 5.2779 0.0060 1.2734 5.2544 0.0012 1.2780 5.6086 0.0016 1.1721 5.0546
Average 　 　 1.7512 　 　 1.7461 　 　 1.7196 　 　 1.5999 　

Figure 2. the performance of four algorithms when l changes (n = 8, left, and n = 10).
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position. A new sequence of jobs is thus constructed. We will 
denote this local improvement as NEH-type method.

In this study, representation of structure - a sequence of 
the jobs in the problem is followed by (Etiler, Toklu, Atak, 
and Wilson (2004)). We ran four times a genetic algorithm 
(GA). In the first one, the sequence of jobs constructed by 
COVERT algorithm and locally improved by the NEH-type 
method, as an initial solution, was used in a GA, which is 
designated as COVERT+GA. As for the second, third, and 
fourth genetic algorithms, denoted as CR+GA, EDD+GA, 
and JOHNSON+GA, were constructed by the CR, EDD, and 
Johnson’s rules and locally improved by NEH-type rule, respec-
tively. The steps for the genetic algorithm are as follows:

jobs constructed from the above four rules. The following 3 
steps are then used. First, find the best tardiness of reallocation 
of the first and the second jobs in S without changing the posi-
tion for the other n-2 jobs in S. The relative positions of these 
two jobs with respect to each are then fixed in the later process. 
Second, pick the job in the third position of S and insert it into 
all possible positions of the scheduled subsequence, calculate 
the resulting value of the tardiness. Find the best position and 
place this job in the best place. Third, repeat Step 2 for the job 
in the next position, and insert it into all possible positions 
of the scheduled subsequence, calculate the resulting value of 
the tardiness, find the best position and place this job in the 
best place. Repeat this process until a job is placed in the last 

Figure 3. the performance of four algorithms when τ changes (n = 8, left, and n = 10).

Figure 4. the performance of four algorithms when R changes (n = 8, left, and n = 10).
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total tardiness ofSi(v), and g
(

Si(v)
)

 is the fitness value of Si(v). 
The probability, P(Si(v)), of selection for a sequence of jobs can 

be calculated as: P
�

Si(v)
�

= g(Si(v))∕
N
∑

k=1

g(Sk(v)). This is also 

the criterion used for the selection of parents for the repro-
duction of children.

Step 4: Crossover- Followed by (Falkenauer and Bouffoix 
(1991), Etiler and Toklu (2001), Etiler et al. (2004)), we 
adopt linear order crossover (LOX) method in each GA. In 
order to protect the best schedule, which has the minimum 
total tardiness at each generation, we transfer this schedule 
to the next population with no change, or the crossover 
rate Pc = 1.

Step 5: Mutation- The mutation rates (Pm) are set at 0.25 
based on our preliminary experiment.

3.5. Genetic algorithm process

Step 1: Initial population- The sequences of jobs constructed 
by the aforementioned four heuristics, and improved by the 
NEH-type method mentioned in the above, as initial sequences 
in GA.

Step 2: Population size- We adopt an initial population and 
create other members by using a pairwise interchange operator 
up to population size (Chen, Vempati, & Aljaber, (1995)). In 
a preliminary trial, the population size N is set at 20 in our 
computational experiment.

Step 3: Fitness function- The fitness function of 
a schedule, a sequence of jobs, can be calculated as: 
g
(

Si(v)
)

= max
1≤k≤N

{

Tj

(

Sk(v)
)

}

− Tj

(

Si(v)
)

, whereSi(v) is the 
ith string chromosome in the v-th generation, Tj

(

Si(v)
)

 is the 

Figure 5. the performance of four algorithms when a changes (n = 8, left, and n = 10).

Figure 6. the performance of four algorithms when m changes (n = 8, left, and n = 10).
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by a heuristic, and V* the optimal solution, which was obtained 
by an enumerative method, for small-sized problem, n = 8 and 
10. All results are summarized in Tables 2 and 3.

As shown in Figure 2, Tables 2 and 3, the algorithm 
JOHNSON+GA generated the lowest average error percent-
age (AEP) among the four algorithms on the reentrant times 
(l) for n = 8 and 10. The average error percentage declines as 
the value of r increases, from 2 to 4, for all four algorithms. 
The overall average error percentage of the four algorithms, 
COVERT+GA, CR+GA, EDD+GA and JOHNSON+GA, were 
1.2974, 1.2914, 1.2725, and 1.1846 for n = 8, and were 1.7512, 
1.7461, 1.7196, and 1.5999 for n = 10, respectively. The trend 
is also shown in Figure 2.

The same pattern of the performance results was easily seen 
for the four algorithms on the parameters tardiness factor (τ), 
due date range (R) and learning effect (a), i.e. the average error 
percentage decreases as the value of parameters increases. 
Figures 3, 4, 5 and 7 showed that the algorithm JOHNSON+GA 
consistently generated the lowest average error percentages 
(AEP) among the four algorithms on parameters τ, R and a 
for both job sizes 8 and 10.

As regards the number of machines (m), the AEP increases 
as the m increases for all four algorithms and for both sizes of 
jobs, shown in Figure 6. The more the number of machines, 
the more complexity for the problems, therefore, searches for 
good schedules are more difficult for the algorithms.

Step 6: Selection- In each GA, the population sizes are set to 
20 from generation to generation. Excluding the best schedule, 
which has the minimum total tardiness, the other off-springs 
are generated randomly from the parent chromosomes by the 
roulette wheel method.

Step 7: Stopping rule- Each GA is terminated after 2000 
generations in our preliminary experiment.

4. The Performances of Four Algorithms on the 
Small Number of Jobs

The algorithms were coded in Fortran and executed on 
Compaq Visual Fortran version 6.6 with a 2.66-GHz Intel(R) 
Core(TM)2 Duo E8200 CPU, and 1.99-GB RAM on Windows 
XP. We conducted computational experiments to test the 
performance of the four heuristics COVERT+GA, CR+GA, 
EDD+GA and JOHNSON+GA in solving the re-entrant per-
mutation flowshop scheduling problem by using the same data.

The processing times were generated randomly from uni-
formly distributed integers over 1 to 100. The due dates were 
generated randomly from another discrete uniform distribu-
tion {0.5 × TT × (1 − � −

R

2
, 0.5 × TT × (1 − � +

R

2
)}, where 

TT the total of all process times, defined in section 3, τ is the 
tardiness factor and R is the due date range. The factor 0.5 in 
the above formula was used to avoid too large due date and no 
tardiness to happen. The values of τ were set at 0.25 and 0.5, 
and the levels of R were designed at 0.25, 0.5 and 0.75. The 
learning effects, a, were set at -0.1, -0.01 and -0.001. The test 
problem instances were generated for each combination of τ, R 
and a. Hence, 18 experimental situations were conducted and 
100 replicates were generated randomly. The number of jobs 
was tested at 8 and 10 for small jobs, while the number of jobs 
was used at 40 and 80 for the large of jobs. As for the number 
of machines, 2, 3 and 5 were used to examine the effect of size 
of machines. The total test problem instances were then 64800 
(181003223).

The criterion used for evaluating the four heuristic 
 algorithms was the average error percentage (AEP), AEP = 
{(Vi-V*)/V*}100%, where Vi is the objective value obtained 

Figure 7. the performance of four algorithms when τ changes (n = 40, left, and n = 80).

Table 4. Results of fisher’s lSD for Difference between Aep means for 4 gA Algo-
rithms for n = 8, 10.

Pairwise Comparison Pairwise Difference
LSD(α =0 .05) = 
0.0647

Between Algorithms  ||
|

AEP
l
− AEP

J

|

|

|

Difference > LSD?
CoVeRt+gA vs. CR+gA |1.5243–1.5188| no
CoVeRt+gA vs. eDD+gA |1.5243–1.4961| no
CoVeRt+gA vs. JoHn-

Son+gA
|1.5243–1.3922| Yes

CR+gA vs. eDD+gA |1.5188–1.4961| no
CR+gA vs. JoHnSon+gA |1.5188–1.3922| Yes
eDD+gA vs. JoHnSon+gA |1.4961–1.3922| Yes
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Table 5. the performance of four Heuristic Algorithms for n = 40 and 80.

parameters

　 n = 40 　 　 　 n = 80 　 　

Labels COVERT+GA CR+GA EDD+GA JOHNSON+GA COVERT+GA CR+GA EDD+GA JOHNSON+GA
τ 0.25 1.1169 1.0244 0.9269 0.8564 1.4071 1.0197 0.6046 1.0007

0.5 0.9161 0.8074 0.7476 0.6533 4.1109 1.7032 0.5781 1.9170
R 0.25 1.5162 1.2524 1.1399 1.1074 6.8837 2.8762 0.8479 3.4063

0.5 0.9237 0.8478 0.7344 0.7601 0.9631 0.7650 0.4934 0.6859
0.75 0.6095 0.6475 0.6374 0.3970 0.4302 0.4431 0.4328 0.2843

a −0.1 1.8845 1.4698 1.3531 1.5238 7.4897 3.2230 1.0275 3.9135
−0.01 0.5756 0.6206 0.5917 0.3839 0.4029 0.4422 0.3867 0.2402
−0.001 0.5894 0.6574 0.5669 0.3568 0.3844 0.4192 0.3600 0.2227

m 2 0.8102 0.6726 0.4872 0.6010 4.2268 1.2837 0.3898 1.6702
3 0.9990 0.8922 0.8468 0.7366 2.3756 1.4491 0.5636 1.3984
5 1.2402 1.1829 1.1778 0.9269 1.6746 1.3516 0.8207 1.3079

l 2 1.6590 1.4131 1.1739 1.3755 7.0705 3.0022 0.7990 3.6155
3 0.8330 0.7925 0.8009 0.5037 0.7594 0.6564 0.5652 0.4980

　 4 0.5575 0.5421 0.5370 0.3853 0.4471 0.4258 0.4100 0.2630
Average 　 1.0165 0.9159 0.8372 0.7548 2.7590 1.3615 0.5914 1.4588

Figure 8. the performance of four algorithms when R changes (n = 40, left, and n = 80).

Figure 9. the performance of four algorithms when a changes (n = 40, left, and n = 80).
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5. Four Heuristic-based Genetic Algorithms on the 
Large Number of Jobs

For the large-sized problem, the number of jobs n is 40 and 
80, we measured the performance of a heuristic algorithm in 
terms of the relative deviation percentage (RDP), defined as:

Where V is the objective value obtained by a heuristic and Vmin

is the best solution among the four algorithms, COVERT+GA, 
CR+GA, EDD+GA and JOHNSON+GA. The experimental 
results were summarized in Table 4.

RDP =
V − Vmin

Vmin

× 100%,

Over all, it was easily seen that the HOHNSON+GA per-
formed the best and the algorithm COVERT+GA generated 
the worst solutions among the four algorithms. The differences 
of mean were 0.1128 for job size 8 and 0.1513 for job size 10.

Furthermore, to compare the statistical significant differ-
ences in solution quality of the four GA algorithms, we con-
ducted an ANOVA for the small size of jobs (n = 8 and n = 
10), the p-value is 0.0001. There exist significant differences 
between AEP means of 4 GAs under the level of significance 
0.05. Accordingly, Fisher’s least significant difference (LSD) 
test was employed to detect the differences between four AEP 
means. The result was shown in Table 4 that JOHNSON+GA 
performed the best among the four algorithms, for small size 
of jobs, was confirmed by the statistical test.

Figure 10. the performance of four algorithms when l changes (n = 40, left, and n = 80).

Figure 11. the performance of four algorithms when m changes (n = 40, left, and n = 80).
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