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Abstract: The problem relating to the small-amplitude free capillary oscillations
of an encapsulated spherical drop is solved theoretically in the framework of
asymptotic methods. Liquids are supposed to be inviscid and immiscible. The for-
mulas derived are presented for different parameters of the inner and outer liquids,
including densities, thickness of the outer liquid layer, and the surface and inter-
facial tension coefficients. The frequencies of oscillation of the encapsulated drop
are studied in relation to several “modes” which can effectively be determined in
experiments by photo and video analysis. The results are presented in terms of
oscillation frequencies reported as a function of the mode number, the spherical
layer thickness and the relation between the (surface and interfacial) tension coef-
ficients. It is revealed that the influence of the liquids’ parameters (and related var-
iations) on the drop oscillation changes dramatically depending on whether
oscillations are “in-phase” or “out-of-phase”. Frequencies for “in-phase” type
oscillations can be correlated with linear functions of the shell thickness and
the relative values of interfacial tension coefficient whereas the analogous depen-
dencies for the “out-of-phase” type oscillation are essentially non-linear.
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1 Introduction

Encapsulated drop is a compound drop, consisting of an inner liquid, surrounded by another immiscible
liquid layer. Such drops are common phenomenon in metallurgy, chemical engineering and are observed in
biological structures. Encapsulated drops have been studied extensively for almost half of a century. One of
the first investigations of oscillations are thin film stability considerations [1]. Oscillations of a stratified
compound drop were studied theoretically [2] and previous experimental facts were summarized [3].
Later, oscillations of a compound drop were studied theoretically for some more complex cases, including
effects of drop’s rotation [4], free surface oscillation amplitude dampening [5] and oscillation stability [6].

Further investigations consider additional effects, which were studied extensively by numerical analysis.
Dynamics of encapsulated drop and its usefulness in medical applications were presented [7]. Here, a set of
papers, considering external shear flows should be mentioned, including [8,9], in which compound drop’s
deformation and effect of inner liquid eccentricity were studied. Such drop’s dynamic properties allow
using them as transport for liquids, so different aspects of encapsulated drop’s motion are actively studied
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[10–12]. New numerical method, considering particle hydrodynamics in encapsulated drop was developed
[13]. Nonlinear oscillations were studied by numerical methods, as well [14].

Nowadays, methods for producing encapsulated drops with thin shells of outer liquid using microfluidic
devices in different designs were developed [15–18], and are studied numerically to enhance their effectiveness
[19] There’s a clear demand of thorough theoretical analysis on encapsulated drops’ problem. Analysis of
internal flows in liquid drop is a complicated task, which is usually studied by numerical methods even in a
non-compound drop case [20,21]. However, investigation of oscillation spectrum can be useful in determination
of inner properties of a compound drop [22,23], as well as oscillation effects on stability and motion of
encapsulated drops. Most papers consider second mode of oscillations or give only thin layer approximation
[2,24]. High resolution images of oscillating drops show that simultaneous multiple mode drop oscillations are
common thing in laboratory experiments [25,26], as well as in field observations [27]. The goal of the current
study is to analyze encapsulated drop oscillation frequencies of several lower modes, which can be observed in
experiments, and determine their dependencies on inner and outer liquid’s parameters. In addition, simplified
expressions for frequencies will be investigated for errors and applicability in quantitative considerations.

2 Statement of the Problem

Encapsulated drop with radius R is considered as a two-layer liquid system, which in equilibrium state
has the form of a spherical drop of inner liquid, covered by concentric spherical layer of dissimilar outer
liquid. Spherical layer is thin and has a finite thickness h. This system (Fig. 1) accomplishes small-
amplitude free capillary oscillations. The both liquids are assumed to be inviscid and incompressible.
Outer liquid density is qo and inner one is qi. The free surface tension coefficient is ro and ri is the
interfacial tension coefficient. Further, the index “o” refers to the outer liquid or to the free surface of the
outer liquid and index “i” to the liquid in the inner drop or the internal liquid–liquid interface.

3 Governing Equations

The problem is formulated in spherical coordinates r; h; ’f g with an origin at the drop mass center. The
Consideration is restricted to axisymmetric oscillations, so all variables’ dependencies on orbital angle ’ can
be ignored. Free surface and interfacial surface are defined by the following equations respectively:
Foðr; h; tÞ � r � R� noðh; tÞ ¼ 0 and Fiðr; h; tÞ � r � Rþ h� niðh; tÞ ¼ 0. Here, noðh; tÞ and niðh; tÞ are
time-dependent functions which describe shapes of the oscillating surfaces.

Euler’s equations for inner and outer liquids and continuity equations are as follows

qi;o
@~V i;o

@t
þ ~V i;oðr~V i;oÞ

 !
¼ �rPi;o (1)

Figure 1: Oscillating encapsulated drop illustration
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div~Vi;o ¼ 0 (2)

where ~Vi;o are flow velocities, Pi;o are hydrodynamic pressures. The equations are supplemented with
condition of flow velocity finiteness at the drop mass center

r ! 0 : ~V 2

�� �� < 1 (3)

Kinematic and dynamic boundary conditions on a free surface are given by

r ¼ Rþ noðh; tÞ :
dFoðr; h; tÞ

dt
¼ 0; (4)

r ¼ Rþ noðh; tÞ : Po � Pr o ¼ Pext: (5)

Here, Po is a hydrodynamic pressure in outer liquid layer, Pr o ¼ ro div~no is a capillary pressure on a
free surface, Pext is an external hydrostatic pressure outside the drop and
~no � rFoðr; h; tÞ= rFoðr; h; tÞj jFo¼0 is a free surface normal.

Boundary conditions at the liquid-liquid interface are kinematic and dynamic ones, and the condition of
continuity of the normal velocity component which have the following form

r ¼ R� hþ niðh; tÞ :
dFiðr; h; tÞ

dt
¼ 0; (6)

r ¼ R� hþ niðh; tÞ : Pi � Pr i ¼ Po; (7)

r ¼ R� hþ niðh; tÞ : ~Vo �~ni ¼ ~Vi �~ni: (8)

Here, Pi is a hydrodynamic pressure in inner liquid, Pr i ¼ ri div~ni and
~ni � rFiðr; h; tÞ= rFiðr; h; tÞj jFi¼0 is a capillary pressure on a interfacial surface and its normal, respectively.

The problem is supplemented with the conditions of conservation of the inner liquid and overall drop
volume, as well as immobility of the drop mass center under oscillations of the drop surface which can
be written as

Z2p
0

Zp
0

ZR�hþniðh;tÞ

0

r2 sin hdrdhd’ ¼ 4

3
pqð1� hÞ3

Z2p
0

Zp
0

ZRþnoðh;tÞ

0

r2 sin hdrdhd’ ¼ 4

3
p (9)

Z2p
0

Zp
0

ZR�hþniðh;tÞ

0

qi~rr
2 sin hdrdhd’þ

Z2p
0

Zp
0

Z1þnoðh;tÞ

1�hþniðh;tÞ

qo~rr
2 sin hdrdhd’ ¼~0

4 Scalarization and Linearization

The problem will be solved under the assumption that equilibrium surface distortion ni;oðh; tÞ we are

interested in is small, the model of a potential liquid flow is used, in terms of which velocity fields ~Vi;o

are determined by hydrodynamic potential wi;oðr; h; tÞ: ~Vi;o ¼ rwi;oðr; h; tÞ. Since small oscillations of the
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surfaces are considered we can assume that, max ni;oðh; tÞ
�� ��=R � e << 1, and, as a consequence, the velocity

of a liquid flow induced by surface oscillations is also small. Therefore, we can assume
wi;oðr; h; tÞ
�� �� � ni;oðh; tÞ

�� ��. The consideration will be restricted by the e0 and e1 orders of smallness in
amplitude, and the desired quantities will be represented as sums of components of the above orders of
magnitude. For the sake of convenience of calculations, we will go over to dimensionless variables
assuming that R ¼ 1, qo ¼ 1, and ro ¼ 1. The designations of the dimensionless variables will remain
the same. After the standard procedures of scalarization and linearization on the set of Eqs. (1)–(9)
zeroth- and first-order problems can be obtained.

5 Equilibrium Drop. Zeroth-Order Problem

Zeroth-order problem consists of scalarized Euler’s equations and dynamic boundary conditions.
Solution of this system gives hydrostatic pressures in outer Po

ð0Þ ¼ Pext þ 2 and inner

Pi
ð0Þ ¼ 2

1� h
rþ Pext þ 2 liquids of an undisturbed encapsulated drop. Here and after top Arabic number

in round brackets indicates order of amplitude smallness e.

6 Oscillating Drop. First-Order Problem

Scalarized and linearized first-order equation system in nondimensional variables is given by the
following set of equations and boundary conditions.

Hydrodynamic pressures obtained from Eq. (1) are given as

Pð1Þ
o ¼ � @wo

@t
; (10)

Pð1Þ
i ¼ �q

@wi

@t
;

Here, q � qi=q0 is a nondimensional parameter, characterizing relative density of inner liquid. Laplace
equations and condition of velocity limitness obtained from (2) and (3) can be written as

Dwo ¼ 0

Dwi ¼ 0 (11)

r ! 0 : rwij j < 1;

Kinematic (4), (6) and continuity of the normal velocity component (8) boundary conditions are given as

r ¼ 1 : � @noðh; tÞ
@t

þ @wo

@r
¼ 0;

r ¼ 1� h : � @niðh; tÞ
@t

þ @wi

@r
¼ 0 (12)

r ¼ 1� h :
@wo

@r
¼ @wi

@r
:

Dynamic boundary conditions (5), (7) are obtained by

r ¼ 1� h : Pi
ð1Þ � Pr i

ð1Þ ¼ Po
ð1Þ (13)
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r ¼ 1 : Po
ð1Þ � Pr o

ð1Þ ¼ 0

Corrections to capillary pressures have the following form

Pð1Þ
r o ¼ �2noðh; tÞ � Dhnoðh; tÞ; (14)

Pð1Þ
r i ¼ r

�2niðh; tÞ � Dhniðh; tÞ
ð1� hÞ2 ;

where Dh � 1

sin h
@

@h
sin h

@

@h

� �
and r � ri=r0. The equations are supplemented by additional integral

conditions (9) which can be written as

2p
3

Zp
0

ð3niðh; tÞÞð1� hÞ2 sin hdh ¼ 0

2p
3

Zp
0

3noðh; tÞ sin h dh ¼ 0 (15)

Z2p
0

Zp
0

q
1

4
ð1� hþ 4niðh; tÞÞ cos h sin hdhd’þ

þ
Z2p
0

Zp
0

1

4
ðhþ 4noðh; tÞ � 4niðh; tÞÞ cos h sin hdhd’ ¼ 0

Shape functions of a free surface noðh; tÞ and liquid-liquid interface niðh; tÞ are sought in the form of an
expansion in Legendre polynomials PnðlÞ where l � cos h and are given as

noðh; tÞ ¼
X1
n¼0

anðtÞPnðlÞ (16)

niðh; tÞ ¼
X1
n¼0

bnðtÞPnðlÞ

Solutions of Laplace’s equations with boundary condition (11) gives hydrodynamic potentials
wi;oðr; h; tÞ which have the following form

woðr; h; tÞ ¼
X1
n¼0

AnðtÞrnPnðhÞ þ
X1
n¼0

BnðtÞr�ðnþ1ÞPnðlÞ; (17)

wiðr; h; tÞ ¼
X1
n¼0

VnðtÞrnPnðlÞ;
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Expressions (16)–(17) are substituted into conditions (12) which are solved taking into account the
orthogonality of Legendre polynomials. Solutions of this system determine coefficients An, Bn, Vn as
functions of anðtÞ and bnðtÞ are obtained by

Bn ¼ ð1� hÞðan0ðtÞ � bn
0ðtÞÞ

ð�ð1� hÞ�2n þ 1� hÞð1þ nÞ

An ¼
an0ðtÞ � ð1� hÞðan0ðtÞ � bn

0ðtÞÞ
�1þ ð1� hÞ�2n þ h

n
(18)

Vn ¼ bn
0ðtÞ
n

Integral conditions (15) determine coefficients for expressions (16): a0ðtÞ ¼ 0, b0ðtÞ ¼ 0,
q1a1ðtÞ þ ðq2 � q1Þb1ðtÞ ¼ 0.

Hydrodynamic (10) and capillary (14) pressures are determined considering expressions (16)–(18) and
can be written as

Pð1Þ
o ¼ �

X1
n¼0

rnPnðlÞAn
0ðtÞ þ

X1
n¼0

r�1�nPnðlÞBn
0ðtÞ

 !

Pð1Þ
i ¼ �q

X1
n¼0

rnPnðlÞVn
0ðtÞ (19)

Pð1Þ
r o ¼

X1
n¼2

ðn� 1Þðnþ 2ÞanðtÞPnðlÞ

Pð1Þ
r o ¼ r

ð�1þ hÞ2
 !X1

n¼2

ðn� 1Þðnþ 2ÞbnðtÞPnðlÞ

Expressions (19) are substituted into dynamic boundary conditions (13), which can be represented
respectively as follows

C1ðnÞanðtÞ þ C2ðnÞan00ðtÞ þ C3ðnÞ bn00ðtÞ ¼ 0 (20)

C4ðnÞbnðtÞ þ C5ðnÞan00ðtÞ þ C6ðnÞ bn00ðtÞ ¼ 0

Here, CkðnÞ are quite cumbersome numerical coefficients, which depend on q, h, r and are represented
in Appendix A. System (20) is simplified to obtain equation for the anðtÞ, which describes evolution of
oscillations of the free surface which is given as

D1ðnÞanðtÞ þ D2ðnÞan00ðtÞ þ D3ðnÞanð4ÞðtÞ ¼ 0 (21)

Here, coefficients DkðnÞ have the following expressions: D1ðnÞ ¼ �C1ðnÞ
C3ðnÞ,

D2ðnÞ ¼ �C2ðnÞ
C3ðnÞ �

C1ðnÞC6ðnÞ
C3ðnÞC4ðnÞ and D3ðnÞ ¼ C5ðnÞ

C4ðnÞ �
C2ðnÞC6ðnÞ
C3ðnÞC4ðnÞ . Second equation of the system gives

bnðtÞ as a function of anðtÞ and will not be considered further, because it determines oscillations of
“inner” liquid-liquid interface.
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7 Frequency Analysis

Equation, which determines free surface oscillation frequencies xnðtÞ, can be found from the fourth-
order differential Eq. (21) by substituting anðtÞ ¼ En cosðxnt þ fnÞ. Solutions of the resulting biquadratic
equation are given as

xn ¼ 1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðnÞ
D3ðnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðnÞ2 � 4D3ðnÞD1ðnÞ

q
D3ðnÞ

vuut
(22)

Numerical calculations will be represented for the case of water drop, encapsulated in a thin layer of
silicone oil with normal temperature and pressure. Surface tension coefficients for water and silicone oil

are 73 � 10�3 N/m and 20 � 10�3 N/m respectively, so dimensionless parameter r ¼ 73� 20

20
¼ 2:65.

Relative density parameter q ¼ qi
qo

¼ 1

0:95
¼ 1:05. Since the present paper studies encapsulated drops

with a thin layer of outer liquid, thicknesses h < 0:1 R will be considered.

Fig. 2 shows two frequencies corresponding to two oscillation modes: “in-phase” mode, when drop’s
free and internal surfaces oscillate generally like homogeneous liquid, and “out-of-phase” mode, which is
typical for two-layered liquids.

Further analysis will consider d � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þðnþ 2Þp which is normalized oscillation frequency. Such

normalization allows displaying frequencies of several modes in a single figure, as well as showing
frequency values, relative to that of a homogeneous drop consisting of outer shell liquid,

xR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þðnþ 2Þp

, which can be easily derived from [28]. Fig. 3 shows that encapsulated drop
oscillation “in-phase” frequencies are greater than those for homogeneous drop. Increase in outer liquid
layer thickness h has greater effect on higher modes of oscillations, decreasing values of d. These
dependencies can be reasonably approximated by linear functions, derived from the exact solutions (22)
are obtained by

Figure 2: Free capillary oscillation frequencies of an encapsulated drop as a function of mode number n.
Dashed line – “out-of-phase” mode, dash-dotted – “in-phase” mode
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x � xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1þ rð Þ

p
þ h

q �1þ qþ 2rþ 3r2ð Þ þ n q2 � 1þ rð Þ2
� �

2 q 1þ rð Þð Þ3=2

0
@

1
A (23)

Such approximation works well for lower modes of oscillations, but error is increasing with mode
number and shell thickness, reaching values up to several percent.

For the case of “out-of-phase” oscillations frequencies are significantly lower than xR, and thinner
encapsulation shell will result in further decrease in xn (Fig. 3). In this case, asymptotic decomposition
for oscillation frequency contains only semi-integer orders of h, and simplest approximate expression

x � xR

ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1þ nÞ
1þ r

r
agrees well with the exact solution (22). Difference in evaluated exact and

approximate values is less than 3%.

Inner and outer liquids may have closer values of surface tension coefficients (for example, inner
liquid is aniline with coefficient of surface tension equal to 42 � 10�3 N/m and therefore r � 1). In that
case, frequencies in “in-phase” mode are getting closer to xR with lower values of r as shown in
Fig. 4. These dependencies can be roughly approximated within 0:5 < r < 3 with the following linear

expression x � xR
ffiffiffi
q

p þ h

2q3=2
n q2 � 1
� 	� qþ q2

� 	þ ffiffiffi
q

p
2

þ h

4q3=2
þ7q� 3q2 � n 1þ 3q2

� 	� 	� �
r

� �
.

Dependencies dðrÞ represented in Fig. 4 show that decrease of r lower “out-of-phase” oscillation
frequency, making it even more differ from xR. Lower lines in Fig. 4 have nonlinear dependency,

which can be approximately expressed by x � xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ð1þ nÞ rp

.

Inner and outer liquid’s densities are the thing to consider, when “in-phase” mode is investigated.
Numerical analysis shows that greater values of ρ correspond to lower oscillation frequencies. This
dependency tends to be nonlinear, according to both exact (22) and approximate (23) expressions.
However, when liquid’s densities differ not more than 20% frequency can be approximated by a linear
function of ρ because numerically obtained curves are almost linear. “Out-of-phase” mode oscillations

slightly decrease with greater ρ. However, values of
@d
@q

are about 1–2% for 1 < ρ < 1.2. It means that

values of d are almost constant, and this dependency may be neglected in practical applications.

Figure 3: Normalized oscillation frequencies of an encapsulated drop as functions of spherical layer
thickness h. 4 curves at the top-“In-phase” mode. 4 curves at the bottom-“Out-of-phase” mode. Solid line
– oscillation mode number n = 2, dashed line – n = 3, dash-dotted – n = 4 and dotted – n = 5
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8 Conclusions

In this paper, an estimate of the liquids’ properties influence on small-amplitude free capillary
oscillations of an encapsulated spherical drop has been calculated. Two types of oscillation can be
observed, such as “in-phase” type with frequencies higher than those for homogeneous drop (xR), and
“out-of-phase” type with frequencies significantly lower than xR. It is shown that in case of thin outer
shell “out-of-phase” type oscillation frequencies decrease up to several times when shell thickness
becomes lower. Relation r between interfacial and free surface tension coefficients has a great influence
on the both oscillation types. Lower values of r result in significant decrease of frequencies xn. Relation
between densities of inner and outer liquid has almost no effect on “out-of-phase” type, but lowers values
of xn for “in-phase” type. All the oscillation modes are affected by liquids’ properties rather equally, and
these dependencies should be taken into account when frequency or drop shape analysis is established.
Expressions for encapsulated drop free surface oscillation frequencies with a thin shell of finite thickness
were obtained.
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Appendix A. Expressions for the coefficients CkðnÞ

C1ðnÞ ¼ ð1� nÞð2þ nÞ (A.1)

C2ðnÞ ¼ �1

ð1� ð1� hÞ2n þ ð1� hÞ2nhÞnþ
ð1� hÞ�1þn

ð1� hÞ�2�nð�1� nÞ þ ð1� hÞn�1ð1þ nÞ

 !
(A.2)

C3ðnÞ ¼ ð1� hÞ2þn

ð1� ð1� hÞ2n þ ð1� hÞ2nhÞn�
1

ð1þ nÞðð1� hÞn�1 � ð1� hÞ�2�nÞ

 !
(A.3)

C4ðnÞ ¼ ð1� nÞð2þ nÞr
ð�1þ hÞ2 (A.4)

C5ðnÞ ¼ ð1� hÞn
ð1� ð1� hÞ2n þ ð1� hÞ2nhÞn�

1

ð1� hÞ2ð1þ nÞðð1� hÞ�1þn � ð1� hÞ�2�nÞ

 !
(A.5)

C6ðnÞ ¼ � ð1� hÞ2þ2n

ð1� ð1� hÞ2nþ1Þnþ
ð1� hÞ�1�n

ð1þ nÞðð1� hÞ�1þn � ð1� hÞ�2�nÞ þ
ð�1þ hÞq

n

 !
(A.6)
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