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ABSTRACT
This paper introduces the integrated system of a smart-device-based cognitive robot partner called 
iPhonoid-C. Interaction with a robot partner requires many elements, including verbal communication, 
nonverbal communication, and embodiment as well. A robot partner should be able to understand 
human sentences, as well as nonverbal information such as human gestures. In the proposed system, 
the robot has an emotional model connecting the input information from the human with the robot’s 
behavior. Since emotions are involved in human natural communication, and emotion has a significant 
impact on  humans’ actions, it is important to develop an emotional model for the robot partner to 
enhance human robot interaction. In our proposed system,  human sentences and gestures influence 
the robot’s emotional state, and then the robot will perform gestural and facial expressions and 
generate sentences according to its emotional state. The proposed cognitive method is validated using 
a real robot partner.

1.  Introduction

In recent years, one of the major problems of  aging society 
is the increasing number of elderly people who live alone. 
According to some statistics, by the year of 2015 the number 
of elderly people (65 years or older) could exceed 26.4% of the 
population in Tokyo (United Nations, 2012). The aging group 
requires daily care and human-to-human communication, but 
this is not a feasible option due to a lack of manpower. One 
of the possible solutions to overcome this social problem is to 
introduce human friendly robot partners to communicate and 
provide emotional support to the elderly people.

Many robot partners have been developed to support human 
life (Rane, Mhatre, & Kurup, 2014). Such human-friendly robot 
partners can assist humans by using voice recognition, speech, 
and gestural expression. Additionally, some robot partners use 
touch screens to display facial expressions (Romo, 2012). One 
of the advantages of a touch screen is that the robot does not 
require a hardware structure for the facial expressions, which 
can reduce the cost of robot partner development. In this paper, 
we introduce a smart device based cognitive robot partner 
called iPhonoid-C. The advantage of this robot is its cheap real-
ization, as smartphones are becoming highly popular and are 
increasingly likely to be carried by a person (Google and con-
ducted by Ipsos MediaCT, 2013). Since the cognitive model is 
implemented on a smartphone, it is therefore important to keep 
the computational cost as low as possible. Computational intel-
ligence techniques can balance well between computational 
complexity and accuracy. The other advantage of our robot 
partner is that many elements of its cognitive model are based 
on computational intelligence. In order to reduce the com-
putational cost for the smartphone application, we proposed 
a modular structure of the cognitive model in our previous 
papers (Botzheim, Woo et al., 2014; Woo, Botzheim, & Kubota, 

2014a, b, 2015). As described in this paper, all the modules 
have been integrated and implemented on a smartphone. The 
entire integration of these modules is realized. The robot has 
a verbal and a nonverbal communication module. The verbal 
communication is used for analyzing human sentence utter-
ance. The nonverbal communication module can recognize 
human gestures including human detection, motion extraction 
and gesture classification by applying evolution strategy, spik-
ing neural network, and self-organizing map.

Human communication generally involves the perception of 
others intentions and feelings. Emotions influence actions such 
as incentive functions of emotion. The robot partner needs a 
human-like emotional mechanism, which can help to provide 
the meaning and value of perceptual information, and can 
indirectly make decisions based on the robot’s internal and 
external state. We propose an emotional model based on the 
emotion-feeling-mood concept using eight feelings. The robot 
contains a behavior generation module to express gestural 
and facial information. We apply Laban Movement Analysis 
(LMA) and an interactive evolution strategy for expressing the 
robot’s gestures. Next, we apply a simple fuzzy inference for 
facial expression generation, crucial for nonverbal communi-
cation. For verbal communication, conversation flow learning, 
sentence building, and a time dependent utterance system are 
applied for human-robot interaction.

The paper is organized as follows: Section 2 introduces the 
robot partner. In Section 3, the integrated system of the robot’s 
cognitive model is presented. Section 4 discusses the verbal 
and nonverbal communication modules as input information 
to the emotional model. The emotional model is detailed in 
Section 5. Section 6 explains the robot’s behavior and sentence 
generation techniques. Section 7 shows experimental results. 
Conclusions are drawn in Section 8.
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2.  Robot Partner: Iphonoid-C

As the technology develops, many smart devices are increas-
ingly being developed for a low price and  high specifications. 
As a result, various applications have been developed, based on 
the high specifications of these smart devices that are equipped 
with various sensors. A smart device can also be applied for 
developing a robot partner by utilizing the devices functions. 
We have developed the “iPhonoid” series as a robot partner, 
as shown in Figure 1. When designing the robot partner, we 
consider robot stability and convenience for household usage. 
Communication methods and degrees-of-freedom (DOF) are 
also factors for hardware design. Fundamentally, our system 
uses a smart device for realizing computational intelligence for 
the robot partner. By using the smart device, the traditional 
functions of expensive sensors are combined in one smart 
device.

The iPhonoid uses an iOS device, which is equipped with 
various sensors such as a touch sensor, microphone, two cam-
eras, GPS, an accelerometer, a gyroscope, and a magnetometer 
(Apple Inc., 2016). The robot partner can be made aware of the 
environmental information based on information provided by 
the various sensors inside the robot partner.

In this paper, iPhonoid-C is introduced as a new generation 
of iPhonoid. The body of iPhonoid is created by a 3D-printer. If 
users have the 3D CAD design for printing the robot, they can 
create and test the robot design easily. Figure 2 illustrates the 
robot’s design and its size. iPhonoid consists of an iOS device, 
a robot body, a microcontroller, and several servomotors.

iPhonoid-C is equipped with 8 servomotors; 3 DOF on each 
arm and 1 DOF on its neck and waist for body movements. The 
actuators of the robot partner are controlled by the smartphone 
via Bluetooth communication (Sakata, Botzheim, & Kubota, 
2013). In this paper, we apply an iPhonoid with Bluetooth 4.0 
Low Energy module for compatibility with iOS (u-blox, 2017). 
Low energy consumption should be taken into account for the 
robot’s hardware design. This Bluetooth module is used for 
communication between iOS device and Arduino for servo 
control (ARDUINO, 2017). Each servomotor is controlled by 
the signals that are sent out from the smart device for express-
ing various gestures. The data structure for controlling the 
robots gesture is presented in Figure 3. Each value can be set 
between 0 and 1023; however, some values have to be excluded 
from this range due to limitations of the hardware structure 
(ROBOTIS, 2017).

In our previous work (Woo, Wada, & Kubota, 2012), we 
have adapted the robot partner to elderly care in a real-world 
environment. We realized that the robot is capable of being 
a good interlocutor. Thus, the robot partner requires various 
types of information from the real-world environment to detect 
the elderly people’s state. However, it is difficult to store all envi-
ronmental data in real time when extracting and processing 
large quantities of information. Therefore, the Informationally 

Structured Space (ISS) is used as a very important tool for 
the robot partner to provide the elderly people care. Sensory 
information and the robot’s inner information are collected 
on the ISS server. There is a large amount of information to 
process on the server, which can be shared by each robot part-
ner. The robot is able to identify the information by using the 
ISS server and to share information with a human. This infor-
mation sharing process within the environment can realize a 
natural communication between a human and a robot partner 
(Tang, Yusuf et al., 2015).

3.  Cognitive Model for the Robot Partner

Cognitive Robotics is an important technology for the robot in 
order to reflect the cognitive abilities of humans. In order for 
the robot partner to communicate with people, it is necessary 
to have contextual information on the environment.

Cognitive models have a long research history in psychol-
ogy. The development of cognitive robotics and human cog-
nitive systems research is interrelated with robot cognitive 
architecture, human-robot interaction and robot personality 
implementation (Breazeal et al., 2004; Burghart et al., 2005; 
Kurup & Lebiere, 2012).

Cognitive approaches are also used for human therapy. The 
generic cognitive model (GCM) has been developed for therapy 
of the mind and for solving psychological problems. Advances 
in research of the human cognitive model can have a signifi-
cant effect and motivation in cognitive robotics (Beck & Haigh, 
2014). Further, there has been research on integrating language 

Figure 1. The History of iPhonoid.

Figure 2. The Robot Partner: iPhonoid-C.

Figure 3. Data Structure for Bluetooth Communication.
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to cognition (Cangelosi, Tikhanoff et al., 2007). Various arti-
ficial cognitive systems are adapted to computational agents 
(Vernon, Metta, & Sandini, 2007). Therefore, we can consider 
that cognitive architectures are important in developing the 
robot partner’s system (Kurup & Lebiere, 2012).

The area of service robotics has introduced a robot cog-
nitive architecture to human robot interaction. There has 
been a variety of discussions about robot behavior to coexist 
with humans (Alami et al., 2006; Dautenhahn et al., 2006). 
Cognitive models of our robots exhibit a personality, which 
is prepared by an emotion model through processing infor-
mation from the outside environment by using only smart 
device sensory information, and we proceed to increase its 
practical usage.

In this paper, the robot partner system was constructed 
based on the cognitive model. A cognitive model depends 
on the inside sensors of the robot partner. A cognitive model 
for the robot partner is also important for realizing human-
like behavior and advanced intelligence. We define a cogni-
tive model for iPhonoid to understand and support human 
beings. The cognitive model of iPhonoid is depicted in Figure 4. 
Between perception and action, the model has 5 components:

Module 1—Nonverbal communication components e.g., gesture recognition, 
face detection
Module 2 - Emotion model to apply in interaction with human
Module 3 - Gesture generation by Laban theory and facial expression generation
Module 4 - Emotional state from human sentence utterance
Module 5 - Conversation modules

The robot partner has verbal and nonverbal communication 
modules for estimating the robot’s emotional state after percep-
tion. The robot’s behavior, which includes gestural and facial 
expressions and the robot’s sentence, will be generated based 
on the calculation results of the emotional model.

The verbal communication system is discussed in our previ-
ous papers (Woo & Kubota, 2013; Woo et al., 2014b). The emo-
tional model and its relation to the nonverbal communication 
such as face classification and gesture recognition are explained 
in our other previous paper (Botzheim et al., 2014). The behav-
ior generation module is discussed in (Woo et al., 2014a). This 
paper presents the integrated cognitive model based on the 
improved previous modules. The robot system is composed of 
four layers: Hardware Layer, Library Layer, Component Layer, 
and Application Layer (Figure 5). The service in a layer can 
be realized through the combination of functions based on a 
bottom up approach in the lower layer. By integration of the 
system, the service can be provided based on the locations and 
situations. For example, a hospital guide robot can be realized 
by incorporating the conversation function in the application 
layer. An elderly care robot can be realized based on the elderly 
care system function in the application layer. The modulariza-
tion and integration of the system is a very important concept 
in iPhonoid.

4.  Input Information for Cognition

4.1.  Image Processing for the Robot Communication 
System

We use the iPhone’s camera for image processing (Woo & 
Kubota, 2013). The robot can recognize humans for interac-
tion based on the camera image. We use gray scale conversion, 
differential extraction, simple color extraction, and template 
matching for extracting a human shape from the camera image. 
First, we convert the color image to gray scale image by using 
the YUV model:
 

Where pR(x, y, t), pG(x, y, t) and pB(x, y, t) are the values of RGB 
at the discrete time t, respectively. The differential extraction 
is done by:
 

(1)
py(x, y, t) = 0.298912 ⋅ pR(x, y, t) + 0.586611 ⋅ pG(x, y, t)

+ 0.114478 ⋅ pB(x, y, t)

(2)pD(x, y) = �D
‖
‖pY (x, y, t) − pY (x, y, t − 1)‖‖ + 1Figure 4. The Cognitive Model of iPhonoid.

Figure 5. The Modular Architecture Layer of iPhonoid.
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Where fi is the fitness value of the i-th individual, fmax and fmin 
are the maximum and minimum of fitness values in the popu-
lation; N(0,1) indicates a normal random variable; b1,j (b1,j > 0)  
and b2,j (b2,j > 0) are the coefficients and offset, respectively. 
In the adaptive mutation, the variance of the normal random 
number is relatively changed according to the fitness values of 
the population in case of maximization problems.

Human tracking is performed according to the position 
(gm,1, gm,2) of the m-th candidate solution. The position of the 
h-th human candidate in the human tracking, (Xh1, Xh2), is 
updated by the nearest human candidate position within the 
tracking range. The update is performed as follows (k = 1, 2):

 

where aH is the update rate.

4.3.  Motion Extraction

In order to extract human gestures, a spiking neural network 
is applied (Gerstner & Kistler, 2002; Maass & Bishop, 1999). 
A modified simple spike response model is applied to reduce 
the computational cost (Botzheim et al., 2014).

The membrane potential, or internal state hi(t) of the i-th 
neuron at the discrete time t is given by:

 

where hsyn(t) includes the pulse outputs from the other neurons, 
href (t) is used for representing the refractoriness of the neuron, 
hext(t) is the input to the i-th neuron from the environment. 
The hyperbolic tangent function is used to avoid the bursting 
of neuronal fires.
 

where γsyn is the temporal discount rate (γsyn = 0.95), wj,i is 
a weight from the j-th neuron to the i-th neuron, pj(t) is the 
pulse output of the j-th neuron at the discrete time t, and N 
is the number of neurons. When the internal state of the i-th 
neuron reaches the predefined threshold, a pulse is outputted.

The output of the i-th neuron has the value:
 

where θ is a threshold for firing. When the neuron is fired, R 
is subtracted from href(t):
 

where γref is a discount rate and R > 0 (γref = 0.9).
The input to the i-th neuron, hext(t), is calculated from the 

structure of the spiking neural network. The structure of neural 
network is directional, where eight spiking neurons are applied 
with a 45 degrees angle between them. Based on this encoding, 
the input to the i-th neuron is calculated as:

 

(6)Xh,k(t) = (1 − �H)Xh,k(t − 1) + �H ⋅ gm,k

(7)hi(t) = tanh(h
sys

i
(t) + h

ref

i
(t) + hexti (t)),

(8)h
syn

i
(t) = � syn ⋅ hi(t − 1) +

N∑

j=1,j≠i

wj,i ⋅ pj(t − 1),

(9)pi(t) =

{
1 if hi(t) ≥ �

0 otherwise

(10)h
ref

i
(t) =

{
� ref ⋅ h

ref

i
(t − 1) − R if pi(t − 1) = 1,

� ref ⋅ h
ref

i
(t − 1) otherwise,

(11)hexti (t) = l(t) ⋅ exp

(

−
‖
‖�i − �(t)‖‖

2

�2

)

,

Where pD(x, y) is the degree of difference (1 ≤ pD(x, y) ≤ pD_MAX) 
between two images at t and t – 1; λD is a coefficient (0 < λD < 
1) used as a scaling factor. Furthermore, skin color is extracted 
as follows:
 

where c is the color ID; �G
min(c), �G

max(c), �B
min(c), and �B

max(c) are 
coefficients for color detection; �Rmin(c) and �Rmax(c) are thresh-
olds. Thus, the robot can detect the human by using skin color 
extraction. For the skin color, we used the parameters in the 
experiments as follows: �G

min(c) = 1.2, �G
max(c) = 2.2, �B

min(c) = 
1.2, �B

max(c) = 2.5, �Rmin(c) = 60.

4.2.  Human and Object Detection

For the interaction between human and robot, human detec-
tion and gesture recognition are used (Woo & Kubota, 2013). 
In this paper, we use human gestures as input information for 
the robot’s emotional state; because an emotional state can 
change, based on  humans gestures. Each gesture is converted 
to an emotional parameter by using the robot’s emotional 
model. Evolution strategy (ES) (Schwefel, 1981) is applied to 
perform human detection. We use (μ+1)-ES to enhance the 
local hill-climbing search as a continuous model of generations, 
which eliminates and generates one individual in a generation. 
We assume that a person is moving in the image. The shape of a 
candidate template is generated by the (μ+1)-ES. An octagonal 
template is used with eight searching points in the template. 
The i-th candidate template is represented by gi,1, gi,2, ..., gi,2 m+2 
where the center of a candidate template on the image is Oi = 
(gi,1, gi,2); the length from the center to the j-th point is lj = gi,j+2; 
the angle is qj = gi,j+m+2 (0 ≤ qj ≤ p/4). The number of candidate 
templates (candidate solutions) is n.

The fitness value of the k-th candidate solution with color 
c is calculated by:

 

where Tk indicates a set of pixels corresponding to the k-th 
template. Since the result of differential extraction (pD(x, y)) is 
used as a weighting factor, we can extract moving objects. As 
a result, this problem is a maximization problem.

Elitist crossover is applied, which randomly selects one 
individual, and generates an individual by combining genetic 
information between the selected individual and the best indi-
vidual in order to obtain feasible solutions from the previous 
estimation result rapidly. If the crossover probability is satisfied, 
the elitist crossover is performed. Otherwise, a simple crosso-
ver is performed between two randomly selected individuals. 
Next, the following adaptive mutation is performed on the 
generated individual:

 

(3)

if 𝜆G
min(c) ⋅ p

G(x, y, t) < pR(x, y, t) < 𝜆G
max(c) ⋅ p

G(x, y, t)

and 𝜆B
min(c) ⋅ p

B(x, y, t) < pR(x, y, t) < 𝜆B
max(c) ⋅ p

B(x, y, t)

and 𝛾Rmin(c) < pR(x, y, t) < 𝛾Rmax(c)

then pclr(x, y) = c

(4)

fk(c) =
∑

(x,y)∈Tk

pD(x, y) ⋅ pe(x, y, c)

pe(x, y, c) =

{
1 pclr(x, y) = c

0 otherwise

(5)gi,j ← gi,j +

(

�1,j ⋅
fmax − fi
fmax − fmin

+ �2,j

)

⋅ N(0, 1)
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we have to consider at least three important factors to real-
ize natural communication between a human and a robot 
partner: (1) Conversation flow, (2) Mutual cognitive envi-
ronment and (3) Words relationship. The conversation flow 
can be extracted from previous patterns of conversation. In 
this paper, we use adjective information for the emotional 
model. If the sentence has adjective information about emo-
tion, the robot partner can use this information for emotional 
empathy with a human. When classifying the words, we use 
morphological analysis based on an iOS system (Apple Inc., 
2011). Furthermore, we can consider the mutual cognitive 
environment based on the perceptual information and human 
behaviors. The example of adjective words is defined in Table 
3 (Woo et al., 2015). This adjective parameter is defined with 
hands up-down gesture. In this paper, we proposed three 
parameter tables: (1) Adjective parameter with hand up down 
gesture (i = 0), (2) Adjective parameter with hand left right 
gesture (i = 1) and (3) Adjective parameter with other ges-
tures (i = 2). The robot partner can calculate emotional states 
by using these rules.

5.  Emotional Model for Interaction

The relationship between human emotion and communication 
has long been discussed from many viewpoints (Bartneck & 
Reichenbach, 2005). We apply the concepts of emotion, feel-
ings, and mood based on a time scale, assuming that emotions 
change temporally based on the human sentence informa-
tion, on the internal state, and on the external environment 
(Botzheim et al., 2014; Yorita, Botzheim, & Kubota, 2013). 
Emotion is considered as an intense short-term mental state 
based on perceptual information and used as intermediate 
input from the perceptual system to the emotional model. 
In this paper, we used adjective information as the emotion 
parameter. Each feeling is updated as the summation of emo-
tion parameters.

The (j, k) emotional input uE
j,k (t) is generated based on the 

adjective word and gesture information as follows:
 

where Sadjective is the adjective in the human’s sentence and Sj 
is the j-th adjective related to the (j, k) emotion and Ggesture is 
the human gesture and Gk is the k-th gesture. The adjective 
words are classified into eight groups, one group for each feel-
ing, and six adjective words are included in each adjective set. 
The gesture information also has feelings based on the robot 
personality. Each adjective word and gesture has an ID number 
used for calculation of the emotion parameter.

In Yorita et al. (2013) five different feeling models have been 
proposed. In this paper, we use one of these models, where 
the state of the i-th feeling uF

i (t) is updated by the emotional 
input from the viewpoint of bottom-up construction and the 
top-down constraints from mood values are also considered 
as displayed in Figure 6:

 

(18)uE
j,k(t) =

{
1 if (Sadjective = Sj) ∧ (Ggesture = Gk)

0 otherwise

(19)uF
i (t) = tanh(�uF

i (t − 1) + (1 − �)[Ei + Fi]),

where αi is the direction information of the i-th neuron, 
σ is the standard deviation, α(t) and l(t) are calculated 
from  the  trajectory of the human and human hand as 
follows:
 

 

where ∆x(t) and ∆y(t) are the changes of the x and y coordi-
nates of the moving object at time t.

4.4.  Gesture Recognition

Self-organizing map (SOM) (Kohonen, 2001) is often applied 
for extracting a relationship among observed data, since SOM 
can learn the hidden topological structure from the data. Each 
input unit is connected to all output units in parallel via refer-
ence vectors. The input data is distributed into output units. The 
best matched output unit is selected according to the Euclidean 
distance (Botzheim et al., 2014).

The input to the SOM is given as the weighted sum of pulse 
outputs from neurons:

 

where pi(t) is the pulse output of the i-th neuron based on 
Equation (9) and γSOM is a weight parameter used for distin-
guishing the different directions in the time. During the train-
ing phase, in every iteration a training sample (input) is used 
and the Euclidean distance between this input vector and the 
i-th reference vector of the SOM (ri) is defined as:
 

where ri = (r1,i, r2,i, . . ., rN,i) and the number of reference vectors 
(output units) is M. Next, the k-th output unit minimizing the 
distance di is selected by:
 

Furthermore, the reference vectors are trained by:
 

where ξ(t) is a learning rate (0 < ξ(t) < 1), ζk,i(t) is a neighborhood 
function (0 < ζk,i(t) < 1) describing the relationship between the 
winning k-th output unit and the other output units.

The parameter setting for SOM is shown in Table 1. The 
learning rate and the neighborhood function decreases with 
time. After the training phase for any input data, the output 
class can be determined by selecting the nearest output unit for 
the given input. In this paper, two gestures are used to interact 
with the robot partner (Table 2). The gestures have the following 
meaning; hand up down is related to a happy feeling and hand 
left right is related to a sad feeling. The robot’s emotion changes 
based on the human gestures by using the emotional model. The 
emotional model will be explained in the next section.

4.5.  Verbal Communication

Previously, we proposed a learning system for sentence utter-
ance (Woo & Kubota, 2013; Woo et al., 2014b). Essentially, 

(12)�(t) = a tan 2
(
Δx(t)2 + Δy(t)2

)

(13)l(t) = tanh

(
Δx(t)2 + Δy(t)2

100

)

⋅ 0.9,

(14)

v = (v1, v2,⋯ , vN )

vi =

T∑

t=1

(
�SOM

)t
⋅ pi(t),

(15)di =
‖
‖v − ri

‖
‖,

(16)k = argmin ‖‖v − ri
‖
‖,

(17)ri(t + 1) = ri(t) + �(t) ⋅ �k,i(t) ⋅ (v − ri(t)),

Table 1. Parameter Settings for SOM.

iter. N M
init. 

range γSOM ξ τ ζ1 ζ2 ζ3

2000 8 10 0.01 0.98 0.3 1000 0.9 0.7 0.5
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Mood is defined as the long-term state updated by a change 
in feelings, and governs changes in feelings. Feeling is defined 
as a short-term state updated by a change in emotion. The state 
of the m-th mood is updated by the sum of feelings:

 

Where γM is the discount rate (γM = 0.9) and wM
m,i is the stim-

ulation or suppression coefficient from the i-th feeling to the 
m-th mood (0 ≤ wM

m,i ≤ 1). The structure of the model is shown 
in Figure 6. In this figure, we can see how the feeling and mood 
influence each other and the emotion can be considered as an 
input impulse to the feeling. The robot has nine feelings. One 
is neutral for normal state others are feeling for realizing the 
robot’s emotional model.

The relationship and arrangement between feelings are 
illustrated in Figure 12. The normal state of the robot is 
Neutral. Rules pertaining to facial expression changes  are 
shown in Section 6.4. The robot’s eight feelings are as follows: 
Happy, Surprised, Angry, Disgusted, Sad, Frightened, Fearful, 
Thrilling. The feeling states have their complementary states 
shown as follows:

• � Happy and Sad
• � Angry and Fearful
• � Surprised and Frightened
• � Disgusted and Thrilling

This feeling structure is inspired by Plutchik’s wheel of 
emotions model (Plutchik, 2001). Plutchik’s wheel of emotions 
model considers eight primary emotions such as; joy, trust, fear, 
surprise, sadness, disgust, anger, anticipation.

6.  Output Information for Interaction

Previously, human emotion was used to adapt in the industrial 
area. Kansei Engineering (KE) is one of the fields to develop 

(21)uM
m (t) = tanh

[

�MuM
m (t − 1) + (1 − �M)

NF

∑

i=1

wM
m,iu

F
i (t)

]

,

Where
 

Where γF is the temporal discount rate of feelings (0 < γF < 1, 
γF  =  0.97), NE is the number of emotional inputs (number 
of adjectives: 48, number of gestures: 3), wE

i,j,k is the weight 
between the (j, k) emotion and i-th feeling (0 ≤ wE

i,j,k ≤ 1, Table 
3), NF is the number of feelings, 8, wF

i,j is the stimulation or 
suppression coefficient from the j-th feeling to the i-th feeling 
(0 ≤ wF

i,j ≤ 1), and uM
m(t) is the value of the m-th mood. Here we 

use positive mood (m = 1) and negative mood (m = 2) (Woo 
et al., 2015). The hyperbolic tangent is used to regulate the 
values of feelings.

(20)

Ei =

NE

∑

j=0,k=0

wE
i,j,k ⋅ u

E
j,k(t − 1)

Fi =

NF

∑

j=0,j≠i

wF
i,j ⋅ u

F
j (t − 1)

� =
�F

1 + uM
1 (t − 1) − uM

2 (t − 1)

Table 2. The Definition of Gestures.

Gesture definition Gesture image
Hand up and down gesture to robot

Hand left and right gesture to robot

Table 3. Coefficients between Emotions and Feelings (wE
i,j,k).

Words Neutral Happy Surprised Angry Disgusted Sad Frightened Fearful Thrilling
Neutral 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Happy 0.0 1.0 0.8 0.0 0.0 0.1 0.1 0.0 0.7
Nice 0.0 0.9 0.7 0.0 0.0 0.0 0.1 0.0 0.6
Glad 0.0 0.9 0.6 0.0 0.0 0.0 0.1 0.0 0.5
… … … … … … … … … …
Breathtaking 0.0 0.2 0.1 0.0 0.0 0.3 0.0 0.2 0.4

Figure 6. The Structure of the Proposed Emotional Model.
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iPhonoid-C”. However, when the robot’s mood is bad, the robot 
says “What is my name?” based on the sentence building rule.

(3) Time Dependent Utterance System (TDUS): In the case 
of time dependent utterance system, the robot uses contents 
from the database system. We prepare two-time dependent 
utterance contents based on the mood state of the robot part-
ner. The two contents have different moods but a similar story. 
For example, if the robot’s mood is good then the robot will say, 
“Bathing is important for health”. However, when the robot’s 
mood is bad, the robot will say, “Bathing is important to reduce 
stress”.

6.2.  Gesture Generation Based on Laban Theory

Laban Movement Analysis (LMA) is a theory to describe and 
interpret various human movements (Laban, 1980; Laban & 
Lawrence, 1947). LMA investigates the processes underlying 
human movements. LMA describes four movement compo-
nents; Body, Effort, Shape, and Space (Lourens, Van Berkel, 
& Barakova, 2010). Efforts are those processes in the human 
movement that express subjective inner intention. These efforts 
have the following dimensions, where each one has two polar-
ities: Space, Weight, Time, and Flow - as explained in Table 4. 
The combination of three factors is a drive. Action drive is an 
important combination, which considers the Space, Weight, 
and Time factors. In our previous paper, LMA was applied 

the human friendly system (Nagamachi, 1995). This field could 
support new designs of goods to enhance convenience of usage 
based on questionnaire information. Kansei Engineering func-
tions by using human emotion, whereas the difference with 
our system is that we used emotional factors to generate robot 
emotion.

In human society, human decision has a relation with 
emotional state, even if the result is not the best solution. 
Consequently, an emotion model is considered in order to 
make a robot a human friendly system. This section presents 
how the utterance, facial and gestural expressions are shown in 
accordance with the emotional and mood difference.

6.1.  Utterance System for Robot Partner

The sentence generation in the cognitive model of iPhonoid 
(Figure 4) consists of three subsystems: T﻿he conversation flow 
utterance system, the sentence building utterance system, and 
the time dependent utterance system. The flowchart of the con-
versation system is illustrated in Figure 7.

(1) Conversation Flow Utterance System (CFUS): The con-
versation flow can be extracted from  previous patterns of the 
conversation (Woo & Kubota, 2013). We improved the sentence 
selection method by using word relationships for verbs and 
adjectives (Woo et al., 2014b). The conversation learning is 
performed by imitating the human’s utterance patterns. In the 
beginning of the conversation learning, the robot partner has 
no conversation utterance. When the person speaks a sentence, 
the robot partner memorizes the sentence as the l-th sentence 
in the utterance sentence list (l = 1, 2, ...). Next, if the recog-
nized human utterance sentence is matched with the database 
of utterance sentence lists, the selection strength and weight 
parameter are updated for the next conversation. Additionally, 
each robot sentence has an emotional state from the human 
sentence based on the emotional model (Woo et al., 2015). 
Therefore, the robot partner is able to generate speech based 
on its mood value. The robot is able to talk in a human-like 
manner in this way by using many sentences from the database 
of utterance sentences.

(2) Sentence Building Utterance System (SBUS): In our pre-
vious research (Woo & Kubota, 2013) we realized the need for 
the robot to generate a sentence depending on the situation. We 
proposed sentence building rules based on the robot’s mood 
(Woo et al., 2015). For example, when the human says, “What 
is your name?” the robot has two rules based on the mood state. 
When the robot’s mood is good, the robot says,  “My name is 

Figure 7. The Flowchart of the Conversation System.

Table 4. Efforts and Action Drive in Laban Movement Analysis.

Effort Factor

Effort element 
(Indulging 

Polarity)

Effort element 
(Fighting 
Polarity)

Expression 
method in the 

robot
Space Flexible Direct Angle of each 

joint
Weight Light Strong Speed of motors
Time Sustained Quick Interval of timing
Flow Free Bound (Not applicable)

Figure 8. The Relationship between Emotions and Effort Factors.
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6.3.  Gesture Optimization by Interactive Evolution 
Strategy

In terms of Kansei Engineering, robot gesture evaluation is 
achieved through relative evaluation by a human on the robot 
gesture. Here, we select robot gesture of LMA by using the IES 
evaluation on one of the best robot gestures by using human 
evaluation. The initial gesture expression obtained by Laban 
theory is optimized by Interactive Evolution Strategy (IES). In 
Interactive Evolutionary Computation (IEC), human evalua-
tion is applied, because the fitness function of the candidate 
solutions is not known (Sims, 1992; Takagi, 2001). We apply 
this approach for evaluating the robot’s gesture. The person can 
give a numerical score to indicate the quality of the gesture. 
Evolution strategy is applied as the evolutionary computation 
technique (Schwefel, 1981). A simple (1+1)-ES approach is 
applied, where one parent competes with its mutated offspring. 
The fittest individual from the parent and the offspring will 
survive to the next generation. The mutation in the offspring 
is performed  as follows:
 

(22)xt+1 = xt + N(0, �),

to analyze the gesture produced by a simulator robot, and to 
estimate the real robot’s gesture (Nishimura, Kubota, & Woo, 
2012; Woo et al., 2014a).

In this paper, we used LMA for gesture generation. The 
robot’s gesture and body movement consist of four gesture 
segments. Each gesture segment has the structure presented 
in Figure 3. Between the motion segments, a delay is applied. 
Table 4 presents how the Action drive concept is used in the 
gesture expression. The Space property is related to the joint 
angles encoded in the first eight values of each four-gesture 
segments. The Weight factor reflects the motor speed expressing 
the strength of the gesture encoded in the 9-th value of each ges-
ture segment. The Time factor will describe the continuity of the 
gesture in our proposed model. This value is encoded between 
the gesture segments and its possible value is between 1 and 3 s.

We consider emotional state when making robot gestures, 
because there is a close relationship between emotion and body 
movements (Morita, Nagai, & Moritsu, 2013). The robot can 
generate its movement based on its feeling using the effort 
factors in Action drive. Figure 8 illustrates the relationship 
between the eight feelings and the effort factors. The robot’s 
feelings depend on its perception, which is related to verbal or 
nonverbal communication as explained in the cognitive model 
of iPhonoid (Figure 4).

This relationship is further detailed in Table 5 by using 
Figure 8. Although these relations are subjective, they reflect 
well to our everyday experiences. For example, the happy feel-
ing has much faster and more continuous movement than the 
fearful feeling, and the gesture related to the angry feeling 
needs bigger space than the other states do. The relationships 
are also quantified in Table 5. The intervals in Table 5 are 
used to generate the initial gesture for the given feeling. Each 
parameter is shown as a range of values. Generally, humans 
have different gesture shapes to express specific emotion 
(Castellano, Villalba, & Camurri, 2007). Therefore, we tried to 
select basic parameter of LMA based on effort factors (Figure 
8, Table 5).

Table 5. Efforts in Laban Movement Analysis.

Neutral Happy Surprised Angry Disgusted Sad Frightened Fearful Thrilling
Weight Normal Fast Fast Middle Slow Slow Slow Middle Fast

0.0~0.5 0.5~1.0 0.5~1.0 0.3~0.7 0.0~0.5 0.0~0.5 0.0~0.5 0.3~0.7 0.5~1.0
Time Normal Short interval Little short 

interval
Short interval Little long 

interval
Long interval Little long 

interval
Long interval Little short 

interval
0.0~0.5 0.0~0.25 0.25~0.5 0.0~0.25 0.5~0.75 0.75~1.0 0.5~0.75 0.75~1.0 0.25~0.5

Space Normal Middle Big Big Big Middle Small Small Small
0.0~0.5 0.3~0.7 0.5~1.0 0.5~1.0 0.5~1.0 0.3~0.7 0.0~0.5 0.0~0.5 0.0~0.5

Figure 9. Chromosome Structure of Motors for each Feeling in the Robot’s Gesture.

Figure 10. Evaluation Results by IEC.
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6.4.  Facial Expression Generation

Human facial expression is good material of emotional con-
tagion (Frith, 2009). Therefore, the robot’s facial expression is 
an important factor to make a human friendly robot partner. 
In the facial expression generation, we select the face from a 
given set depending on the feeling of the robot. The mood value 
of the robot is also considered when selecting the face for the 
robot’s feeling from a pre-programmed face set. A simple fuzzy 
approach is used based on the difference of the positive mood 
value and negative mood value of the robot. An example fuzzy 
rule base for the happy feeling is given as follows and illustrated 
in Figure 11. The result of the fuzzy inference is used to select 
from the pre-programmed happy, happier, and happiest faces. 
M is the first letter of mood. The parameters of the member-
ship functions can be different for each feeling and they are 
parameters of the iPhonoid’s cognitive model:

IF mood difference is Low, THEN Happy facial expression.
IF mood difference is Middle, THEN Happier facial 

expression.
IF mood difference is High, THEN Happiest facial 

expression.

Where xt is the parent, xt+1 is the offspring, and N(0,σ) is a 
normal random number with 0 mean and σ variance. The 
parent and the offspring have the chromosome structure 
shown in Figure 9, so they are 40 dimensional vectors with 
real components between 0 and 1. There is only one σ vari-
ance parameter for all 40 components. We follow the 1:5 rule 
to change the σ parameter adaptively. If more than one of 
five mutations are successful (i.e. the offspring is fitter than 
the parent) then σ is multiplied by a parameter a (a > 1). If 
the rate of successful mutations is less than 20% then σ is 
divided by a. Ten generations are used in the IES with σ = 
0.1 and α = 1.22 parameters. The fitness evolution for the 
eight feelings is shown in Figure 10. As a result, the robot 
can perform the gesture for each feeling based on the motor 
parameters in Table 6. The parameters are generated based 
on Table 5.

Table 6. Motor Parameters for Each Feeling.

Neutral Happy Surprised Angry Disgusted Sad Frightened Fearful Thrilling
S1,1 0.047974 0.491513 0.535329 0.592346 0.737727 0.585659 0.444423 0.090898 0.0
S1,2 0.186908 0.512545 0.516291 0.821805 0.727692 0.631163 0.44184 0.270745 0.337895
… … … … … … … … … …
T4 0.162751 0.200234 0.326966 0.15791 0.598809 0.760632 0.745242 0.832804 0.349876

Figure 11. A Simple Fuzzy Model for Facial Expression.

Figure 13. Functional Block Diagram of Cognitive System.

Figure 12. Facial Expression for each Feeling State.
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Table 7. The Combination of Modules (○: Must, ∆: Considerable, ×: No need).

Index Modules Case 1(7.1) Case 2(7.2) Case 3(7.3)
Essential Perception Human detection ○ ○ ○

Voice recognition ○ ○ ○
Touch interface ○ ○ ○

Supplementary perception Face tracking ∆ × ○
Gesture recognition ○ ∆ ∆

Essential cognitive Utterance system ○ ○ ○
Supplementary cognitive Emotion model ○ × ○

Facial expression ○ × ○
LMA Gesture ○ × ∆

Essential output Facial expression ○ ○ ○
Gesture expression ○ ○ ○
Speech ○ ○ ○

Supplementary output Waist × × ○

Table 8. Interaction Results.

State Human Input
Robot 

Output Scene
Utterance 

system
Emotional 

state Robot gesture Relevant Module
– The robot stays in the room. Figure 14-(I) – – – –
Start (Human detection: 

skin color)
Hello. Figure 14-(II) – – – • � Human detection

HS1 Hi!(Human gesture: 
hand up down)

How are you 
doing?

Figure 14-(III), 
(IV)

CFUS Happy LMA based gesture • �G esture recognition
• � Voice recognition
• �E motion model
• �U tterance system

HS2 I’m fine, thank you. I’m good, 
thank you.

Figure 14-(IV) CFUS Neutral LMA based gesture • � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

HS3 I’m sleepy. You are 
welcome.

Figure 14-(IV) CFUS Neutral LMA based gesture • � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

HS4 Really? Let’s hang 
out today!

Figure 14-(IV) CFUS Neutral LMA based gesture • � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

HS5 Okay, I will go out. Yes, please. Figure 14-(IV) CFUS Neutral LMA based gesture • � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

HS6 See you later. Yes. Figure 
14-(IV),(V)

SBUS Neutral Nodding head • � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

HS7 Bye-bye. Bye-bye. Figure 14-(VI) CFUS Sad LMA based gesture • �G esture recognition
• � Voice recognition
• �E motion model
• �U tterance system
• �F acial expression
• �G esture generation

End The human leaves the room.
(Human detection: None)

– – Sad – –

Table 10. Interaction Results.

State Human Input Robot Output Scene
– Human and robot stay around the table. Figure 19
Start (Human face detection: 

Yes)
Hi, Would you like a cup 

of tea?
Figure 19-(I)

HS1 Human 1: “No.” Okay. (waist movement) Figure 19-(I)
HS2 (Human face detection: 

Yes)
Hi, Would you like a cup 

of tea?
Figure 19-(II)

HS3 Human 1: “Yes.” Okay. (waist movement) Figure 19-(II)
End The human waits around the table. –

Table 9. Interaction Results.

State Human Input Robot Output Utterance system
– Human and robot stay in the room. –
HS1 (Human detec-

tion:Yes)
Do you want to 

check today’s 
schedule?

TDUS

HS2 Yes. We have a meeting 
after dinner at 
room number 5.

TDUS

HS3 Thank you. I like it so much. CFUS
End The human leaves the room.(Human face 

detection: None)
–
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(Figure 5). We show three examples of the experiment by 
module as changing the system module, namely information 
service at home, concierge service at the event venue and 
staff supporting service in restaurant. The details of modules 
needed for the robot system configuration is shown in Figure 
13. The basic module of robot consists of human detection, 
touch interface and voice recognition and supplementary 
module consists of face tracking, gesture recognition, and 
emotion model. The organization of modules to each exper-
iment is shown in Table 7. We show three experiment cases 
in order to show the differences in configuration module for 
each subsection.

After the calculation of mood difference between positive 
(M+) and negative (M−) parameter, it is used to select the face 
parts for adjusting the expression strength level as shown in 
Figure 11. Therefore, the robot has three different facial expres-
sions of each feeling based on the expression strength (Figure 12).

7.  Experimental Results

This section shows experimental results by using the proposed 
system for system integration based on modular architecture 

Figure 15.  The Result of Robot Emotional State: The Transition of Feeling and 
Mood.

Figure 16.  The Result of Robot Emotional State: Classification of Feeling and 
Mood.

Figure 14. Experiment of Human Robot Interaction.

Figure 17. The Result of Robot Utterance: The Sentence Selection in the Negative 
Mood.

Figure 18. Experiment of Information Support.
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Table 9. Table 7 shows what module is needed in case 2. Input 
information consists of human detection and voice recognition. 
Figure 18 shows a human face detection situation. The robot 
tries to interact with the human when the robot is aware of 
the humans face. Therefore, robot partner can perform infor-
mation support via a time dependent utterance system. In 
addition, according to the reaction of the human, the robot 
continually interacts with human. This system can also be used 
as information guide such as in the event venue and ticket box.

7.3.  Case 3: Staff Supporting Service in Restaurants

This case is on providing a service to a human. Generally, ser-
vice robots need to interact with people individually. Therefore, 
this robot uses its waist movement structure in order to per-
form a service to a person in places such as a coffee house or 
restaurant.

This part shows an example of a service to check whether the 
person needs a soft drink or not when there are two or more 
people as shown in Table 10. The robot tries to detect human 
faces with waist movement to find the human (Figure   19). 
Then, the robot tries to interact with the human when the robot 
is aware of the humans face. Table 7 shows what module is 
needed in this case. People who are waiting for the waiter to 
come can utilize these modules. Therefore, the robot partner 
can perform a service provision through its utterance system.

8.  Conclusion

This paper introduced the integrated cognitive model of a 
smart device based robot partner. Modular architecture of 
cognitive model concepts can guide what components are 
needed to develop a robot partner based on the environ-
ment. This is realized by using supplementary modules that 
are necessary to ease the connection of the module number 
of features. The robot is able to understand human gestures 
and sentences and changes its emotional state based on the 
modules of system. It can produce gestural and facial expres-
sions and verbal communication using its emotional module. 
The cognitive model is validated by real-world experiments. 
We also discuss the configuration of a minimum hardware 
specification and the module selection to reduce the com-
putational cost.

As a future work, our aim is to expand the Open Source 
Software (OSS) of the robot partner system as a robot devel-
opment platform with modular structure. We also intend to 
develop a robot partner system based on a smart device with 
the maximum capabilities of the software architecture and min-
imum functionality of hardware in order to reduce the costs of 
the robot partner. Additionally, we also consider the integration 

7.1.  Case 1: Information Service at Home

This case is on human robot interaction for elderly people who 
live alone. Table 8 shows what module is needed in this case 1. 
There is a human and a robot partner in the room (Figure 14). 
The robot’s feelings  change based on the emotional model’s 
calculation (Figure 15). Each emotional state of the robot can 
be compared to the Human State (HS) number from 1 to 7 steps 
(Table 8). Each interaction is used as human input to calculate 
robot emotional state.

Experiments are performed as described in Figure 14 from 
I to VI. The information flow is illustrated in Figure 13. The 
input information consists of human detection, gesture recog-
nition and voice recognition. The module is ready to get the 
utterance and gesture information from a human. When the 
robot receives input information, the emotion module is acti-
vated to define the robots emotion. Therefore, three modules 
are activated based on the emotional parameter to interact with 
a human: Utterance system to speech, gesture expression, and 
facial expression.

The detailed interaction information is shown in Table 8. 
In the conversation, the robot partner uses camera images and 
human voice information to interact with the person. In Figure 
14(a)-II, the robot shows a greeting utterance to the human by 
using human skin-color detection information. At this stage, 
the robot does not track the human face. In Figure 14(a)-III, 
when the human expresses a hand going up and down gesture, 
the robot’s emotion is happy based on the emotional calculation 
(Figure 15), because the robot does not like loneliness. In this 
experiment, feeling state is changed three times and mood state 
is changed twice (Figure 16). When positive mood is higher 
than negative mood, the graph shows +1 value. The opposite 
situation is shown as −1 value.

The robot speaks to the person by using the utterance 
mode based on its emotional state and the robot also could 
behave by using the movement parameters presented in Table 
6. In Figure 14(a)-IV, the robot has sad feeling when the per-
son says good-bye to the robot partner because then the robot 
will be alone. Normally, the robot selects the sentence with 
the higher relationship strength in the CFUS mode. However, 
the robot selected the “bye-bye” sentence using negative 
mood information since the robot has sad feeling in HS7  
(Figure 17). In this way, we can realize the integrated robot 
partner system.

7.2.  Case 2: Concierge Service at the Event Venue

This case is on information support to humans. The robot 
partner requires the human detection module when the robot 
needs to know whether human is there or not as shown in 

Figure 19. Experiment of Providing a Service.
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