
 Intelligent Automation & Soft Computing, 2017
http://dx.doi.org/10.1080/10798587.2017.1302712

Automatic FIBEX Generation for Migration from CAN Message Description Format
to Flexray Fibex Format

Young Hun Songa, Suk Leea, Kyoung Nam Hab and Kyung Chang Leec

aSchool of Mechanical Engineering, Pusan National University, Busan, Korea; bMarine Robot Center, Korea Institute of Industrial Technology, Busan,
Korea; cDepartment of Control & Instrumentation Engineering, Pukyong National University, Busan, Korea

ABSTRACT
Recently, FlexRay was developed to replace the controller area network (CAN) protocol in the chassis
network systems to provide high-speed data transmission as well as hardware redundancy for safety.
However, FlexRay network design is more complicated than with CAN protocol, which has been an
in-vehicle network (IVN) standard for car manufacturers for decades, because the FlexRay has many
parameters such as the base cycle or slot lengths. To simplify the FlexRay network design and assist
vehicle network designers in configuring a FlexRay network, this paper presents an automatic field
bus exchange format (FIBEX) generation method for migration from the CAN message description
format such as the DBC format to the FlexRay FIBEX format. The automatic FIBEX generation method is
examined by simulating a chassis networking system using a DBC benchmark tool, which demonstrates
the feasibility of the system and the reduction in workload for network designers.

© 2017 TSI® Press

KEYWORDS
In-Vehicle Networking
(IVN) systems; FlexRay; CAN
message format; Field bus
exchange format (FIBEX);
Automatic FIBEX generation
algorithm

CONTACT  Kyung Chang Lee  gclee@pknu.ac.kr

1.  Introduction

Consumers are placing more demands on vehicle safety and
convenience, and the implementation of technologies to meet
these demands has led to a growing requirements for in-ve-
hicle network (IVN) protocols that have high-data-rate and
deterministic transmission characteristics (Kim, Lee, & Lee,
2015; Rosset, Souto, Portugal, & Vaspues, 2012). To meet this
demand, the FlexRay protocol was developed in 2000 by a
consortium including BMW, Daimler–Chrysler, Motorola,
and Philips. It is now widely used for chassis network systems,
including the braking, steering, and suspension systems. To
provide well-characterized transmission delays as well as pri-
ority transmission, the FlexRay protocol uses both time-divi-
sion multiple access (TDMA) and flexible TDMA (FTDMA).
Furthermore, FlexRay can provide data bandwidths of up to
10 Mbps, and has seen uptake by many car manufacturers
(Armengaud, Steininger, & Horauer, 2008; Han, Natale, Zeng,
Liu, & Dou, 2013; Jang, Park, Han, Lee, & Sunwoo, 2011; Kang,
Park, & Jeong, 2013; Park & Sunwoo, 2011; Schmidt & Schmidt,
2009; Zeng, Natale, & Ghosal, 2011).

However, FlexRay network design is more complicated than
the controller area network (CAN) protocol, which has been
an IVN standard for car manufacturers for decades. The CAN
DBC format is a standard CAN message description format
(Liebezeit, Junghanns, Bonin & Serway, 2012; Vector, 2007)
that provides clear definitions of various signals, including
sensor and motor signals generated by electric control units
(ECUs) (Cummings, 2008; Leen, Hefferman, & Dunne, 1999;
Sethna, Stipidis, & Ali, 2006). Using CAN, car manufacturers
are able to maintain compatibility of network designs, because
DBC defines the message identification (ID), transmission
period, transmit nodes, and receive nodes.

FlexRay uses the field bus exchange format (FIBEX)
(Association for Standardization of Automation and Measuring
Systems [ASAM], 2013; Stroop & Stolpe, 2006) to specify a plat-
form configuration register (PCR). The PCR is a set of param-
eters that define a FlexRay network (or cluster), including the
basic time unit, transmission cycle length and size, and number
of TDMA slots. PCR includes 53 parameters that are closely
interrelated, and must be carefully selected (Song, Lee, & Lee,
2013). FIBEX defines the way that a FlexRay network operates,
i.e., which node uses which TDMA slot to send a given signal,
and which node should listen to which slot in order to receive
the signal. While a CAN network designer can simply focus on
the behavior of each node, a FlexRay designer must consider
the operation of the network in addition to the operation of the
node. This requires an in-depth knowledge of the protocol, and
has hindered widespread uptake of FlexRay. Therefore, a sim-
plified migration technique from CAN to FlexRay is required
(Mishra & Naik, 2005; Rai, Jestin, & Vitkin, 2008; Reiter, Viehl,
Bringmann, & Rosenstiel, 2016; Rho, Azumi, Oyama, Sato, &
Nishio, 2016; Zhao & Zhong, 2008).

In this paper, we describe an automatic FIBEX generation
method for migration from the CAN DBC format to the FlexRay
FIBEX format. We analyze the structure of FIBEX, DBC, and
the 53 PCR parameters that must be defined in the FlexRay
protocol specification. We then detail a DBC-based automatic
FIBEX generation algorithm that automatically generates the
PCR parameters from the DBC data. Finally, we implement
the system and assess the validity of the generated FIBEX data
using CAN DBC benchmarking files. The automatic FIBEX
generation method not only simplifies the FlexRay network
design, but also reduces working complexity in migrating from
the CAN DBC format to the FlexRay FIBEX format.

mailto: gclee@pknu.ac.kr
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10798587.2017.1302712&domain=pdf

2   ﻿ Y. H. SONG ET AL.

2.  Structure of FIBEX and DBC

Figure 1 shows the structure of the FlexRay FIBEX file format.
FIBEX was developed by the Association for Standardization
of Automation and Measuring systems (ASAM) consortium
(ASAM, 2013; Stroop et al, 2006) to facilitate exchange of data.
FIBEX is used to define the FlexRay network design informa-
tion, and is based on the extensible markup language (XML)
(Choi et al, 2014). Furthermore, FIBEX can be expanded to
support different network protocols. FIBEX uses a structure
called the object model to represent and access information,
and objects are classified into hierarchical groups. These
structures are called trees, and the items included in the trees
are called elements. In Figure 1, the designer requires a lot
of information to generate a FIBEX data structure, including
the cluster scheduling, transmission and reception node, and
frame ID. However, the signal information within a frame is
not required by the FIBEX standard.

Figure 2 shows the structure of the CAN DBC file format.
The DBC file format, which is used for CAN message descrip-
tions was developed by Vector Inc. (Liebezeit et al, 2012; Vector,
2007). CAN DBC is a vehicle standard database format devel-
oped for data exchange between vehicle ECUs. The physical
CAN node can access set up information from DBC. In addi-
tion, DBC allows the designer to monitor and analyze a system
using simulations, i.e., without requiring physical nodes. In
Figure 2, some information, including the bit timing, nodes,
and messages, must be defined for basic operation. The header
defines the version, which may be left blank, as well as the
symbol. The bit timing defines the CAN network bandwidth
and bit timing register (BTR). The node defines the name of
the nodes on the network. The message includes the ID, name,
size, and signal information. The signal includes the name, start
bit, size, storing method, and receive node.

3.  Analysis of PCR Parameters of FlexRay

To characterize the transmission delay in FlexRay, it is neces-
sary to maintain clock synchronization between nodes. This
is determined by the 53 PCR parameters, which include the

cluster parameter and node parameter defined by the FlexRay
standard. The network designer must understand the FlexRay
protocol and configure the related parameters manually.
However, this is not straightforward, and the technical issues
create a barrier to upgrading the CAN networks that are widely
used in existing IVNs.

Figure 1. Structure of the FlexRay FIBEX File Format.

Figure 2. Structure of the CAN DBC File Format.

 INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    3

Figure 3 shows a schematic diagram illustrating the rela-
tionship between the PCR parameters defined by the FlexRay
protocol standard. These are divided into static segment param-
eters, dynamic segment parameters, symbol window parame-
ters, and other parameters. In Figure 3, the parameters in the
solid boxes are global cluster parameters, which have the same
value as all nodes. The parameters in the dotted box are node
parameters. The parameters in the circular box are calculated
from a mathematical relationship, whereas those in the rectan-
gular box are calculated and assigned by the network designer.

The communication cycle (Input5 in Figure 3) is deter-
mined by the network designer; however, it is affected by the
“Macro Per Cycle”, which determines the macro-tick in each
cycle, and also by the “Micro Per Cycle” for selecting the “Rate
Correction Offset”, “Max Drift”, and “Listen Time Out”.

The four PCR parameters shown in the center of Figure
3, “Payload Length of Static”, “Frame Length Static”, “Static
Slot [MT]”, and “Number of Static Slot”, configure the static
segment. These four parameters are referred to here as the
“Action Point Offset” and “TSS Transmitter” for calculating
related parameters. The number of static slots (Input1) and
length of the static slot (Input2) parameters are required from
the designer, and the four cluster-configuration parameters
must be specified in every node that is part of the cluster.

There are six parameters shown in the lower part of Figure
3 for configuring dynamic slots: “Payload Length DYN. Max”,
“Frame Length of Dynamic”, “Latest Tx”, “Dynamic Slot Idle
Phase”, “Number of Mini Slot”, and “Mini Slot [MT]”. As with
the static slot, two parameters, “Assumed Precision” and “Mini
Slot Action Point Offset”, are used to calculate related param-
eters. The maximum dynamic slot data length (Input3) and
number of mini-slots (Input4) are determined by the network
designer. The three parameters shown in the solid box in Figure
3 are the cluster configuration parameters; the other parameters
in the dotted box are the configuration parameters, which can
be different in each node.

The symbol window, shown in the left of Figure 3, is com-
posed of eight configuration parameters. The symbol window

does not have any relationship with the configuration param-
eters. However, when “Symbol Window” is used for synchro-
nization, the “Action Point Offset” and “TSS Transmitter”
parameters are referenced. The size of the symbol window
(Input6) must be provided by the designer; however, the other
seven parameters are calculated using protocol-defined values.

All parameters that are not classified are used for clock
synchronization, or calculated from other parameters. These
configuration parameters are determined by the transmission
width in the FlexRay protocol.

Table 1 lists the PCR parameters that are defined by the
FlexRay protocol standard, but are not shown in Figure 3. These
configuration parameters are determined by the designer,
but are not related to the other parameters. In Table 1, “Max
Without Clock Correction Passive”, “Max Without Clock
Correction Fatal”, “Network Management Vector Length”,
“Cold Start Attempt”, and “Sync Node Max” are cluster con-
figuration parameters and must be set to the same value in
every node in the cluster. Other node parameters can be set to
different values. Every parameter in Table 1 must be defined.
There are no effects in terms of communication or synchroni-
zation in the FlexRay protocol when we change one of these
parameter values.

MiniSlot
[MT]

MiniSlot
ActionPoi
ntOffset

Macro
Per

Cycle

Decodin
gCorrect

ion

Accepted
StartUp
Range

Cluster
Drift

Damping

Micro
InitialOff
set A(B)

Frame
Length
Static

TSS
Transmi

tter

Action
Point
Offset

StaticSl
ot

[MT]

Assumed
Precision

adAction
Point

Difference

Offset
Correctio

nMax

ad
OffsetCo
rrection

Frame
Length

Dynamic

Max
Initializat
ionError

CAS_RX
LowMax

Offset
Correcti
onStart

Latest
Tx

Macro
InitialOff
set A(B)

Offset
Correctio

nOut

Dynamic
Slot ID
Phase

TSS
Trans
mitter

Assumed
Precision

Action
Point
Offset

MiniSlot
ActionPoi
ntOffset

Micro
Per

Cycle

Listen
Time
Out

Max
Drift

Rate
Correcti
onOut

static segment

dynamic segment

symbol window

Payload
LengthD
YN.max

Number
of MiniSlot

[word]

Number
of

StaticSlot

Symbol
Window

Cycle

Payload
Length
of Static
[word] Input3

Input1

Input2

Input5

Network
Idle Time

WakeUp
Symbol
Rx Idle

WakeUp
SymbolR

xLow

WakeUp
SymbolRx
Window

WakeUp
Symbol
Tx Idle

WakeUp
Symbol
TxLow

WakeUp
Pattern

Listen
Noise

Input6

Input4

Figure 3. Schematic Diagram Showing the Platform Configuration Register.

Table 1. Optional PCR Parameters of FlexRay.

Network management Max Without Clock Correction Passive
Max Without Clock Correction Fatal
Network Management Vector Length
Allow Halt due to Clock
Allow Passive to Active
Extern Offset Correction
Extern Rate Correction

Protocol defined Cold Start Attempt
Sync Node Max
Delay Compensation A(B)

User specified Channel
Wake Up Channel
KeySlot Header CRC
KeySlot ID
KeySlot Used For Sync
KeySlot Used For Startup
SingleSlot Enabled

4   ﻿ Y. H. SONG ET AL.

the DBC parser, we obtain a linked list, as shown in Figure 5. In
this linked list, messages are allocated to the ECU using ECU
and message information.

When the linked list is generated, the communication cycle
of FlexRay (TC), is determined by calculating the greatest com-
mon divisor (GCD) of the cyclic message generation cycle of
all messages in the PCR generation part. The time of the static
slot (TSS) is calculated by multiplying the number of cyclic
messages (NSS) by the maximum length of the cyclic messages
(LSS). The time of the dynamic slot (TDS) is calculated by
multiplying the number of aperiodic message (NDS) by the
maximum length of those messages (LDS). The length of the
symbol window (TSW) is fixed to a default value of 0, and the
network idle time (TNIT) is calculated from the communica-
tion cycle, segment time (Tsegment), sum of TSS, TDS, and
TSW. If TNIT < 0, the automatic generation algorithm is termi-
nated, because FIBEX generation is not possible. If TNIT ≥ 0,
optional parameters, including a wake-up pattern or channel
selection, are generated. If necessary, it is possible to change
the optional parameters manually (this is called expert mode).

4.  DBC-based Automatic FIBEX Generation
Algorithm

The DBC-based automatic FIBEX generation algorithm is
shown in Figure 4, and consists of three parts; a DBC parser,
PCR generator, and FIBEX generator. When a CAN DBC file
is imported, the DBC parser collects ECU data and message
information. To collect ECU data, it searches for the ECU
header ‘BU_:’ in the DBC file, and generates an ECU linked
list for storing the ECU name, number of transmitted mes-
sages (Txmsg), and number of received messages (Rx msg).
In addition, it searches for the message header ‘BO_:’, which
defines a transmission address; if this is not found; the mes-
sage is ignored to reduce the network traffic. If a transmission
address is defined, the DBC parser generates a message linked
list to save the CAN ID, data length, message generation cycle,
and periodic features of the message (cyclic or aperiodic). If a
message is transmitted from multiple ECUs, the DBC parser
generates and stores multiple messages per ECU. It then checks
for a signal header ‘SG_:’ to verify the receiving address and
stores the received information as a linked list. After executing

seek ‘BO_:’
for msg

seek
‘SG_:’ for Rx

Tx is not
defined ?

ignore msg

Tx is
multiple ?

Y

N

make
msg linked list

make multiple msg
per Tx

N

Y

seek ‘BU_:’
for ECU

make
ECU linked list

of ECU
exceed ?

save ECU name,
of Tx msg, and

of Rx msg

save CAN ID, data length,
msg generation cycle,

send type

store Tx into
msg linked list

store Rx into
msg linked list

of msg
exceed ?

N

N

Y

Y

put msg linked list
into ECU linked list

DBC Parser

determine TC

according to
cyclic msg’s GCD

TSS = NSS * LSS

TDS = NDS * LDS

TSW = 0

Tsegment = TSS + TDS

TNIT = TC-Tsegment-TSW
TNIT > 0 ?

expert
mode?

generate
auto optional prm

select optional prm
(limit TSW < TNIT)

N

N

Y
Y

calculate PCR

PCR
Generator

allocate PCR
to FIBEX

read
ECU linked list

allocate ECU
to FIBEX

Y

N

of ECU
exceed ?

allocate Msg
to FIBEX

read msg linked list
in ECU linked list

of msg
exceed ?

N

Y

FIBEX
Generator

FIBEX generation
is impossible

import DBC file

FIBEX is
generated

Figure 4. Flowchart for the DBC-based Automatic FIBEX Generation Algorithm.

 INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    5

2010 MFC. The program can show the imported DBC file for-
mats and the generated PCR parameter for user inspection.
The program consisted of nine steps. Firstly, a CAN DBC file is
imported by clicking the ‘CANdb read’ button. (①). Then, the
baud rate is fixed to 10 Mbps and the base cycle is automatically
calculated using GCD values. (②). Also, the four parameters
describing the number of static slots, number of mini-slots,
static payload length, and maximum dynamic payload length
are calculated based on the message information of the DBC
file. (③). Secondly, the ‘Segment check’ button is pressed. (④).
Then, additional data including the network macro per cycle,
static slot length, mini-slot length, and network idle time are
calculated, as well as the optional PCR parameter (‘optional

Otherwise, the remaining PCR parameters are generated auto-
matically from the relationships shown in Figure 3.

To generate a FIBEX file format, as shown in Figure 1, the
FIBEX generation part makes objects for the PCR, allocates PCR
values, and generates the cluster information describing the
FlexRay network. The ECU and message information are read
from the linked list, and then allocated to a FIBEX data structure.

5.  Performance Evaluation of the DBC-based
Automatic FIBEX Generation Algorithm

Figure 6 shows the DBC-based automatic FIBEX generation
program, which was developed using Microsoft Visual Studio

ECU1
Number of

Tx Msg
Number of

Rx Msg Address

Msg ID Data
Length

Cycle Send
type

Transmitter Receiver Address

Msg ID Data
Length

Cycle Send
type

Transmitter Receiver Address

Msg ID Data
Length

Cycle Send
type

Transmitter Receiver Address

ECU2
Number of

Tx Msg
Number of

Rx Msg Address

ECU1’s
Msg

Figure 5. Allocation of Messages using a Linked List.

Figure 6. Automatic FIBEX Generation Program.

6   ﻿ Y. H. SONG ET AL.

Figure 7(a) shows simulated data from the CAN simulation
model with the sample DBC file. We can see that 15 messages
were sent and received without significant network delays.
Figure 7(b) shows simulated data for the FlexRay simulation
model, including the automatically generated FIBEX file from
the sample DBC file. The 15 messages were transmitted and
received without any error. The automatically generated FIBEX
data maintained integrity, and the FIBEX generation program
operated successfully.

To evaluate the commercial feasibility of the DBC-based
automatic FIBEX generation program, we compared the per-
formance of the conversion utility with that of the commer-
cially available National Instruments (NI) Database Editor. We
created a more complex DBC message description database
with 34 ECUs, 38 cyclic messages, and 34 aperiodic messages,
shown in Table A.2. This DBC file was defined for the sub-net-
work of a chassis network system from a Korean automotive
vendor. We automatically generated the FIBEX file from the
DBC file using our method and manually created a FIBEX file

prm.’ Box). (⑤). If the sum of the static segment, dynamic seg-
ment, and NIC is larger than the base cycle, the program shows
a pop-up error message window. Thirdly, ‘Generation Parm.’
Button is pressed. (⑥). Then, the PCR parameters are gener-
ated automatically from the relationships shown in Figure 3.
(⑦). Finally, the user acquires the FIBEX file by pressing the
‘Generation FIBEX’ button. (⑧). Also, user acquires the firm-
ware-level source file for the target microcontroller by clicking
the ‘Generation SRC’ button. (⑨).

To verify the data integrity of the automatically gener-
ated FIBEX data, we created a CAN and FlexRay simulation
model using a sample DBC file, shown in Table A.1. The trans-
mission speed of the CAN DBC was set to 500 kbps, and 15
messages were allocated to three ECUs. The DBC defined the
send type (cycle or aperiodic), length, cycle time, transmitter,
and receiver. The CAN and FlexRay simulation model were
developed using Vector’s CANoe. FlexRay, which is the most
widely used commercial software package for evaluating the
data integrity of vehicle network systems.

(a) CAN simulation model with sample DBC

(b) FlexRay simulation model with automatically generated FIBEX

ID msg name

data length

transmission
ECU

absolute time

channel

relative time

ID

msg name

data length

transmission
ECU

Figure 7. Simulated Data using the CANoe Simulation Model.

 INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    7

key parameters are identified among the 53 PCR parameters,
and the relationships between these parameters are analyzed
to compute proper values based on five key parameter values.

Second, a software application is developed to convert the
DBC format into the FIBEX format. The DBC and FIBEX
formats are analyzed to parse and export data, and a rudi-
mentary logic is used to select key parameter values so that
the conversion process can proceed with minimal input from
the user.

Third, the results of the conversion process are verified for
correctness. It is verified by the network simulation that the
FlexRay network composed by the automatically generated
FIBEX operates similarly compared to the CAN network oper-
ation. The application facilitates conversion, requiring far less
user input. This feature is expected to assist FlexRay network
designers to migrate from CAN to FlexRay.

However, this research has been limited to testing the fea-
sibility of the DBC-based automatic FIBEX generation for
simple simulation model by using CANoe.FlexRay. Hence, its
performance should be evaluated using an experimental model
with real ECU for chassis networking system. Besides, further
research may include the optimal selection of parameter values
in terms of network utilization, transmission delay, jitter, and
so on.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes on contributors

Young Hun Song received a B.S. degree from Pukyong
National University, Busan, Korea, in 2008. He is a
researcher in the Korea Electrotechnology Research
Institute, Changwon, Korea. His research interests
include in-vehicle networking system and networked
control system.

Suk Lee received a Ph.D. degree from The Pennsylvania
State University, University Park, in 1990. He is a pro-
fessor in the School of Mechanical Engineering,
Pusan National University, Busan, Korea. His research
interests are industrial network, in-vehicle network,
home network, and networked control system.

Kyoung Nam Ha received a Ph.D. degree from Pusan
National University, Busan, Korea, in 2010. He is a
principal researcher in the Korea Institute of Industrial
Technology, Busan, Korea. His research interests
include marine robot, remote control system, and
in-vehicle networking system.

Kyung Chang Lee received a Ph.D. degree from Pusan
National University, Busan, Korea, in 2003. He is a
professor in the Department of Control and
Instrumentation Engineering, Pukyong National
University, Busan, Korea. His research interests are
embedded network system, industrial network,
robotic network, in-vehicle network, home network,
wireless sensor network, and networked control
system.

using NI’s Database Editor. We then checked the data integrity
using simulation model made by CANoe.FlexRay, and verified
that the two FIBEX files were generated successfully.

Figure 8(a) shows the number of mouse clicks required to
convert the individual DBC files into FIBEX files. Our program
required only seven clicks, whereas the commercial software
required 78 and 377 clicks for sample and commercial DBC file
described in Table A.1 and A.2. Figure 8(b) shows the average
time for the conversion obtained from 10 trials. Our program
required 8.06 and 8.01 seconds for the two cases described in
Table A. However, NI’s Database Editor required 196.02 and
1064.7 seconds. The reason for this significant difference is
that the existing commercial application requires user input
to design the ECU, message, and signal; however, our method
uses the DBC data.

6.  Summary and Conclusions

This paper presents a DBC-based automatic FIBEX generation
method. The FlexRay network design is more complex than
the CAN network design, and a FlexRay designer must pro-
vide details of the protocol and specify numerous inter-related
parameters, whereas a CAN network designer only needs to
specify the behavior of individual nodes as well as a few net-
work-related parameters, such as the transmission data-rate.
This complexity has hindered the widespread uptake of the
FlexRay protocol. The conclusions derived from this research
are as follows:

First, when FlexRay network systems are designed using the
automotive industry’s CAN message description format such
as the DBC format, it is necessary to calculate the 53 platform
configuration register (PCR) parameters. In this paper, five

nu
m

be
r

of
 c

lic
ks

7

78

7

377

0

50

100

150

200

250

300

350

400

our program
w sample DBC

our program
w commercial DBC

NI’s program
w sample DBC

NI’s program
w commercial DBC

(a) number of mouse clicks required for FIBEX generation

8.06

196.02

8.01

1064.7

0

200

400

600

800

1000

1200

av
er

ag
e

tim
e

(s
ec

)

our program
w sample DBC

our program
w commercial DBC

NI’s program
w sample DBC

NI’s program
w commercial DBC

(b) average time for FIBEX generation

Figure 8. Performance Evaluation of Our Software Application and NI’s Database
Editor.

8   ﻿ Y. H. SONG ET AL.

Rai, D., Jestin, T.K., & Vitkin, L. (2008). Model-based development of
AUTOSAR-compliant applications: Exterior lights module case study.
SAE international journal of passenger cars-electronic and electrical
systems, 1(2008-01-0221), 84–91.

Reiter, S., Viehl, A., Bringmann, O., & Rosenstiel, W. (2016). Fault injection
ecosystem for assisted safety validation of automotive systems. High
Level Design Validation and Test Workshop (HLDVT), 2016 IEEE
International, 62–69.

Rho, J., Azumi, T., Oyama, H., Sato, K., & Nishio, N. (2016). Distributed
processing for automotive data stream management system on mixed
single-and multi-core processors. ACM SIGBED Review, 13(3), 15–22.

Rosset, V., Souto, PF., Portugal, P., & Vaspues, F. (2012). Modeling the
reliability of a group membership protocol for dual-scheduled time
division multiple access networks. Computer Standards & Interfaces,
34, 281–291.

Schmidt, E.G., & Schmidt, K. (2009). Message scheduling for the FlexRay
protocol: The dynamic segment. IEEE Transactions on Vehicular
Technology, 58, 2160–2169.

Sethna, F., Stipidis, E., & Ali, F.H. (2006). What lessons can controller
area networks learn from FlexRay. IEEE Vehicle Power and Propulsion
Conference, 1–4.

Song, YH., Lee, S., & Lee, KC. (2013). Automatic FIBEX generation from
CANdb for FlexRay network. 2013 XXIV International Conference on
Information, Communication and Automation Technologies, Sarajevo,
Bosnia and Herzegovina, 978–981.

Stroop, J., & Stolpe, R. (2006). Prototyping of automotive control systems
in a time-triggered environment using FlexRay. Proceedings of the
2006 IEEE Conference on Computer Aided Control Systems Design,
Munich, Germany, 2332–2337.

Vector. (2007). DBC File Format Documentation.
Zeng, H., Natale, M., & Ghosal, A. (2011). Schedule optimization of time-

triggered systems communication over the FlexRay static segment.
IEEE Transactions on Industrial Informatics, 7(1), 1–17.

Zhao, Y., & Zhong, Z. (2008). Development on automotive electronic
real time control software based on auto-code generation technology.
Computer Aided Engineering, 3, 1–12.

References
Armengaud, E., Steininger, A., & Horauer, M. (2008). Towards a

systematic test for embedded automotive communication systems.
IEEE Transactions on Industrial Informatics, 4(3), 146–155.

Association for Standardization of Automation and Measuring Systems
(ASAM) (2013). Field Bus Exchange Format, http://www.asam.net.

Choi, J., Choi, J., Ko, H., Bae, K., An, K. J., Kim, C. S., & Choi, J.
(2014). A Smart Service Robot Middleware on Ubiquitous Network
Environments. Intelligent Automation & Soft Computing, 20(1), 47–59.

Cummings, R. (2008). Easing the transition of system designs from CAN
to FlexRay, SAE Technical Paper, 2008-01-0804.

Han, G., Natale, M. D., Zeng, H., Liu, X., & Dou, W. (2013). Optimizing
the implementation of real-time Simulink models onto distributed
automotive architectures. Journal of Systems Architecture, 59(10),
1115–1127.

Jang, K., Park, I., Han, J., Lee, K., & Sunwoo, M. (2011). Design framework
for FlexRay network parameter optimization. International Journal of
Automotive Technology, 12(4), 589–597.

Kang, M., Park, K., & Jeong, M. K. (2013). Frame packing for minimizing
the bandwidth consumption of the FlexRay static segment. IEEE
Transactions on Industrial Electronics, 60(9), 4001–4008.

Kim, M. H., Lee, S., & Lee, K. C. (2015). Performance evaluation of
node-mapping-based Flexray-CAN gateway for in-vehicle networking
system. Intelligent Automation & Soft Computing, 21(2), 251–263.

Leen, G., Hefferman, D., & Dunne, A. (1999). Digital networks in the
automotive vehicle. Computer & Control Engineering Journal, 10(6),
257–266.

Liebezeit, T., Junghanns, A., Bonin, M., & Serway, R. (2012). Software-in-
the-loop using virtual CAN buses: current solutions and challenges,
5th Conference Simulation and Testing for Automotive. Electronics,
1–11.

Mishra, P. K., & Naik, S. M. (2005). Distributed control system development
for FlexRay-based systems. SAE Technical Paper, 2005-01-1279.

Park, I. & Sunwoo, M. (2011). FlexRay network parameter optimization
method for automotive applications. IEEE Transactions on Industrial
Electronics, 58(4), 1449–1459.

Appendix

Table A.1.Message Set of a Sample DBC file.

transmitter message ID length send type cycle time receiver

ECU1 Msg1 0x01 8 Cyclic 20 ECU2
Msg2 0x02 8 Cyclic 10 ECU2, ECU3
Msg3 0x03 8 Cyclic 10 ECU2
Msg9 0x09 8 Cyclic 10 ECU2
Msg13 0x0d 8 Cyclic 5 ECU3
Msg15 0x0f 8 Cyclic 40 ECU2

ECU2 Msg4 0x04 8 Cyclic 10 ECU1
Msg5 0x05 8 Cyclic 20 ECU1
Msg6 0x06 8 Cyclic 20 ECU1
Msg10 0x0a 8 Cyclic 5 ECU3
Msg12 0x0c 8 Cyclic 5 ECU1, ECU3

ECU3 Msg7 0x07 8 Cyclic 20 ECU1, ECU2
Msg8 0x08 8 Cyclic 10 ECU1, ECU3
Msg11 0x0b 8 Cyclic 5 ECU2
Msg14 0x0e 8 Cyclic 5 ECU1

Table A.2. Message Set of a Commercial DBC File for Chassis Network System.

transmitter message ID length send type cycle time receiver

ECU1 Msg1 0x01 8 cyclic 20 ECU3, 5, 8, 14
Msg2 0x02 8 cyclic 20 ECU14

ECU2 No Msg Transmit
ECU3 Msg3 0x03 8 cyclic 20 ECU1, 5, 8, 10, 12, 13, 27, 29

Msg68 0x68 8 aperiodic 100 ECU27
ECU4 Msg51 0x51 8 cyclic 20 ECU8, 14, 23, 31

Msg52 0x52 8 aperiodic 100 ECU4, 13, 24
Msg53 0x53 8 aperiodic 100 ECU8, 14, 23, 28

(Continued)

http://www.asam.net

 INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    9

ECU5 Msg4 0x04 8 cyclic 1000 ECU8, 21, 22, 23
Msg5 0x05 8 cyclic 1000 ECU21
Msg6 0x06 8 aperiodic 100 ECU21
Msg7 0x07 8 cyclic 10 ECU8
Msg8 0x08 8 aperiodic 100 ECU10, 31

ECU6 No Msg Transmit
ECU7 Msg9 0x09 1 cyclic 100 ECU8
ECU8 Msg11 0x11 8 cyclic 20 ECU4, 10, 12, 13, 14, 18, 31

Msg13 0x13 8 aperiodic 100 ECU12
ECU9 Msg12 0x12 8 aperiodic 100 ECU3, 5, 7, 10, 12, 13, 14, 15, 18, 23, 27, 29, 31, 34
ECU10 Msg14 0x14 8 aperiodic 100 ECU8
ECU11 Msg16 0x16 8 aperiodic 100 ECU12

Msg17 0x17 8 aperiodic 100 ECU12
Msg18 0x18 8 aperiodic 100 ECU12

ECU12 Msg21 0x21 8 cyclic 10 ECU1, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22
Msg22 0x22 8 cyclic 10 ECU1, 3, 4, 5, 7, 8, 13, 14, 15, 17, 23, 29,34
Msg23 0x23 8 cyclic 10 ECU19
Msg24 0x24 8 cyclic 10 ECU8, 10, 13, 15, 28, 29
Msg25 0x25 8 cyclic 10 ECU4, 5, 14, 29
Msg26 0x26 8 cyclic 10 ECU8, 13, 14, 15, 19, 29
Msg27 0x27 8 aperiodic 100 ECU11
Msg28 0x28 8 cyclic 10 ECU6, 8, 15, 20, 29
Msg29 0x29 8 cyclic 10 ECU29
Msg30 0x30 8 cyclic 10 ECU29

ECU13 Msg31 0x31 8 aperiodic 100 ECU8, 14, 29
ECU14 Msg10 0x10 2 aperiodic 100 ECU26

Msg32 0x32 8 aperiodic 100 ECU8, 12, 13
Msg33 0x33 8 aperiodic 100 ECU1, 4, 5, 7, 13, 18, 22, 23, 27, 29, 34
Msg34 0x34 8 cyclic 10 ECU33
Msg35 0x35 8 aperiodic 100 ECU4
Msg56 0x56 8 cyclic 10 ECU1, 4, 5, 8, 12, 13, 23, 27, 29, 34
Msg57 0x57 4 cyclic 20 ECU1, 5
Msg58 0x58 8 cyclic 20 ECU4, 12, 29
Msg59 0x59 4 cyclic 20 ECU1
Msg60 0x60 8 cyclic 20 ECU1, 5, 8, 10, 12, 13, 22, 23, 29
Msg66 0x66 8 aperiodic 100 ECU20
Msg69 0x69 8 aperiodic 100 ECU4, 7, 22

ECU15 Msg36 0x36 8 cyclic 10 ECU8, 12, 27
ECU16 No Msg Transmit
ECU17 Msg37 0x37 8 cyclic 100 ECU12
ECU18 Msg39 0x39 8 aperiodic 100 ECU8, 18, 23
ECU19 Msg40 0x40 8 cyclic 10 ECU12
ECU20 Msg41 0x41 3 cyclic 100 ECU8, 14, 27

Msg42 0x42 8 aperiodic 10 ECU27
Msg67 0x67 8 aperiodic 100 ECU14

ECU21 Msg43 0x43 8 aperiodic 100 ECU5
Msg44 0x44 8 aperiodic 100 ECU5
Msg45 0x45 8 aperiodic 100 ECU5

ECU22 No Msg Transmit
ECU23 Msg46 0x46 8 aperiodic 100 ECU4, 8

Msg47 0x47 8 aperiodic 100 ECU4, 8
ECU24 Msg48 0x48 8 cyclic 10 ECU12
ECU25 Msg49 0x49 8 aperiodic 100 ECU8
ECU26 Msg50 0x50 5 cyclic 10 ECU4, 5, 7, 14, 22, 23, 34
ECU27 Msg54 0x54 8 aperiodic 100 ECU20

Msg55 0x55 8 aperiodic 100 ECU8, 16
ECU28 No Msg Transmit
ECU29 Msg61 0x61 8 cyclic 10 ECU1, 4, 7, 8, 10, 12, 13, 14, 22, 27, 31, 34

Msg62 0x62 8 cyclic 10 ECU4, 8, 12, 14, 15, 31, 34
Msg63 0x63 8 cyclic 10 ECU4, 8, 10, 12, 14

ECU30 Msg38 0x38 8 aperiodic 100 ECU1, 3, 4, 5, 6, 7, 8, 12, 14, 15, 17, 19, 20, 24, 26, 29, 32, 33
ECU31 Msg64 0x64 8 aperiodic 100 ECU12
ECU32 Msg65 0x65 2 cyclic 50 ECU8, 10, 31
ECU33 Msg70 0x70 8 cyclic 10 ECU14

Msg71 0x71 8 cyclic 10 ECU14
Msg72 0x72 8 aperiodic 100 ECU14

ECU34 Msg19 0x19 5 cyclic 50 ECU8, 10, 31
Msg20 0x20 5 cyclic 20 ECU7, 8

Table A.2. (Continued).

	Abstract
	1. Introduction
	2. Structure of FIBEX and DBC
	3. Analysis of PCR Parameters of FlexRay
	4. DBC-based Automatic FIBEX Generation Algorithm
	5. Performance Evaluation of the DBC-based Automatic FIBEX Generation Algorithm
	6. Summary and Conclusions
	Disclosure statement
	Notes on contributors
	References

