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ABSTRACT
Directional Steering System (DSS) has been established for well drilling in the oilfield in order to 
accomplish high reservoir productivity and to improve accessibility of oil reservoirs in complex 
locations. In this paper, a novel feedback linearization controller to cancel the nonlinear dynamics of a 
DSS is proposed. The proposed controller design problem is formulated as an optimization problem for 
optimal settings of the controller feedback gains. Gravitational Search Algorithm (GSA) is developed to 
search for optimal settings of the proposed controller. The objective function considered is to minimize 
the tracking error and drilling efforts. In this study, the DSS considered has 4 downhole motors. The 
robustness of the proposed GSA-based approach for the controller design is demonstrated. The 
simulation results of the considered 4-rotor DSS is presented and the effectiveness of the proposed 
controller is confirmed.

1.  Introduction

Directional Steering System (DSS) has considerable impor-
tance in the oil and gas industry due to its influence on the 
well production rate. It can improve the accessibility of the oil 
reservoirs beneath difficult to reach locations such as; cities, 
mountains, and lacks. DSS is crucial if the reservoir is having 
a wide surface zone in a slim horizontal layer. The horizontal 
wells can be extended over a larger area in contact with the 
reservoir providing higher productivity (Talib et al., 2014).

Directional drilling refers to the operation of leading the 
wellbore along some preplanned trajectory towards a pre-
scribed target. Deviation control is used to keep the wellbore 
within predetermined limits of inclination angle and/or azi-
muth angle (Bourgoyne, Chenevert, & Millhelm, 1986). The 
steering mechanism of directional drilling systems works by 
applying angular moments and lateral loads to the drill bit 
in order to modify the propagation direction of the borehole 
(Downton & Ignova, 2011).

Although the California Huntington Beach field drilled in 
1933 is regarded as the first directional oil well, since then differ-
ent directional drilling techniques have been recently presented. 
Directional drilling (DD) systems introduced in 1962 had 
included developments on the positive-displacement-motor and 
bent-sub-assembly, which made the development of offshore 
fields practical (Brantly, 1971). This technology was extended 
and further developed to the concept of steerable motor systems 
(Garrison, 1965). The development of the steerable motor tech-
nology has been improved in its designs and materials (Yiyong 
et al., 2009). High precision directional drilling technologies 
have significant importance in extended mineral and seabed 
resources exploration. They could be considered as a key task of 
geological work. In order to enhance the precision and quality 
of geological exploration, a high accuracy DD technique is the 

proper option. DD is used to decrease the overall exploration 
cost and reduce the total drilling platform number, particularly 
in the maritime resources exploration (Yiyong et al., 2009).

2.  Related Work

In the last two decades, DD technology has been improved 
through some oil and gas services companies as Schlumberger, 
Baker Hughes, and Halliburton amongst others. Other compa-
nies that carried out subsequent research in directional systems 
include Precision Drilling Corporation, Pathfinder, Gyrodata 
Limited, and Noble Downhole Technology (Chen et al., 2003; 
Orban & Richardson, 1995; Wu & Wisler, 1993).

Researchers of several companies in China, including China 
National Offshore Oil Corporation, Xi’an Petroleum Institute, 
and China Petrochemical Corporation have also investigated 
the directional drilling system control principle. However, key 
directionally drilling components, particularly the control unit 
of the system, has not been fully realized in China (Yiyong et 
al., 2009).

Directional drilling assembly designs used to drill direc-
tional holes are mechanical, hydraulic, electrical, and natural 
(Haugen, 1998). The techniques used to drill directional holes 
are rotary drilling with certain stabilizer arrangements (Bobo, 
1968), downhole motor with a bent sub (Wenzel, 1988), rotary 
steerable system (RSS) (Gamer et al., 1992), whipstocks (Frisby, 
1967), and jetting drilling (Williams, 1956). All these tech-
niques are classified as mechanical methods except the jetting 
drilling, which is considered as a hydraulic method. A natural 
method is related to formation geology such as; hardness and 
dipping associated with a certain bottom hole assembly (BHA) 
design. Nowadays, the two most used methods in deep direc-
tional drilling are the downhole motor and the RSS.
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Rotary steerable systems improve the rate of penetration 
and extend the reach of extended-reach-drilling (ERD) wells. 
This increases the efficiency and reduces the total cost of ERD 
processes. Using those systems, operators can optimize the 
wellbore placement and hole quality to fulfil a better rate of 
penetration and improve the reservoir deliverability. RSS were 
applied for various ERD wells at the Wytch Farm by Colebrook, 
Peach, Allen, and Conran in 1998 (Colebrook et al., 1998).

A new proposed model of a directional steering system 
has been developed with different dynamics (Talib et al., 
2014), which includes 4 downhole motors where drill bits are 
attached. The steering mechanism of the proposed quad-mo-
tor is comparable to the quad-rotor craft structure. However, 
designing its control algorithm is more challenging due to 
the nonlinear coupling in its associated angles, pitch-yaw-roll 
(Talib et al., 2014). Unlike conventional drilling, the drilling 
power is mainly coming from these downhole motors. The 
drill string is not rotating and only transmits the drilling fluid 
and force on bit.

Conventional directional drilling techniques use deflec-
tors to drive the drill bit laterally through the borehole such 
as whipstocking (Frisby, 1967). Otherwise, a bent joint can 
be inserted in the drill-string, i.e. bent subs (Wenzel, 1988). It 
can also propel pressurized drill mud via a nozzle in the drill-
ing process to drive the bit laterally as side jetting (Williams, 
1956). The whipstocking technique demands a sequence of 
independent processes such as pilot holes punching, reaming of 
the pilot hole, then remove the deflector. Therefore, the process 
is costly and needs much more time. The technique of bent subs 
requires expensive actuators in order to produce lateral forces 
on the drill bit. The use of side jetting technique is not suitable 
for all fields such as hard rock earth, because the hard rock will 
not be eroded by the conventional mud pressure. In addition, 
this technique uses special drill bits to introduce offset holes 
by the pressurized drill mud.

The invention reported in (Talib et al., 2014) discloses a 
drilling apparatus with four drilling motors. The proposed 
apparatus eliminates the need for the current complicated tech-
niques, and provides simple and intuitive techniques for precise 
drilling of the desired hole bore trajectory. The rate of rock 
removal can be precisely controlled by controlling the angular 
speed of every motor individually. Consequently, the direction 
of advancement of the drilling head is properly controlled.

Plenty of research studies have been developed in the scope 
of modeling and optimization of directional drilling. A major 
part of the reported work aims at minimizing error and cost 
of the drilling process (Miyora, 2015). Modeling of the drilling 
operation for control and optimization is a challenging prob-
lem due to the diversity of the factors affecting drilling as well as 
the uncertainty in their determination. Among these factors are 
the bottom hole assembly (BHA) dynamics, torques and drags, 
formation properties, bit formation interaction, and drilling 
fluid properties and its hydraulics (Bourgoyne & Young, 1974).

There are several evolutionary optimization algorithms 
that are widely used in various applications with impressive 
success (Chiroma et al., 2016; Xue, Zhong, Ma, & Cao, 2016). 
Gravitational search algorithm (GSA) for solving the optimi-
zation problems has been recently presented (Sabri, Puteh, 
& Mahmood, 2013). It was reported that the GSA is able to 
provide more precise, efficient and robust solution for a num-
ber of optimization problems. GSA was exercised in differ-
ent disciplines such as controller design for optimum tuning 
of PI-fuzzy controllers (David et al., 2012), network routing 

(Rubio-Largo et al., 2011), wireless sensor networks (Rostamy, 
Bernety, & Hosseinabadi, 2011), multi-level thresholding (Sun 
et al., 2016), renewable micro-grids (Niknam, Golestaneh, & 
Malekpour, 2012), and PD-fuzzy controller for MIMO sys-
tems (Hashim & Abido, 2015). An experimental comparative 
study has been developed between GSA, central force optimi-
zation, particle swarm optimization, and real genetic algorithm 
(Rashedi, Nezamabadi-pour, & Saryazdi, 2009). It was reported 
that the results acquired by GSA in most cases are much better 
compared to other optimization techniques.

Due to its potential, GSA has been hybridized with other 
evolutionary algorithms and soft computing techniques and 
the results were impressive. A Fuzzy logic-based adaptive GSA 
is used for optimal tuning of fuzzy-controlled servo systems 
(David et al., 2013). The fuzzy controller is used to adapt the 
gravitational constant and the number of effective agents. The 
proposed control algorithm showed better performance over 
other classic control techniques to control the angular speed of 
a laboratory servo system. In addition, a Modified-GSA is used 
for feature subset selection in machine learning, (Han et al., 
2014). A sequential quadratic programming is used for acceler-
ating local exploitation and the developed algorithm exhibited 
high performance over other techniques. A Hybrid PSO–GSA 
algorithm is implemented to improve the power system sta-
bility (Khadanga & Satapathy, 2015) where a hybrid algorithm 
is designed to design the damping controller and overcome 
time delays and signal transmission delays. The reported results 
were very adaptive and demonstrated the effectiveness of GSA 
compared to literature. Another hybridization of GSA with 
clonal selection algorithm was investigated for global optimi-
zation problems (Gao et al., 2013), where GSA was devoted to 
carry out exploration in the search space while clonal selection 
algorithm was developed to perform exploitation within the 
neighbourhood of the found solution. The algorithm showed 
better performance for eight benchmark functions including 
both unimodal and multimodal types (Gao et al., 2013).

In this work, the dynamic analysis and control strategy of 
the quad-rotor directional steering systems are proposed. The 
proposed strategy aims at designing and controlling the DSS for 
tracking and stabilization of the drill bit. The proposed control 
strategy involves linearization of the highly nonlinear dynamics 
of the system. GSA optimization technique is proposed and 
developed to optimize the control inputs of the four rotors. The 
proposed GSA-based optimization procedure overcomes the 
shortcomings of Linear Quadratic Regulator (LQR) where the 
weight matrices, Q and R, are subjectively set by trial and error 
approach. This gives a narrow range for weighting the objective 
function. In addition, the proposed controller design approach 
is applicable to wide range of oilfields with unknown formation 
friction and rock strength as it adaptively estimates the optimal 
system parameters. The performance of the proposed control 
strategy are discussed and evaluated.

3.  Dynamic Analysis

A directional steering mechanism equipped with 4 rotors, as 
shown in Figure 1, is driving 4 independent bit assemblies. 
Each rotor speed can be regulated individually, creating a pre-
cisely control for the rate of removing rocks by each bit in 
addition to the progression direction of the drill head. The 
drilling head assembly is located at the end of the drillstring. 
The drillstring contains an inner tube for conveying the drill-
ing fluid. The use of four motors in coordination with other 
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classical drilling variables permits precise control of the drilling 
direction and optimization of Rate of Penetration (RoP) (Talib 
et al., 2014).

Sensors embedded at the head assembly are used to meas-
ure the angular orientation of drillstring. This measurement 
is called measurement-while-drilling (MWD). It inferentially 
gives the local inclination (i.e. pitch angle) of the borehole. The 
sensors also indicate the azimuthal direction of the borehole, 
i.e. the horizontal angular distance from North direction to 
a point of interest projected on the same plane. Both the azi-
muthal direction and local inclination are transmitted to a con-
troller, which could be positioned in the drillstring, surface rig, 
or remote location. This controller takes these measurements 
as a feedback to identify the current position and shape of the 
borehole then compare it to the desired borehole trajectory to 
calculate the steady state error. The controller then computes 
and transmits a steering direction correction to the DD mech-
anism (Downton & Ignova, 2011).

The four drill bits are positioned symmetrically with respect 
to three body axes. The drill bit resolves the motor torque into 
two main components; a drag torque (TD) on a plane orthog-
onal to the bit axis, and a lift force (FL), which pushes removed 
rocks up along the spiral groves of the drilling bit.

The most commonly used approach for optimization of 
the actual rotary drilling operation is the mechanical specific 
energy (MSE). MSE principle is defined as the amount of 
work desired to crush a certain volume of the rocks. It can be 
used as an optimization tool during drilling operations where 
any change in drilling efficiency can be detected in order to 
enhance instantaneous rate of penetration (RoP) by optimiz-
ing the drilling parameters (Rashidi, Hareland, & Nygaard, 
2008). 

The transformation of the inputs is defined as follows:
 

 

 

 

Where: 
ui is the input control action; i = 1, 2, 3 or 4.

FLi is the motor lift force; i = 1, 2, 3 or 4.

TDi is the motor drag torque; i = 1, 2, 3 or 4.

(1)u1 = FL1
+ FL2

+ FL3
+ FL4

+ FoB

(2)u2 = FL2
− FL4

(3)u3 = FL1
− FL3

(4)u4 = TD1
− TD2

+ TD3
− TD4

FoB stands for Force on Bit, which is a quantitative part used to 
represent axial force amount placed on the assembly of drill bit. 
This force directly acts on the center axis of a system. Therefore, 
it is treated as an additional term of input variable u1 and usu-
ally used to enhance the RoP.

Breaking rocks demands the drag torque (TD) of the actua-
tor to be higher than the lift force (FL). However, higher values 
of FL are required to develop steering and RoP. The FL and TD 
are related to the input torque of the motor (Tm) and the motor 
angular speed (ω) by the following expressions,

 

 

Where α1 and α2 depend on the geometry of drill bit, b is the 
thrust factor that depends on the geometry of drill bit and the 
density of mud, and d is the drag factor that depends on the 
drill bit geometry and rock properties.

Figure 2 illustrates the proposed two fixed frames. Firstly, 
the earth (inertia) fixed frame referred by E, and, secondly, the 
body fixed frame denoted B. The orientation of the 4-motor 
drill bit system is defined by the three Euler angles, namely, roll, 
pitch, and yaw angles, symbolized as Φ, θ, and ψ, respectively. 
The proposed dynamic model of the DSS can be represented 
by the following four nonlinear differential equations:

 

 

 

 

Where:
w: measured depth.
ϕ, θ, and ψ: roll, pitch, and yaw angels.
m: mass of the DSS.
Ix, Iy, and Iz: inertia of the DSS.
Ir: inertia of the drill bit.
g: gravitational acceleration.
Ffw: the friction force.
Tfw,ψ: the friction torque.
Gu: gyroscopic torque coefficient.
Tfw, Tfw,ψ, and Gu can be expressed as,
 

 

 

Where μ is the friction coefficient (0.25 ~ 0.4), and rh is the hole 
radius. Equations 1–4 can be rewritten as

(5)FLi = �1Tmi = b. �2
i

(6)TDi = �2Tmi = d. �2
i

(7)ẅ =
1

m
(u1 − Ffw) − g cos 𝜃

(8)𝜓̈ = 𝜃̇ 𝜙̇

( Iy − Iz

Ix

)
−

Ir
Ix
𝜃̇ Gu +

Lbu2

Ix

(9)𝜃̈ = 𝜙̇ 𝜓̇

(
Iz − Ix
Iy

)
+

Ir
Iy
𝜓̇ Gu +

Lbu3

Iy

(10)𝜙̈ = 𝜃̇ 𝜓̇

( Ix − Iy

Iz

)
+

u4 − Tfw,𝜓

Iz

(11)Ffw = �mg (sin � cos� + sin � sin�)

(12)Tfw,� = � rh m g cos �(sin � cos� + sin � sin�)

(13)Gu = �1 − �2 + �3 − �4

Figure 1. Drilling Head Assembly (Talib et al., 2014).
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optimization methodology that inspired by the law of gravity 
and interactions among masses. In this algorithm, the searcher 
agents consist of a group of masses that interact with each 
other depending on the Newtonian gravity and motion laws 
(Rashedi et al., 2009).

4.1.  Feedback Linearization

The system model is highly nonlinear and its complexity is 
significant. This model can be represented as,
 

Where u is the vector of control parameters and X is the vector 
of the system state variables. Here, u and X are defined as

u = [u1, u2, u3, u4 ], u1—u4 are given in Equations 1–4, 
respectively.

 

It is worth mentioning that the observed parameters are the 
states x1, x2, and x3 that are optimized to track desired values. 
The final state space equation for the DSS can be written as
 

It can be remarked from the system model equations that the 
system is fully actuated and has minimum phase dynamics. The 
system dynamics can be linearized with respect to the control 
u using
 

 

(19)ẋ = f (x, u, t)

(20)
X = [w , 𝜓 , 𝜃, 𝜙 , ẇ , 𝜓̇ , 𝜃̇ , 𝜙̇]

= [x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8]

(21)Ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x5
x6
x7
x8

−g cos x3 −
1

m
Ffw +

1

m
u1

x7x8

�
Iy−Iz

Ix

�
−

Ir

Ix
x7Gu +

Lb

Ix
u2

x6x8

�
Iz−Ix

Iy

�
+

Ir

Iy
x6Gu +

Lb

Iy
u3

x6x7

�
Ix−Iy

Iz

�
−

Tfw,𝜓

Iz
+

u4

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)u1 = m
(
g cos x3 +

1

m
Ffw + v1

)

(23)u2 =
Ix
Lb

(
Ir
Ix
x7 Gu − x7x8

Iy − Iz

Ix
+ v2

)

 

That yields,
 

The body axes at any point in the space can be transformed to 
the earth axes using the transformation matrix R.
 

Where sψ and cψ denote sin(�) and cos (�), respectively. The 
location of any point with respect to the earth axes can be 
formulated as
 

Where XE, YE, and ZE are the location of any point with respect 
to the earth axes. The Δw is the change of measured depth and 
can be calculated as
 

Generally, the model structure is illustrated in Figure 3.

4.  Proposed Controller Design

The control strategy consists of two control actions. The 
first step is to linearize the highly nonlinear dynamics of 
the system using feedback linearization as a nonlinear con-
trol approach. Feedback linearization uses the state feedback 
control to transform the nonlinear system into an equiva-
lent linear system (Khalil, 1996). The second step is to opti-
mize the controller design. In this regard, the gravitational 
search algorithm is developed and employed, which is an 

(14)

⎡⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

b b b b

0 b 0 −b

b 0 −b 0

d −d d −d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�2
1

�2
2

�2
3

�2
4

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎦
. FoB

(15)

⎡⎢⎢⎢⎢⎣

�2
1

�2
2

�2
3

�2
4

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

b b b b

0 b 0 −b

b 0 −b 0

d −d d −d

⎤⎥⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣

FoB

0

0

0

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

(16)

R =

⎡⎢⎢⎣

c� c� c� − s� s� −c� c� s� − s� c� c� s�

s� c� c� + c� s� −s� c� s� + c� c� s� s�

−s� c� s� s� c�

⎤⎥⎥⎦

(17)
⎡⎢⎢⎣

XE(t)

YE(t)

ZE(t)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

XE(t − 1)

YE(t − 1)

ZE(t − 1)

⎤⎥⎥⎦
+ R .

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
⋅ Δw(t)

(18)Δw(t) = w(t) − w(t − 1)

Figure 2. Earth and Body Frame.
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The objective of the optimization techniques is to select the 
proper feedback gains Ks to optimize the control input signals 
that leads the system to satisfy the physical restrictions in addi-
tion to maximize (or minimize) some performance criterion 
(Kirk, 1998).

In aerial vehicles applications the values of thrust factor b 
and drag factor d may be considered as constants (Voos, 2009). 
However, in oilfield drilling, these factors change continuously 
as going deeper. Therefore, b and d have to be optimized at 
each iteration using an optimization technique to improve the 
dynamic model accuracy as shown in Figure 4.

Where e1 and e2 are defined as
 

 

It is worth mentioning that e1 is used for optimizing the feed-
back gains while e2 is used for optimizing the thrust and drag 
factors.

The estimation accuracy of factors b and d depends on the 
minimization of e2. So, the objective function for estimating b 
and d is formulated as

 

Where X is the model states vector and Xs is the simulator states 
vector that can be defined as follows:
 

Since the optimization problem formulated has a high dimen-
sional search domain, the conventional optimization tech-
niques have limited capability as the search domain grows 
exponentially with the size of the problem (Rashedi et al., 
2009). Over the past few decades, there was an increasing inter-
est in techniques inspired by the physical processes and bio-
logical behavior (Dorigo, Maniezzo, & Colorni, 1996; Farmer, 
Packard, & Perelson, 1986; Kennedy & Eberhart, 1995; Kim, 
Abraham, & Cho, 2007; Kirkpatrick, Gelatt, & Vecchi, 1983). 
It was demonstrated by many researchers that these algorithms 
are proper for solving complicated computational problems. 
These include dynamic optimization (Du & Li, 2008), pattern 
recognition (Tan & Bhanu, 2006), controller design (Baojiang 
& Shiyong, 2007; Hashim, El-Ferik, & Abido, 2015), and image 
processing (Cordón, Damas, & Santamaría, 2006; Nezamabadi-
pour, Saryazdi, & Rashedi, 2006).

4.2.  Gravitational Search Algorithm

Gravitation is defined in physics as the trend of two masses to 
move towards each other as shown in Figure 5. In this figure, 

(30)Xd =
[
wd �d �d

]
T

(31)V =
[
v1 v2 v3 v4

]T

(32)e1 = Xd − X

(33)e2 = Xs − X

(34)J2 =
1

2
[(X(k) − Xs(k))

T Q (X(k) − Xs(k)) ]

(35)Xs = [ws , 𝜓s , 𝜃s , 𝜙s , ẇs , 𝜓̇s , 𝜃̇s , 𝜙̇s]

 

 

Where vi, i = 1,2,3,4 is the new control signals that help to 
implement the desired operation.
 

K is the feedback gain, xa is the actual value of a variable and xd 
is its desired value. The feedback loop depends on the MWD. 
These drilling apparatuses continuously and automatically pro-
vide real-time reading of drilling parameters such as the ori-
entation and the location of the bottom-hole-assembly (BHA) 
and then send acquired data to the main computer in order to 
display, record, print, and provide the control action (Chen, 
Yanshun, & Chunyu, 2010).

The controllability canonical form for the linearized model 
can be rewritten as

 

The cost (objective) function J1 for tracking a predefined tra-
jectory is formulated as
 

Where Xd is the desired well trajectory vector including the 
measured depth, azimuth and inclination angles, X1 is the 
model states vector, V is the vector of new control inputs, k 
is the distance step, and Q & R are weighting matrices. In this 
study, Q is given more weight to minimize the tracking error.
 

(24)u3 =
Iy

Lb

(
−
Ir
Iy
x6 Gu − x6x8

Iz − Ix
Iy

+ v3

)

(25)u4 = Iz ⋅

(
−x6x7

Ix − Iy

Iz
+ v4

)
+ Tfw,�

(26)vi = Ki.
(
xa − xd

)
; i = 1, 2, 3, and 4

(27)
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J
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− X
d
(k + 1)) + V (k)TRV (k) ]

(29)X1 =
[
w � �

]
T

Figure 3. Structure of a DSS Model.
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number to give a stochastic characteristic to the algorithm. Fjk 
in the dth dimension can be calculated as follows:

 

Where Mak is the active gravitational mass for agent k, Mpj is the 
passive gravitational mass for agent j, Cg(t) is the gravitational 
constant at iteration t, ɛ is a small constant, and Rjk(t) is the 
Euclidian distance between two agents j and k at iteration t. 
Those parameters can be calculated as follows:
 

 

 

 

Step 5 (Velocity updating): Update the velocity of the jth 
agent in the dth dimension depending on the updated accel-
eration using the below equation

 

Step 6 (Position updating): Update the position of the jth 
agent in the dth dimension according to the updated velocity 
as follows:

 

Step 7 (Fitness updating): Calculate the fitness of the updated 
parameters then search for the new best and worst values.

Step 8 (Stopping criteria): If the pre-specified number of 
generations or any other stopping criteria is reached then stop, 
else go back to step 2.

(40)Fjk,d(t) = Cg(t)
Mpj(t) ×Mak

Rjk(t) + �

(
pk,d(t) − pj,d(t)

)

(41)Rjk(t) =
‖‖‖ Pj(t),Pk(t)

‖‖‖2

(42)Maj = Mpk = Mjj = Mj, j = 1, 2, .., n

(43)mj(t) =
fitj(t) − worst(t)

best(t) − worst(t)

(44)
Mj(t) =

mj(t)∑n

j=1 mk(t)

(45)sj,d(t + 1) = randj × sj,d(t) + aj,d(t)

(46)pj,(t + 1) = pj,d(t) + sj,d(t + 1)

M1, M2, M3, and M4 are four masses with different weights. F12, 
F13, and F14 are the gravitational forces applied from M1 towards 
M2, M3, and M4, respectively. F1 is the equivalent attraction 
force of F12, F13, and F14. Here, a1 is the generated acceleration 
of M1. In the gravitational law of Newton, each mass (body) 
attracts the other masses with a force, which is called the grav-
itational force (Rafsanjani & Dowlatshahi, 2012). This force is 
directly proportional to the product of their masses (M1 and 
M2) and inversely proportional to the square of the distance 
R between them.

The gravitational force, F, is expressed as
 

Cg is the gravitational constant. The general steps of the gravi-
tational search algorithm can be summarized as

Step 1 (Initialization): Initialize the iteration counter with t 
= 0 then create arbitrarily n agents, {Pj(0), j = 1, 2, …, n}, where 
Pj(0) = [pj,1(0), pj,2(0), …, pj,m(0)] where m is the number of the 
optimized parameters. pj,d(0) is created randomly by selecting 
a value within the dth optimized parameter range [pd

min, pd
max] 

using uniform distribution. Evaluate the fitness using the cost 
function then calculate the best and worst values.

Step 2 (Iteration updating): Update the iteration counter 
t = t+1.

Step 3 (Gravitational constant updating): The gravita-
tional constant (Cg) is initialized at t = 0 and decreased with 
iterations to improve the exploration accuracy, Cg(t) = f(Cg 0, 
t) where Cg0 is the initial value. The value of Cg is expressed as

 

Where tmax is the maximum number of iterations and α is 
a positive integer.

Step 4 (Acceleration updating): Using the law of motion, 
the acceleration of the agent j at iteration t is calculated accord-
ing to the below equations:

 

 

Where Mjj is the inertial mass of jth agent and Fj,d is the 
total force acting on agent j in dimension d, randk is a random 
number in the interval [0,1], and Fjk is the force acting on agent 
(mass) j from mass k. Those forces are multiplied by a random 

(36)F = Cg

M1M2

R2

(37)Cg(t) = Cg0 × e−�(t∕tmax)

(38)aj,d(t) =
Fj,d(t)

Mjj(t)

(39)Fj,d(t) =

n∑
k=1,k≠j

randk Fjk,d(t)

Figure 5. The Acceleration of each Mass Towards the Resultant Force Acting from 
every other Masses.

Figure 4. Overall Control Strategy of the Quad-rotor DSS.
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5.  Results and Discussions

An iterative simulation mechanism has been implemented to 
validate the proposed optimization approach with feedback lin-
earization controller. The proposed model for DSS is simulated 
using Matlab with the given parameters of Table 1. Firstly, the 
linearized system dynamics in Equation (27) is solved at each 
iteration with given initial conditions. Secondly, the developed 
GSA has been applied at each iteration to search for the optimal 
gains to optimize the control input action in order to improve 
the system performance and minimize the error from the pre-
planned trajectory. Lastly, the developed GSA has been used 
to estimate the exact values of system parameters b and d. The 
parameters setting for the GSA is given in Table 2.

The optimization algorithm has been applied for two dif-
ferent well trajectories from the Middle East with zero initial 
XE, YE, and ZE. The following simulation results were obtained 
for the measured depth as shown in Figure 8 and Figure 9 
for well-1 and well-2, respectively. A 3D plot of the trajectory 
tracking is presented in Figure 10 and Figure 11 for well-1 and 
well-2, respectively. The mean square error between simulator 

(48)
Minimize

b,d
J2

Subject to 1 ≤ b, d ≤ 100

The above steps are illustrated in the computational flow-
chart of GSA as shown in Figure 6.

4.3.  Controller Design

The proposed control system begins with linearizing the non-
linear dynamic system in Equation (21) using the system inputs 
to facilitate the tracking problem. Then, the controller gains 
in Equation (26) should be optimized to improve the system 
response using GSA. Finally, to make the control system act 
adaptively to overcome any changes in the operation conditions 
or parameters, the GSA is applied to estimate the actual values 
of the system parameters b and d, based on obtained data from 
previous iterations as given in Equations (5) and (6). The flow-
chart of the overall control algorithm of the quad-rotor DSS 
is shown in Figure 7.

For the given two minimization problems, the feedback 
gains represent the agents to minimize the first objective func-
tion (fitness) and can be formulated as

 

Factors b & d represent the agents of the second minimization 
problem in order to minimize the second objective function 
(fitness) and can be formulated as

(47)
Minimize

Ks
J1

Subject to 0 ≤ Ki ≤ 5 i = 1, ..., 8

Figure 6. Gravitational Search Algoritm.
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and model states is illustrated in Figure 12 and Figure 13 for 
well-1 and well-2, respectively.

It can be seen that the value of the measured depth is iden-
tical to the trajectory of both wells as shown in Figure 8 and 
Figure 9. In Figure 10 and Figure 11, values of North, East, and 
True Vertical Depth (TVD) represent the earth coordinates that 
can be calculated using Equation 17. The root mean square 
values of the Euclidian distance between the desired trajectory 
and the actual path of well-1 and well-2 using the proposed 
optimized GSA-based control strategy are 3.32 meters and 1.99 
meters, respectively. On the other hand, the root means square 
errors of well-1 and well-2 using LQR presented in Talib et al. 
(2014) are 4.19 meters and 2.82 meters, respectively. It can 
be concluded that the proposed GSA-based control strategy 
reduces the trajectory error by 20.8% and 29.4% for well-1 
and well-2, respectively compared to LQR (Talib et al., 2014). 
The obtained results clearly confirm the high performance 
and superiority of the proposed GSA control strategy. The 
reults also demonstrate the robustness and effectiveness of 
the proposed control strategy over a wide range of operating 
conditions.

Figure 7. Overall Control Algorithm of Quad-rotor DSS.

Table 1. DSS Dynamic Parameters.

Parameter Value Unit
g 9.81 m/s2

m 200 kg
Lb 0.55 m
Ix = Iy 60 kg/m2

Iz 25 kg/m2

Ir 0.83 kg/m2

μ 0.3 -

Table 2. Parameters Setting for GSA.

Parameter α ε Cg # Pop. # iter.
Setting 7 0.00001 100 50 100

Figure 8. The Response of Measured Depth of Well-1.

Figure 9. The Response of Measured Depth of Well-2.
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decreasing to a suitable value, which is reflected on the output 
performance. Table 3 presents the five experiments with differ-
ent initial gravitational constant value Cg and the constant α. It 
can be seen that the best and worst experiments have a fitness 
funcion of 26.38 and 27.04, respectively, with an average of 
26.76. The closeness of these values confirms the robustness of 
the developed GSA with repect to its setting and initialization.

6.  Conclusion

In this work, a new control strategy for the quad-rotor direc-
tional steering system is proposed and implemented. The con-
troller design has been formulated as an optimization problem. 
The gravitional search algorithm has been developed and 
implemented. Two stages of optimization are proposed in this 
work to search for the optimal gains of the feedback lineari-
zation controller and estimate system parameters b, and d in 
order to enhance the tracking capability. The effectiveness of 
the proposed controller has been evaluated using two different 
wells. The results show an improved response of the root mean 
square value of the Euclidian distance between the desired 
trajectory and the actual path for two wells considered with 
the proposed optimized gravitional search algorithm based 
control strategy. The superiority of the proposed controller 

The value of mean square error represented in Figure 12 and 
Figure 13 measures the accuracy of estimation for the values 
of thrust factor b and drag factor d. These figures show the 
difference between the simulator states including real values 
of b and d and the model states with the estimated values. The 
root mean square value of well-1 is 0.0091 while the maximum 
value for the same well is 0.105 due to a suddenly change in the 
formation. Additionally, the root mean square value of well-2 
is 0.0016 while the maximum value for the same well is 0.06.

In order to demonstrate the robustness and evaluate its per-
formance, the developed GSA approach for optimal controller 
design has been executed several times with different settings 
and initial populations. The response of the fitness function 
minimization versus iterations with different parameters 
settings is shown in Figure 14. The fitness value is gradually 

Figure 10. 3D Plot of the Trajectory Tracking of Well-1.

Figure 12. Mean Square Error between Simulator and Model States of Well-1.

Figure 13. Mean Square Error between Simulator and Model States of Well-2.

Figure 11. 3D Plot of the Trajectory Tracking of Well-2.
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