
Intelligent Automation And Soft Computing, 2020 
Copyright © 2020, TSI® Press 
Vol. 26, no. 1, 13–25 
https://doi.org/10.31209/2018.100000047 

 
 

 

 

 
 

 
 

 
 

 
 

CONTACT  Muhammad Abdullah  muhammad.abdullah@pucit.edu.pk 

© 2020 TSI® Press 

 

Application Centric Virtual Machine Placements to Minimize Bandwidth 
Utilization in Datacenters 
 
Muhammad Abdullah1, Saad Ahmad Khan1, Mamdouh Alenez2, Khaled 
Almustafa3, Waheed Iqbal1 
 

1Punjab University College of Information and Technology, University of the Punjab, Lahore, Pakistan 
2College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia 
3College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia 

 

 
 

KEY WORDS: Bandwidth Allocation, Datacenters, Resources Optimization, VM Placement. 
 

1 INTRODUCTION 
NOWADAYS, cloud computing becomes popular 

and attracted a large user base mainly due to its easy in 

use, pay-per-use, and dynamic resource provisioning 

features (Iqbal et al., 2011, 2016). The users can easily 

demand compute, storage, and network services from 

the Infrastructure-as-a-Service (IaaS) cloud. A public 

cloud maintains multiple datacenters in different 

regions to entertain the maximum number of users. 

However, management of IaaS cloud is concerned to 

efficiently utilize their datacenters to use minimal 

resources to serve a large user base. This will 

significantly reduce operational cost and maximizes the 

revenue. 

Cloud computing is leveraging the benefits of 

hardware level virtualization which is achieved using 

hypervisors. A hypervisor enables a physical machine 

to host multiple virtual machines by providing a high 

level of isolation and efficient resource allocation to the 

VMs. There are various virtualization platforms 

available, some of the most commonly used are Xen, 

VMware, and Hyper-V. Every VM contains its own 

operating system and necessary binaries to run the VMs 

on physical machines. A user of VM gets all the 

features and feel of a real physical machine. 

Big data, Internet of Things, and multi-tier 

applications are most commonly hosted on the cloud. 

These applications are deployed on multiple VMs and 

intensively share data among them to perform 

computation and user tasks. These type of applications 

in a datacenter consume significant bandwidth, 

however, intelligent placement of VMs may reduce the 

usage of bandwidth (Meng et al., 2010). In principle, it 

is possible to minimize the usage of bandwidth by 

placing coordinating VMs to same physical machine or 

closer to each other. However, this might introduce 

trade-off with minimizing the number of physical 

machines. 

VM placement in a datacenter is a complex problem 

mainly due to dynamic resource demand of VMs and a 

limited number of physical machines and their resource 

 
ABSTRACT 

An efficient placement of virtual machines (VMs) in a cloud datacenter is 
important to maximize the utilization of infrastructure. Most of the existing work 
maximises the number of VMs to place on a minimum number of physical 
machines (PMs) to reduce energy consumption. Recently, big data applications 
become popular which are mostly hosted on cloud datacenters. Big data 
applications are deployed on multiple VMs and considered data and 
communication intensive applications. These applications can consume most of 
the datacenter bandwidth if VMs do not place close to each other. In this paper, 
we investigate the use of different VM placement methods to decrease the usage 
of bandwidth in different sizes of datacenters. We implemented and evaluated 
five different VM placement algorithms. Our comprehensive set of experiments 
show a significant decrease in bandwidth ranging from 65% to 78% can be 
achieved using the extended implementations of the knapsack and first fit VM 
placement methods. 
 



14 ABDULLAH, ET AL. 

 

capacities (Alahmadi et al., 2014; Singh et al., 2008a; 

Mi et al., 2010). Figure 1 shows the VM placement 

problem where VMs of different sizes can be deployed 

on PMs. There is an exponential number of possibilities 

to deploy the given VMs at any time interval on a set of 

PMs. Identifying the optimal placement is challenging 

as the VM placement problem is NPhard. A polynomial 

time solution for VM placement is not known. 

Therefore, most of the research to address this problem 

proposed and evaluated using heuristic and 

approximation based approaches. There are various 

optimization and constraints can be used to study VM 

placement problem. Most of the existing work to 

address this problem was focused to minimize energy 

consumption while placing the maximum number of 

VMs on a minimum number of PMs. However, to 

address the need for minimizing bandwidth utilization 

in datacenter for applications hosted on multiple VMs 

are not well studied. 

In this paper, we evaluate traditional methods for 

VM placement and also introduced two approaches 

namely application level knapsack and application 

level first fit to specifically help to minimize the 

datacenters bandwidth usage. We assumed dynamic 

demand of VMs and used five different methods to 

place them on different sizes of datacenters. We 

performed experiments to evaluate different parameters 

like resource wastage, bandwidth utilization, placement 

time, and number of PMs used to deploy the VMs. 

Where resource wastage refers to the sum of 

unallocated resources including CPU, memory, and 

disk of all PMs. The exact contributions of this paper 

are: 

1. Implement and present the traditional VM 

placement algorithms named round robin, 

knapsack, and first fit. 

2. Modify knapsack and first fit algorithms to 

place VMs to minimize the overall bandwidth 

of datacenters. 

3. Study the impact of these five algorithms on 

bandwidth, placement time, and resource 

wastage using hetrogenous demand of VMs on 

different sizes of datacenters. 

Rest of the paper is organized as follows. We 

discussed related work in Section 2. VM placement 

optimization problem is discussed in Section 3. We 

provide details about VM placement algorithms in 

Section 4. Detailed experimental evaluations are given 

in Section 5. In Section 6, conclusions are drawn and 

future work is discussed.  

2 RELATED WORK 
THERE have been various contributions to address 

VM placement problem in datacenters. For example, 

many of the authors (Ghribi et al., 2013; Alahmadi et 

al., 2014; Bobroff et al., 2007; Singh et al., 2008a; Mi 

et al., 2010) propose and evaluate VM placement 

methods only considering CPU resources. There have 

been also some work considering multiple resources to 

place virtual machines. For example, authors in (Song 

et al., 2014; Dong et al., 2015; Chen et al., 2011; Wood 

et al., 2009; Singh et al., 2008b; Ferdaus et al., 2014; 

Gao et al., 2013; Tao et al., 2016) use CPU, I/O, and 

network resources to schedule VMs. However, 

application specific scheduling to minimize overall 

bandwidth utilization in the datacenter is not addressed 

in any of the above work. 

 

Figure 1.  VM placement problem. Different sizes of VMs can be placed on PMs with exponential possibilities. 



INTELLIGENT AUTOMATION AND SOFT COMPUTING 15 

 

A comprehensive survey of VM placement 

algorithms is performed by (Masdari et al., 2016). 

Authors in this paper survey 51 different papers 

addressed VM placement problem. These papers were 

classified in 18 different techniques. These techniques 

are considering some of the metrics i.e. minimize the 

number of PMs, reduce the power consumption, 

increase the performance etc. for placing the VMs. 

Most of the techniques use heuristics to place the VMs 

efficiently. They also discussed the limitations and 

advantages of the currently used placement algorithms. 

However, the paper discussed bandwidth optimization 

are fewer and none of them addressed the overall 

bandwidth minimization in datacenters using 

heterogeneous demands of VMs. Bhuvan et al. (2007) 

discussed the application placement problem as NP-

hard and proposed and evaluated different 

approximation algorithm to address the application 

placement problem efficiently. 

Wang et al. (2011) addressed to reduce the number 

of physical servers used to place VMs. They reduced 

the VM placement problem to stochastic bin packing 

problem by assuming that at a given time interval the 

bandwidth demand for the VMs is known. As a solution 

for stochastic bin packing problem, they presented an 

online packing algorithm. Their work assumes 

homogeneous demand for each VM, however, diversity 

in demand of VMs has not been addressed in this work. 

Another approach for VM placement had been 

presented by Zheng et al. (2016). In this approach, 

authors used biogeography-based optimization 

methods and according to them, these optimization 

methods were firstly used for VM placement where 

their goal is to minimize the power consumption and 

resource wastage of PMs. They also migrate the VMs 

to minimize the resource wastage of PMs. Recently 

Camati et al. (2014) presented a new approach to 

minimize energy consumption and VM migration 

overhead by addressing the VM placement problem. 

Their solution is based on multidimensional knapsack 

problem. 

Xu & Fortes (2010) proposed and evaluated a VM 

placement algorithm to minimize total resource 

wastage and power consumption simultaneously in 

datacenters using a fuzzy logic based solution to 

address the multi-objective optimization problem. 

Thiruvenkadam & Karthikeyani (2014) the VM 

scheduling algorithm for minimizing the server 

overload issues in datacenters and also to minimize the 

power consumption. They represent live VM migration 

without affecting QoS to address the problem. (A. K. 

Paul et al., 2014) discussed the VM placement problem 

in the datacenter to minimize the energy and cost. The 

authors represent this problem as an optimization 

problem and model it as a bin packing problem. Their 

simulation result shows the minimization of cost and 

energy in the datacenters. Ilkhechi et al. (2015) 

presented an algorithm to maximize the number of 

VMs to deploy on PMs. They consider the closeness of 

VMs on the network as satisfaction which reduces the 

network bandwidth. However, they do not consider 

other VM demands like CPU, memory, and disk to 

place the VMs. 

A recent work by Shen et al. (2016) proposed a 

scheme named AppBag (Applicationaware Bandwidth 

Guarantee) which consider one step-ahead information 

to schedule VMs to optimize bandwidth within 

datacenter. Their approach place and migrate the VMs 

to minimize the datacenter network traffic. The 

proposed approached minimized the migration 

overhead by only considering VMs which are 

intensively communicating with each other. Chen et al. 

(2016) had addressed the challenge of fair allocation of 

network bandwidth in DCNs environment. The 

proposed solution aims to place maximum VMs by 

effectively utilizing the available bandwidth. 

A most recent work by Shabeera et al. (2017) 

presented a new approach for VM placement to 

minimize the bandwidth utilization in datacenters. 

They also proved the VM and data placement problem 

to be NP-Hard by reducing Knapsack problem (NP-

complete) to it in polynomial time. The proposed 

method is heuristic algorithm based on Ant Colony 

Optimization. However, the assumed homogeneous 

demands of the VMs and also consider all VMs belong 

to one application. 

None of the work discussed above considered 

heterogeneous VMs demanding different resources to 

place them in the datacenter to minimize the overall 

bandwidth utilization. Here, in this paper, we address 

this problem in the datacenters by extending standard 

knapsack implementation and compare it with existing 

state of the art approaches used nowadays in the real 

datacenters. 

3 VM PLACEMENT OPTIMIZATION MODEL 
IN this section, we explain the VM placement 

optimization model. We aim to minimize overall 

bandwidth utilization in the datacenter by effectively 

placing VMs. Following are the important parameters 

in our optimization model: 

• P = {p1,p2,...,pm} is a set of available physical 

machines 

• ∀ pi = {c1,c2,...,ck}is a set of available 

resources capacity, where pi ∈  P 

• A = {a1,a2,...,aq} is a set of applications 

• ∀ ai = {v1,v2,...,vt}is a set of virtual machines 

belongs to application, where ai ∈  A 

• V = {v1,v2,...,vn} is a set of all virtual machines 

of all applications 

• ∀ vi = {r1,r2,...,rk} is a set of resource demands, 

where vi ∈  V 

• xi,j ∈ {0,1},where 1 ≤ i ≤ m,1 ≤ j ≤ n 

• xi,j = 1 ⇔ vj is placed on pi 

• xi,j = 0 ⇔ vj is not placed on any pi 



16 ABDULLAH, ET AL. 

 

• wj,l the rl resource of vj 

• Ci,l the available resource capacity cl of 

physical machine pi 

• rj,b the bandwidth resource capacity of virtual 

machine vj 

Our proposed VM placement optimization model 

contains of two objective functions and two constraints. 

We explain them using the following equations: 

 

Maximize ∑ ∑ 𝑥𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

. 𝑣𝑗  (1) 

Minimize ∑ ∑ 𝑥𝑖,𝑗 . 𝑣𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 𝑟𝑗,𝑏  (2) 

Subject to ∑ ∑ ∑ 𝑥𝑖,𝑗  . 𝑤𝑗,𝑙  

𝑘

𝑙=1

𝑛

𝑗=1

𝑚

𝑖=1

  ≤ 𝐶𝑖,𝑙 (3) 

and ∀j ∑ 𝑥𝑖,𝑗

𝑚

𝑖=1

  ≤ 1 where 1  ≤ j  ≤ n (4) 

Equation 1 is used to achieve the objective to place 

maximum number of VMs on the available physical 

machines. Where vj represents the jth VM and xi,j 

becomes 1 whenever vj is placed on a PM pi otherwise 

it remains 0. Equation 1 ensures that the sum of the 

placed VMs is maximum, where m represents the total 

number of PMs and n represents the total number of 

VMs in the datacenter. Equation 2 shows our objective 

to minimize the overall bandwidth utilization of 

datacenter. Where rj,b shows the jth VM’s bandwidth 

resource. Equation 2 ensures the sum of bandwidth 

resource of all placed VMs is minimum. 

Equation 3 enforce a constraint that ensures that all 

the VMs placed on a PM does not demand more than 

available capacity. In this equation xi,j is a binary 

variable which initializes to 1 if jth VM placed on ith PM 

otherwise remains 0, wj,l shows the lth resource of jth 

VM. Equation 3 ensures that the sum of lth resource of 

all placed VMs on ith PM is less or equal from available 

capacity of lth resource of ith PM Ci,l. Where m is total 

number of PMs, n is total number of VMs and k is total 

number of resources (e.g CPU, memory, disk, 

bandwidth). Equation 4 shows the constraint to ensure 

that each VM is placed on only one PM. This equation 

ensures that the sum of xi,j for all PM is less or equal to 

1 for a specific VM j which means that jth VM is only 

placed on one PM and if the sum of xi,j equals to 0 then 

the jth VM is unplaced. 

In this paper, we achieve these objectives by 

greedily placing the VMs of the same application on the 

minimum number of PMs. Our approach assumes that 

multiple VMs belongs to an application ideally be 

placed on a single PM. It would reduce the bandwidth 

utilization significantly, however, practically it may not 

be possible as the applications may need to spawn a 

large number of VMs which cannot be deployed on a 

single PM. Therefore, our approach tries to minimize 

the number of physical machines for placing VMs 

belonging to an application. 

4 VM PLACEMENT ALGORITHMS 
IN this section, we explain traditional methods for 

VM placement and also modify explain two approaches 

namely application level knapsack and application 

level first fit which we modified to minimize the 

bandwidth in datacenets. 

4.1 Round Robin 
Round robin algorithm places VMs in a circular 

order to the PMs. It assumes the list of PMs as a circular 

list and schedules the incoming VMs to the list of PMS 

in circular order. For example, if we have a list of four 

VMs (v1, v2, v3, and v4) and two PMs (p1 and p2) then 

this method will place v1, v3 to p1 and v2, v4 to p2 

provided that VMs resource demand is less than PMs 

capacity. This algorithm is also placed VMs in linear 

time, however, it may use more PMs comparing to first 

fit method. Round-robin VM placement algorithm is 

available in many open-source cloud middlewares 

including OpenNebula, EUCALYPTUS, and 

OpenStack. 

4.2 First Fit 
First fit VM placement algorithm identifies the most 

appropriate PM meets the demand of the VM by 

linearly searching the list of available PMs. We 

implemented this approach as explained in Kuo et al. 

(2015). This method is a linear time algorithm to 

schedule a set of VMs. It has the ability to use the 

minimum number of PMs as it tries to exhaust the PMs 

in order. 

4.3 Multi-Dimensional Knapsack 
Algorithm 1 explains our proposed knapsack 

approach for VMs placement. We implement the 

traditional knapsack greedy method to place VMs by 

considering the capacity of PMs as knapsack 

dimensions. The proposed method is a variant of the 

implementation used in Camati et al. (2014). In our 

implementation, we assume that a set of VMs request 

arrives at a given time interval and we need to deploy 

them on the PMs. We also consider that resources can 

be allocated in specific units. For example, CPU 

resources can be provisioned as at least 1 core to the 

VMs. Therefore, we define the minimum allocation 

unit for memory, CPU, and disk resources. We use cpu 

allocation unit, memory allocation unit, and disk 

allocation unit variables as CPU, memory, and disk 

minimum resource limits in the Algorithm. Our 

knapsack implementation yield O(m × n × c units × m 

units × d units) time complexity. Where m is the 

number of PMs, n is the number of VMs to place, c 



INTELLIGENT AUTOMATION AND SOFT COMPUTING 17 

 

units is the total CPU units, m units is the total memory 

units, and d units is the total disk units of a PM. This 

algorithm maximizes the number of VMs placed and 

minimize the usage of PMs, however, it takes more 

time to place VMs as compare to first fit and round 

robin. 

4.4 Application Centric Placement with 
Knapsack to Minimize Bandwidth 

Algorithm 2 shows our approach for application 

centric placement of VMs using the knapsack method. 

In this method we use the knapsack implementation 

explained in Algorithm 1. The proposed algorithm 

takes the list of applications and the list of PMs as input 

and iterates for each application to greedily place all its 

VMs to a minimal number of physical machines using 

knapsack implementation. This algorithm place 

application specific VMs to completely free PMs which 

ensures to use a minimal number of PMs used to host 

the application centric VMs. It would minimize the 

overall bandwidth utilization in the datacenter 

significantly. However, if no completely free PM has 

remained left then it will place remaining applications 

specific VMs to the free capacities of PMs. This 

algorithm takes more time to schedule all VMs 

comparing to knapsack. 

4.5 Application Centeric Placement with First 
Fit to Minimize Bandwidth 

Algorithm 3 shows our approach for application 

centric placement of VMs using first fit. This proposed 

algorithm also takes the list of applications and the list 

of PMs as input and iterates for each application to 

place all its VMs to minimize the number of PMs same 

as Algorithm 2 but use first-fit of knapsack 

implementation. This algorithm also minimizes the 

overall bandwidth utilization in datacenter 

significantly. This approach takes less time as 

compared to the Algorithm 2. 

5 EXPERIMENTAL EVALUATION 
IN this section, we explain the experiments 

performed to evaluate the proposed methods to place 

VMs. We performed simulations using a tool written in 

Java to evaluate the proposed methods. The source code 

of this simulation tool is available at Abdullah (2017). 

We used a core i3 machine with 3.0 GHz CPU, and 8 

GB Memory to perform all the simulations. 

5.1 Experimental Datacenter Scenarios 
We emulate four type of datacenter deployment 

scenarios namely micro, small, medium, and large. In 

each of these deployments, we variate the number of 

PMs, applications, and VMs. We used 10, 100, 500, 

1000 PMs in micro, small, medium, and large 

datacenters respectively. For each of the deployment 

scenario, we conducted experiments three times to 

place VMs using our proposed algorithms. In each of 

the iteration we keep the number of PMs and 

applications same, however, we assign a random 

number of VMs to each application. Each VM can 

demand from 2 to 5 CPU units, 3 to 7 memory units, 

and 5 to 25 disk units. We assume a simple one vCPU 

mapping to one physical CPU. Each VM of the 

application can also demand a specific bandwidth with 

other VMs of the same application. We randomly 

assign bandwidth utilization between 0 to 50 KB per 

second for each VM with other VMs of the same 

application. We generate the number of VMs and their 

demands in the beginning of each iteration and then 

used all five algorithms independently to place them on 

the specific datacenter deployment scenario. 

 

 
Algorithm 1 VM Placement Using Multi-dimensional Knapsack 

1: procedure Knapsack(V,P) 

2:          for each p in P do 

3:    cpu, memory, disk ← getFreeCapacity(p) 

4:                        c_units = cpu/cpu_allocation_unit 

5:                        m_units = memory/memory_allocation_unit 

6:                        d_units = disk/disk_allocation_unit 

7:                        K[V.size, c_units,m_units,d_units]         // Initialize a multi-dimension array 

8:                        i=0 

9:                         for each v in V do 

10:                            for c in c_units, and m in m_units, and d in d_units do 

11:                                  if (v.cpu > c) || (v. memory > m) || (v.disk > d) then 

12:                                        K[i,c,m,d]=K[i-1,c,m,d] 

13:                                  else 

14:                                        K[i,c,m,d]=Max(K[i-1,c,m,d] , K[i-1,c-v.cpu,m-v.memory,v.disk]+1) 

15:                                  end if  

16:                            end for  



18 ABDULLAH, ET AL. 

 

17:                            i++  

18:                       end for  

19:                       for j= V.size to 0 do 

20:                            if K[j,c,m,d] ≠ K[j-1,c,m,d] then 

21:                                  V(j).PM=P                        // V(j) is allocated on physical machine p 

22:                                  c = c – v.cpu 

23:                                  m = m – v.memory 

24:                                  d = d – v.disk 

25:                                  V = V – {v} 

26:                            end if  

27:                       end for  

28:         end for 

29: end procedure 

 

 

 
Algorithm 2 Application Level Placement Using Multi-dimensional Knapsack 

1: procedure ApplicationLevelKnapsack(A, P) 

  2: for each app in A do 

3: P’← getFreePhysicalMachines(P) 

4: if P’.size > 0 then 

5: Knapsack ( P’, app.vms )           // Call Knapsack to place the VMs of the app using 

completely free PMs 

6: Else 

7: Knapsack(P, app.vms )              // Call Knapsack to place the VMs of the app using free 

capacity of all PMs 

8: end if 

  9: end for 

  10: end procedure 

 

 
Algorithm 3 Application Level Placement using First Fit 

1: procedure ApplicationLevelFirstFit(A, P) 

  2: for each app in A do 

3: P’← getFreePhysicalMachines(P) 

4: if P’.size > 0 then 

5: Use First Fit Algorithm to place the VMs of the app 

using completely free PMs P’ 

6: Else 

7: Use First Fit Algorithm to place the VMs of the app 

using free capacity of all PMs P 

8: end if 

  9: end for 

  10: end procedure 

 
  



INTELLIGENT AUTOMATION AND SOFT COMPUTING 19 

 

Most of the cloud datacenters use homogeneous 

PMs (Crago et al., 2011), therefore, the PMs we used in 

our experimental evaluation are homogeneous. Each 

PM consisting of a 16 CPU units, 20 memory units, and 

100 disk units. Where each CPU unit is considered as 1 

core, each memory unit is considered as 512 MB and 

each disk unit is considered as 100 GB. Table 1 

summarizes the experimental datacenter scenarios and 

shows the number of PMs use, the number of 

applications to deploy, the total number of VMs used to 

deploy the applications with each iteration. 

5.2 Evaluation Metrics 
To evaluate the effectiveness of the proposed 

algorithms, we calculate bandwidth utilization, 

placement time, resource wastage, the percentage of 

VMs unplaced, and percentage of PMs used. We 

explain each of these in the following subsections. 

5.2.1 Bandwidth Utilization 
We calculate the total bandwidth utilization of the 

datacenters after placing the VMs using the proposed 

algorithms. A VM placement algorithm that minimizes 

the overall bandwidth utilization of datacenter is 

considered the best. 

5.2.2 Placement Time 
Placement time represents the time taken to place 

the VMs in the datacenter using the proposed 

algorithms. A VM placement algorithm with minimum 

placement time is considered the best as it will take less 

time compared to others to take the decisions to assign 

VMs to the PMs. 

5.2.3 Resource Wastage 
This metric represents the portion of computing 

resources left unallocated at each PM which cannot be 

used to place any VM. Ideally we want 100% resource 

of PMs to be used, however, due to heterogeneous 

resource requirements of the VMs, we observe resource 

wastage on PMs. The lower waste of CPU, memory, 

and disk is desirable because these reflect that the 

algorithm is capable to minimize the number of PMs to 

host the maximum number of VMs. Therefore, a VM 

placement algorithm with minimum resource wastage 

is considered the best. 

5.2.4 Percentage of VMs Unplaced 
The VMs that are not placed on any of the PM is 

considered as an un-placed VM. This can happen when 

the placement algorithm does not use the PMs 

efficiently or the number of VMs to allocate on PMs are 

higher than the actual capacity of the available PMs. A 

minimum percentage of un-placed VMs is considered 

better because it indicates that algorithm is capable to 

lace maximum VMs. 

5.2.5 Percentage of PMs Used 
A PM is considered as free if none of the VM is 

placed on it. However, a PM is considered as used if at 

least one of the VM is placed on it. We calculate the 

percentage of total PMs used to host the VMs in the 

datacenter. An algorithm gives the minimum 

percentage of PMs used is considered the best as it uses 

less number of PMs to host the given set of VMs. 

 
Table 1.  Experimental datacenters scenarios for VM placement methods 

Deployment # of PMs # of Applications Iteration # # of VMs 

Micro 10 15 

1 38 

2 36 

3 40 

Small 100 150 

1 386 

2 369 

3 373 

Medium 500 700 

1 1807 

2 1686 

3 1738 

Large 1000 1500 

1 3753 

2 3808 

3 3810 

 

  



20 ABDULLAH, ET AL. 

 

5.3 Experimental Results 
The algorithms explained in Section 4 are evaluated 

using four type of datacenter deployment scenarios and 

dynamic resource demands of VMs. We used round 

robin as baseline method to compare the performance 

of other VM placement algorithms. 

Figure 2-a shows the overall bandwidth utilization 

in all of the deployment scenarios against each 

placement algorithm. We show the average bandwidth 

utilization of all three iterations with error bars showing 

the standard deviation. The bandwidth utilization is 

significantly minimized using application level 

knapsack and application level first fit methods. 

Application level knapsack has reduced 78.01%, 

71.89%, 76.46%, and 71.43% overall bandwidth 

utilization in micro, small, medium and large 

deployment scenarios respectively as compared to the 

baseline round-robin method. The application level 

first fit algorithm also minimized 77.24%, 66.15%, 

71.75%, and 65.43% overall bandwidth utilization for 

micro, small, medium and large deployments 

respectively when comparing to the round robin 

method. 

Figure 2-b shows the total time taken by each 

placement method for the different datacenter 

deployment scenarios. Application level knapsack 

method takes more time as compared to our baseline, 

however, application level first fit takes almost equal 

time as compared to the baseline method. Our baseline 

method takes only 24ms time to place the VMs for the 

large deployment scenarios. Whereas first fit algorithm 

takes maximum 136 ms, knapsack takes 8.46 minutes, 

application level knapsack algorithm takes 2.66 hours 

and application level first fit algorithm takes 52.8ms 

time to place VMs in the large deployment scenario. 

 

Figure 2.  Bandwidth utilization and placement time using VM placement methods on different datacenter deployment scenarios. 

Figure 3 shows a comparisons of all the algorithm 

in each of the datacenter deployment scenarios. We 

show the average CPU, memory, and disk wastage of 

all three iterations with error bars. Figure 3-a, Figure 3-

b, Figure 3-c, and Figure 3-d show the resource waste 

using micro, small, medium, and large deployment 

scenarios respectively. In all of the deployment 

scenarios knapsack outperforms all other methods to 

minimizing the resource wastage. In average, knapsack 

saved 9.07%, 9.14%, 12.33%, and 8.51% CPU 

resources in micro, small, medium, and large type of 

datacenter deployment scenarios respectively when 

comparing to baseline method. Similarly, it also saves 

9.15%, 9.24%, 12.27%, and 8.39% memory resources 

in micro, small, medium, and large type of datacenter 

deployment scenarios respectively when comparing to 

baseline method. However, disk wastage is not 

significantly minimization by any of the placement 

algorithm. 

Knapsack algorithm performed best to minimize the 

resource wastage mainly due to the fact it identifies the 

maximum number of possible VMs to be placed on one 

PM. This leads to using a minimum number of PMs 

which also helps to minimize the overall resource 

wastage in the datacenter. However, the wort 

performing algorithms in resource wastage are First Fit 

and Round Robin. Both of these algorithms, exhaust all 

PMs iteratively and does not consider minimizing the 

number of PMs which leads to higher resource wastage. 

Figure 4 shows the percentage of total VMs left 

without placing (VMs unplaced) and percentage of total 

PMs used (PMs used) in each of the deployment 

scenarios. Figure 4-a, Figure 4-b, Figure 4-c, and 

Figure 4-d show the percentage of VMs unplaced and 

percentage of PMs used during the micro, small, 

medium, and large deployment scenarios respectively. 

The lower the VMs unplaced and lower the PMs used  



INTELLIGENT AUTOMATION AND SOFT COMPUTING 21 

 

 

Figure 3. Resource wastages using VM placement methods on different datacenter deployment scenarios. 

is better. In most of the deployment scenarios 100% of 

the available PMs used by the round robin, application 

level knapsack, and application level first fit. However, 

knapsack saves 3.66%, 11.46%, and 3.93% PMs in 

small, medium, and large datacenter deployment 

scenarios. The first fit also saved 3.86% PMs in 

medium datacenter deployment scenarios. Knapsack 

also outperforms to minimize the number of VMs 

unplaced in all of the deployment scenarios. It placed 

all the VMs in every deployment scenario except micro 

where knapsack left 1.71% VMs unplaced. All other 

four placement algorithm approximately left the same 

number of VMs unplaced in all of the deployment 

scenarios. 

Knapsack algorithm fully utilizes a PM before 

start using another PM to place the given set of VMs, 

therefore, it performs the best to minimize the use of 

PMs. However, Round Robin iteratively use all PMs 

to place VMs and perform worst to minimize the use 

of PMs. 

Application level Knapsack and application level 

First Fit allocate all VMs belonging to the same 

application on a minimum number of PMs which helps 

to minimize the PMs in some of the deployment 

scenarios. 

Table 2 summarizes the experimental evaluation 

and shows CPU waste, memory waste, disk waste, and 

bandwidth minimization comparing to the baseline 

round robin algorithm for each of the deployment 

scenarios. The negative values in the table indicate 

better than round robin and positive values indicate 

worse than round robin performance for the different 

measurements. For example, application level 

knapsack minimized 78.01% bandwidth comparing to 

the round robin. Knapsack is very effective to minimize 

the resource waste, however, does not effectively 

minimize the bandwidth usage in the datacenters. Both 

application level knapsack and application level first fit 

outperforms in minimizing the bandwidth in all type of 

deployment scenarios. However, they will waste more 

resources comparing to knapsack which can overcome 

by using additional PMs. 



22 ABDULLAH, ET AL. 

 

 

Figure 4. Percentage of unplaced VMs and used PMs using VM placement methods on different datacenter deployment scenarios. 

6 CONCLUSION AND FUTURE WORK 
VM placement is a challenging and complex 

problem in cloud datacenters. Many different 

optimization and constraints can be studied by 

addressing this problem. In this paper, we study the use 

of traditional implementations of addressing this 

problem to minimize the overall bandwidth utilization 

in datacenters. We extended knapsack and first fit 

methods to specifically address to significantly 

minimize the bandwidth usage in datacenters. Our 

experimental evaluation shows that the application 

level knapsack and application level first fit can help 

reducing bandwidth usage from 65% to 78%. However, 

these algorithms introduce overhead to the standard 

implementation of knapsack as these waste more 

computing resources of PMs. This trade-off of 

minimizing bandwidth and using more resources in the 

datacenter is interesting as the IaaS cloud management 

can identify their objectives and can use the appropriate 

VM placement method to achieve them. We believe our 

work explained in this paper will help to decide the VM 

placement algorithm to cloud providers. We plan to 

extend this work to incorporate VM migration in 

application level knapsack and application level first fit 

to reduce the overall wastage of resources. We also plan 

to implement both of these algorithms in OpenNebula 

and evaluate it on a real private cloud using different 

big data and multi-tier applications. We also intend to 

explore using Linear Programming to solve the 

proposed optimization problem.  

7 REFERENCES 
A. K. Paul, S. K. A., Sahoo, B., & Turuk, A. K. (2014). 

Application of greedy algorithms to virtual machine 

distribution across data centers, (pp. 1–6). 

M. Abdullah, M. (2017). Application level VM    

placement simulation. 

https://github.com/abdullahsunny/ 

VM-Placement-for-Application-centric-Data-centers-

Simulation. 

A. Alahmadi, Alnowiser, A., Zhu, M. M., Che, D., & 

Ghodous, P. (2014). Enhanced first-fit decreasing 

algorithm for energy-aware job scheduling in 

cloud. In 2014 International Conference on 

Computational Science and Computational 

Intelligence (pp. 69–74). volume 2. 

U. Bhuvan, Rosenberg, A. L., & Shenoy, P. (2007). 

Application placement on a cluster of servers. 

International Journal of Foundations of Computer 

Science, 18, 1023–1041. 

N. Bobroff, Kochut, A., & Beaty, K. (2007). Dynamic 

placement of virtual machines for managing sla 

violations. In 2007 10th IFIP/IEEE International 

Symposium on Integrated Network Management 

(pp. 119–128). 








