
Intelligent Automation And Soft Computing, 2020
Copyright © 2020, TSI® Press
Vol. 26, no. 1, 107–119
https://doi.org/10.31209/2019.100000132

CONTACT Scott Uk-Jin Lee scottlee@hanyang.ac.kr

© 2020 TSI® Press

A Novel Knowledge-Based Battery Drain Reducer for Smart Meters

Isma Farah Siddiqui1, Scott Uk-Jin Lee2, Asad Abbas3
1Department of Software Engineering. Mehran University of Engineering and Technology, Pakistan.
2Department of Computer Science and Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan,
Gyeonggi-do, 15588, Republic of Korea.
3Department of Software Engineering, University of Lahore, Lahore, Pakistan.

KEY WORDS: Smart grid, Smart meter, Battery Energy, Semantic Web (SW); Relational Database to RDF.

1 INTRODUCTION
THE idea of smart grid is about enabling the

automation to power generation and electricity

management. The grid architecture consists of power

system, intelligent agents, on-grid Battery Energy

Storage (BES), communication technology and IT

infrastructure, IoT-enabled smart meters, distribution

ends, electric transportation and finally, data

management systems (Tuballa et al., 2016; Abbas et

al., 2017). The power system produces electric energy

for consumer ends i.e., factories, product plants and

for home consumers through plug-and-play

interconnects (Amin et al, 2005). The intelligent

agents are capable of monitoring, visualizing and

coordinating energy needs with in the smart grid

(Siddiqui et al., 2017; Baig & Zeadally, 2019).

Secondly, they ensure cost effective supply, reduction

of carbon emissions and micro-storage of electricity in

smart grid (Pipattanasomporn et al., 2009; Siddiqui et

al., 2018). On-grid BES provides a back-up to

irregular renewable energy and offers a balanced

energy supply on demand. BES improves efficiency

and management of distribution networks with a

facility of reduction in energy cost (Bussar et al.,

2013; Azmat et al., 2017). The energy storage

ABSTRACT

The issue of battery drainage in the gigantic smart meters network such as
semantic-aware IoT-enabled smart meter has become a serious concern in the
smart grid framework. The grid core migrates existing tabular datasets i.e.,
Relational data to semantic-aware tuples in its Resource Description Framework
(RDF) format, for effective integration among multiple components to work
aligned with IoT. For this purpose, WWW Consortium (W3C) recommends two
specifications as mapping languages. However, both specifications use entire
RDB schema to generate data transformation mapping patterns and results
large quantity of unnecessary transformation. As a result, smart meters use
huge computing resources, maximum energy capacity and come across battery
drain problems. This paper proposes a novel semantic-aware battery drain
optimization strategy ‘SPARQL Auto R2RML Mapping (SARM)’ that generates
custom RDF patterns with precise metadata and avoids use of full schema
along with optimized usage of network resources through (i) selective metadata
migration, and (ii) optimal battery usage. The proposed approach effectively
increases battery life with a balanced proportion of energy consumption and
reduces meter load congestion which happens to be another vital reason of
battery drain problem. The presented knowledge-based battery drain
prevention strategy is evaluated over an RDB dataset using three types of
SPARQL queries; Basic, Nested and Join. Furthermore, the R2RML processors
evaluated SARM over the most recent Berlin SPARQL Benchmark datasets which
depicts that SARM is efficient 40.4% in mapping generation time and 10.46% in
average planning time than default RDB2RDF transformations. Finally, SARM
significantly improves total execution time of RDB2RDF migration with an
efficiency of 8.82% and conserves battery drain by 18.5% over the smart grid
data cluster.

108 SIDDIQUI ET AL

Table 1. Smart meter battery usage statistics (Longe et al., 2017)

application over batteries consists of four levels i.e.,

(i) generation, (ii) transmission, (iii) distribution, and

(iv) customer level.

The generation level supply depends on arbitrage,

curtailment reductions and capacity firming. The

transmission level feed covers frequency and voltage

control, curtailment reductions, black staring and

investment deferrals. The distribution level support

relies on voltage control, curtailment reduction and

capacity support. The consumer level supply depends

on peak shaving, off-grid and cost management time-

line supply (Roberts, 2011). The next important

component of grid architecture is the communication

technologies such as software and hardware, to

provide a medium to control and transmit power

generation and battery storage perspectives in the

smart grid (Yoldaş et al., 2017). The software

perspective includes generation of sensor data profiles,

transformation of datasets and storing big size of data

into scalable repositories (Kenner et al., 2017). The

sensor data generation is carried out through IoT-

enabled smart meters in industry standard formats

such as ‘CSV’ and ‘JSON’ (Siddiqui et al., 2016;

Abbas et al., 2018). The smart grid provides a

functional layer of semantic web to communicate and

store grid analytics. Therefore, the transformation of

generated datasets is performed through a semantic-

aware strategy i.e., Resource Description Framework

(RDF) (Su et al., 2014). The transformed ‘Tuple’

dataset is stored over smart grid tuple-store (Pena et

al., 2011). The grid core synchronizes dataset tuples

through big data analytics and stores over giant smart

grid repository (Daki et al., 2017; Qureshi et al., 2017;

Qureshi et al., 2017; Zhou & Luo, 2017). The

hardware perspective discusses wired and wireless

scenarios such as copper-wire line, fiber optics, Power

Line Communication (PLC) (Sood et al., 2009),

ZigBee (Yi et al., 2011), GSM/GPRS/3G/WiMAX

(Gungor et al., 2013), and Cognitive Radio (Ghassemi

et al., 2010). The grid infrastructure requires peer-to-

peer communication between all nodes and therefore,

network adopts mesh topology (Gungor et al., 2013).

The IoT-enabled smart meter provides two-way

communication, data collection, data transformation

and programming, security, display, and billing

facility to the distribution ends of smart grid (Zheng et

al., 2013; Azmat et al., 2018). The functional features

of smart meter include usage time rate at battery

energy and interval data for monitoring analytics

(https://www.smart-energy.com/). The usage rate

stores sensor data in idle and active states with the log

of battery energy consumption. The monitoring

analytics perspective involves fetch and transform

dataset to store at the distribution end (Albu et al.,

2017). The smart meter provides Real Time Clock

(RTC) that records events during the power-cut and

functionally rely on the health of battery (Wang &

Xie, 2017). The meter battery provides a storage of 1

year at 30 _A with a back-up time of 10 minutes per

year at 200 _A between temperature of ±0°C…+50°C

at 2.7 V (Longe et al., 2017). The routine battery

consumption of an individual smart meter for

generating sensor data can be observed from Table-1.

The reason of gradually decreasing lifespan and

battery drain depends over the additional workload of

RDF transformation (Backes & Meiser, 2013). The

semantic-aware data processing channel transports

light-weight data chunks and is
1

7
 times less carrier

overhead than schema data processing (Wagner et al.,

2010). The network nodes involved in passing of RDF

tuples consumes 23.7% less computing and network

resources than traditional RDB tabular dataset

transportation (Zhou et al., 2012). In order to maintain

such network performance of smart grid, a candid

scheme is needed that minimizes lifespan and battery

drain problems with a continuity of default smart

meters’ data-centric operations. Therefore, we propose

SPARQL auto R2RML Mapper (SARM) that

generates custom RDF tuples metadata without using

complete tabular schema. The proposed approach

significantly reduces battery drain problem by

adopting fewer computing resources and gradually

stabilizes lifespan of smart meter battery.

The noteworthy contributions of proposed

approach are in particular as:

 A novel knowledge-based battery drain reducer

using data engineering.

 An advanced approach of stabilizing battery

lifespan in smart meter using data analytics.

 A novel SQL-less mapping parser for reducing

privacy infringements on smart meter sensor

data in grid core.

 A state-of-the-art RDF dataset SPARQL query

parsing through Basic, Nested and Join

SPARQL queries.

 A novel Java coded tool SARM as R2RML

generator for custom RDF tuples for on-the-fly

data transformations.

The remaining paper is well-ordered in the

following sections. The section 2 deals with related

INTELLIGENT AUTOMATION AND SOFT COMPUTING 109

knowledge of semantic data format and languages

used for processing over smart meter battery with

state-of-art technologies. The section 3 provides detail

explanation of SARM methodology. The section 4

evaluates the proposed approach with examples. The

section 5 depicts performance evaluation over

transformation of benchmark datasets into RDF tuple.

Finally, section 6 concludes the paper along with

potential future works.

2 BACKGROUND
THE smart meter RDF tuple processing includes

the roles of smart grid, smart meter, sensor data

generation, RDF transformation and storage of

R2RML data tuples over smart grid repository. As the

proposed approach revolves around semantic-aware

data-centric strategy and RDF transformation of

sensor data, we focus to discuss semantic web

technology and integral components only.

Table 2: Common Used Term in this Paper

2.1 Resource Description Framework
THE standardized data format for semantic web is

Resource Description Framework (RDF); given by

Brickley (2010). This model represents an object as a

resource in triple format. An RDF triple comprises of

three main sections, a subject resource’s IRI, a

predicate resource’s IRI and an object resource’s IRI

or simply literal. In order to simplify RDF, we

consider set notations such as the uppercase letter

denotes sets; lower case letters represent elements and

relations and calligraphic capital letter depicts sets of

identical elements. The significant set abbreviations

can be represented as:

1) Ir as set of IRI.

2) L as set of literals.

3) V as set of variables.

4) T as set of terms, set of (Ir × L).

The RDF tuple is a subset of (T×T×T) and the

graph as subset of (Ir × Ir ×T). A tuple T consists of

three elements subject, predicate and object as (s, p,

o). It is graphically represented as a directed graph

having node identity resource, i.e., subject and object

and an arc to represent a predicate between two nodes.

The resources inter-connects through single object of

n resource to single subject of m resource. The most

suitable example of object interconnected graph

database is DBPedia (Bizer et al., 2009). Unlike the

structure of RDF tuple, it is not possible to read and

understand a large size of graph dataset. Therefore,

translation languages such as Terse RDF Triple

Language, also known as, Turtle (ttl)

(Prud’hommeaux et al., 2013), RDF/XML (Beckett et

al., 2004), Notation3 (N3) (Berners-Lee & Connolly,

2011), RDFa (Adida et al., 2012), and JSON (Sporny

et al., 2014) are used to translate large graph datasets

into human readable formats. We use Turtle markup

language to transform custom RDF tuples in the smart

meters. An example RDF tuple in Turtle syntax is

written as:

<http://www.abc.com/student/242>

<http://www.abc.com/student_name>

"Lucy".

The above example shows a tuple with subject IRI

as <http://www.abc.com/student/242> having

predicate IRI as <http://www.abc.com/student_name>

with object element of string literal "Lucy". This

example RDF tuple elaborates that an RDF resource is

available at an IRI <http://www.abc.com> as a smart

grid web resource.

2.2 SPARQL Protocol and RDF Query Language
THE RDF view and tuples are retrieved from tuple

store and RDB database through SPARQL (Harris et

al., 2010). The query does not use case sensitive

language and consists of five clauses:

1) PREFIX [none or more] - for declaration of

short hand URI prefix,

2) SELECT [one] - for declaring variables to hold

query results,

3) FROM or FROM NAMED [none or more] - for

identifying RDF tuple dataset,

4) WHERE [one] - for queried tuple statements of

RDF graph pattern,

5) Solution sequence modifiers in SPARQL

(LIMIT, PROJECTION, REDUCED, OFFSET,

ORDER BY, and DISTINCT.) [none or one each] -

used in mentioned order for giving sequence to query

results.

The literal syntax of SPARQL query to extract

RDF tuple data matches with literal syntax of SQL

query for tabular RDB data. The SPARQL endpoint is

a query processor and grid web server that manages

RDF tuple dataset over HTTP transportation protocol.

An example SPARQL query is highlighted as:

PREFIX type: <www.abc.com/type/>

SELECT ?var1 ?var2

WHERE

{?var1 type:is_of_type ?var2.}

The above example query contains a SELECT

clause that holds two variables for storing results (i.e.,

var1 and var2) with a parameter ‘?’ sign of variables.

The WHERE clause tracks variable condition and

110 SIDDIQUI ET AL

returns identical tuple entries of subject and object

elements. The SPARQL query is flexible to relate n

number of semantics with resource and predicate and

motivates the proposed approach to adopt this feature

for extracting custom RDF tuples.

2.3 Relational Database to Resource
Description Framework (RDB2RDF)

The term RDB2RDF indicates a transformation

process of tabular dataset into tuples. A mapping file

is used for this process having identical pattern and

variables. The patterns are matched with the SQL

clauses of legacy database RDB and generate an RDF

tuple dataset (Calbimonte et al., 2010). Initially W3C

RDB2RDF Incubator Group (Sahoo et al, 2009;

Malhotra, 2009) reviewed the work of researchers and

endorsed various comparison techniques of

RDB2RDF data mapping and translations. Later on,

the incubator group was acquired by W3C group and

they introduced two mapping standards; i. Direct

Mapping, and ii. RDB2RDF Mapping Language

(Arenas et al., 2011; Das et al., 2012). The Direct

Mapping adopts Extract-Transform-Load (ETL)

function to generate duplicate RDF dataset of existing

RDB schema and store over RDF triple stores. The

direct mapping parameters process full schema and

consume huge length of computing resources to

generate direct graph. Therefore, it is only suitable for

large scale enterprise dataset, where energy

consumption is not a primary concern. The R2RML

mapping uses Turtle language with ETL to generate

full and partial RDF triple datasets (Hazber et al.,

2016). The Turtle language plays a vital role and

provides human readable syntax that supports

developer to produce partial RDF triple. This reduces

a huge workload of transforming unwanted large RDF

triples and consumes less computing resources with

minimized battery energy.

2.4 RDB2RDF Mapping Language (R2RML)
This R2RML standard language processes RDB

schema through Turtle language and compatible

mapping processor (Das et al., 2012; Chhaya et al.,

2016). The mapping patterns such as tripleMap,

subjectMap, predicateObjectMap, predicateMap and

objectMap builds an association with RDB schema

elements such as table and column. After

synchronizing map entities, a tree structure is formed

which consists of root, sub-levels and leaves. The root

states triplesMap having RDB table entities and

extends to sublevels with logicalTable, subjectMap

and predicateObjectMap. The tree concludes at leaves

having predicateMap and objectMap entities of

predicateObjectMap sublevel. The relational schema

elements associates n subjectMap to m columns of

RDB table, n + i objectMap to m + x columns and p

{n + i; m + x} predicate to subjectMap and objectMap

entities. An example R2RML mapping pattern of

RDB ‘Student’ is written as:

@prefix r2r: <http://www.w3.org/ns/r2rml\#>.

@prefix st: <http://www.xyz.com/ns\#>.

<#triplesMapstudent> a r2r:TriplesMap;

r2r:logicalTable [rr:tableName ‘student’];

r2r:subjectMap [rr:template

"http://www.xyz.com/student/{S_Id}"];

r2r:predicateObjectMap

[r2r:predicateMap

[r2r:constant student:s_name];

r2r:objectMap

[r2r:column "F_Name"];].

3 SPARQL AUTO R2RML MAPPING (SARM)
SARM is a custom mapping approach that uses

SPARQL query to generate smart grid custom RDF

triples. It consists of four phases i.e., (i) Relational

Database (RDB) Scenario, (ii) SPARQL-Query

Parser, (iii) Generation of R2RML mapping patterns,

and (iv) RDB2RDF data transformation. The smart

meter collects sensor data and produces ‘CSV’ dataset

in the form of relational database (RDB). The

SPARQL parser receives n number of queries and

produces a (n) ’ttl’ mapping files. The Turtle language

perform mapping operation over ‘ttl’ files and

generate m(ttl) mapping patterns. The RDB2RDF

processor produces custom RDF dataset over smart

meter as seen from Fig.1.

Figure 1. Custom transformation of Smart meter energy data
using RDB2RDF

3.1 Relational Database Scenario
The smart meter collects sensor data and build a

relational database having n Tables and c (n) columns

dataset. Assume a relational database ‘Department’

built with the help of MySQL RDBMS (Bell., 2018).

The RDB consists of six tables i.e., student, teacher,

course, laboratory, exam, and grade as seen from

Fig.2. The tables are connected through aggregation

and cardinality properties such as teacher -> (1; n) <-

student, teacher -> (1; 1) <- course, student -> (1; n)

<- course, laboratory-> (1; 1) <- student, student-> (1;

n) <- grade and exam -> (1; n) <- course cardinalities.

The ‘Department’ RDB contains in-built locks, stored-

INTELLIGENT AUTOMATION AND SOFT COMPUTING 111

procedures, views, key associations and security

parameters that gives weight-age to dataset and build

huge amount of schema metadata. In case of n number

of smart meter z generate m RDB schema, smart meter

bears huge amount of RDF triple metadata and

consumes large amount of battery energy to transform

and dispatch RDF triple over smart grid repository.

Therefore, SARM removes in-built RDB

functionalities and co-relate tabular data

transformation as,

𝑅𝐷𝐵𝑑𝑎𝑡𝑎𝑠𝑒𝑡= ∑ (Tablesn−m)
Department𝑖𝑛−𝑏𝑢𝑖𝑙𝑡(𝑚)

DepartmentTabulardataset

3.2 SPARQL-Query Parser
The SPARQL-Query Parser generates p (Table n)

mapping patterns of RDBDataset through grid query

m and store in ‘ttl’ file m(ttl) as seen from Fig.3. The

parsing method is working in two steps:

1) SPARQL query parser: The identification of

query p (Table n) elements.

2) Generation of R2RML mapping patterns: The

association of p (Table n) elements with logicalTable,

subjectMap, predicateObjectMap, predicateMap and

objectMap parameters. 1) Algorithms for Parsing

SPARQL Query and Generating R2RML Mapping

Patterns: The default SPARQL query syntax

comprises of an optional PREFIX statement and

mandatory SELECT and WHERE clauses. The

?variable elements are user-defined and changes with

the specification requirement of smart grid. SARM

adopts three types of SPARQL query i.e., (i) Basic

Select (ii) Nested Select and, (iii) Join Select; to

extract smart meter data.

The KEYWORD and variable elements in syntax

of SPARQL query are written as:

Basic Select

PREFIX Name_of_prefix:<http://IRI-Title

/ns#>

SELECT ?Variable-1 ?Variable-2

WHERE

{ ?Variable-1 Name_of_prefix:Predicate

?Variable-2. }

Nested Select

PREFIX Name_of_prefix:<http://IRI-Title

/ns#>

SELECT ?Variable-1 ?Variable-2

WHERE { SELECT ?Variable-3 ?Variable-4

WHERE

{ ?Variable-3 Name_of_prefix:Predicate

 ?Variable-4. }}

Join Select

PREFIX Name_of_prefix:<http://IRI-Title

/ns#>

SELECT ?Variable-1 ?Variable-2

WHERE

{?x Table-1:Variable-1 ?variable-1.

?x Table-1:Variable-2 ?variable-2.

?x Table-1:Variable-3 ?variable-3.

?x Table-1:Variable-4 ?variable-4.

?v Table-2:Variable-3 ?variable-3.

?v Table-2:Variable-5 ?variable-5.

?m Table-3:Variable-4 ?variable-4.

?m Table-3:Variable-5 ?variable-5.}

The basic syntax of an R2RML mapping template

of SARM is written as:

@PREFIX rr:<http://www.w3.org/ns/r2rml#>.

@PREFIX namespace:<http://namespaceIRI/

ns#>.

<#triplesMapName >

a rr:TriplesMap;

rr:logicalTable [[rr:tableName

"Tablename"];

rr:subjectMap [rr:template

"http://IRI-Title/namespace/{Subject-

Column}"];

rr:predicateObjectMap

[rr:predicateMap[rr:constant

namepspace:Predicate];

rr:objectMap [rr:column "Object1- Column"];];

The Algorithm-1 extracts Basic Select mapping file

from query Q and includes prefix IRIs and tablename

information with WHERE clause condition to retrieve

query result. The algorithm starts with identifying the

Name_of_prefix followed by an IRI-Title in the input

SPARQL query. This Name_of_prefix serves at name-

space, triplesMapName_of_prefix and Tablename in

generated R2RML mapping file. The IRI-Title

replaces namespace IRI and reaches at next line of

SPARQL query stating SELECT clause and identifies

variable names. The first variable is used as Subject-

Column inside SubjectMap and the remaining

variables are used as Object-Column for ObjectMap in

generated R2RML mapping. After that, the WHERE

clause of query is processed and the

Name_of_prefix:Predicate is identified as

namespace:Predicate at predicateMap in mapping

pattern. Each of the triple statement from WHERE

clause of SPARQL query indicates a unique predicate

which results in different RDF triples.

Algorithm-2 executes Nested Select mapping file from

query Q with prefix IRIs and chosen columns of

tablename having where clause to another chosen

select columns. After the two columns are mapped,

table procedure followed by where clause condition is

processed and generates query result.

Algorithm-3 uses Join Select query Q with prefix

IRIs and overlapped select columns with tablename on

Join conditions having where clause condition having

Join operators {x; v; m} and generate query result.

The operators x, v and m represent three RDB tables

to extract dataset.

112 SIDDIQUI ET AL

Figure 2. EER Model of Department RDB

Figure 3. Work-flow of SPARQL-Query Parser

3.3 Generation of R2RML mapping patterns
The generation of R2RML mapping patterns is

made at SARM. SARM processes the parsed query

and generate custom mapping patterns. The results are

stored into a R2RML mapping file in Turtle language

(.ttl).

INTELLIGENT AUTOMATION AND SOFT COMPUTING 113

3.4 RDB2RDF data transformation
The data transformation requires processing of

R2RML mapping file over RDB2RDF processor. The

compiler is programmed to generate RDF views and

stores them to the triple store. The processor compiles

mapping files in two ways:

1) Compile .ttl file and generate RDF View.

2) Compile .ttl file and store RDF triples over

smart meter data repository.

4 EXPERIMENTATION USING SPARQL-QUERY
PARSER PROCESS

THIS section is about evaluation of our developed

parser. we evaluate SARM over a R2RML processor

‘Spyder’ (http://www. revelytix.com/content/spyder/),

which is an early commercial mapping compiler and

supports W3C’s standards of R2RML mappings. It is

open source software developed by Revelytix and

supports MySQL RDB integration for SPARQL query

processing. SARM evaluates Basic Select, Nested

Select, and Join Select queries and generate RDF

triple of student, teacher and course tables in

‘Department’ RDB. An example for each stated query

type is given below:

Basic Select
PREFIX student: <http://example.com/ns#>

SELECT ?Student_Id ?First_Name

?Laboratory ?Supervisor ?Course

Where

?Student_Id student:Student_Name

?First_Name.

?Student_Id student:Lab_Name ?Laboratory.

?Student_Id student:Professor_Name

?Supervisor.

?Student_Id student:Degree_Name ?Course.

Nested Select
PREFIX teacher: <http://example.com/nst#>

PREFIX student: <http://example.com/ns#>

SELECT ?Teacher_Id ?First_Name ?Laboratory

?Department ?Designation

Where

{SELECT ?Student_Id ?First_Name ?Laboratory

?Supervisor ?Course

Where

?Student_Id student:Student_Name

?First_Name.

?Student_Id student:Lab_Name ?Laboratory.

?Student_Id student:Professor_Name

?Supervisor.

?Student_Id student:Degree_Name ?Course.}

Join Select
PREFIX student: <http://example.com/ns#>

PREFIX teacher: <http://example.com/nst#>

PREFIX course: <http://example.com/nsc#>

SELECT ?Student_Id ?First_Name ?Laboratory

?Supervisor ?Course

Where {

?x STUDENT:Student_Id ?student_id.

?x STUDENT:Lab_Name ?lab_name.

?x STUDENT:Lab_ID ?lab_id.

?x STUDENT:Professor_Name ?professor_name.

?v LABORATORY:Lab_ID ?lab_id.

?v LABORATORY:Lab_Name ?lab_name.

?m COURSE:Course_Id ?course_id.

?m COURSE:Student_Id ?student_id.}

When the above mentioned queries are processed

by SARM, the R2RML mappings patterns are

generated at this stage using Turtle language syntax.

The contents of R2RML mapping are shown below.

Basic Select Mapping
@prefix rr:<http://www.w3.org/ns/r2rml#>.

@prefix student: <http://example.com/ns#>.

<#triplesMapstudent>

a rr:TriplesMap;

rr:logicalTable [rr:tableName ‘‘student’’];

rr:subjectMap [rr:template

http://www.example.com/student/‘‘Student_Id’’

];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Student_Name];

rr:objectMap [rr:column ‘‘First Name’’];];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Lab_Name];

rr:objectMap [rr:column ‘‘Laboratory’’];];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Professor_Name];

rr:objectMap [rr:column ‘‘Supervisor’’];];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Degree_Name];

114 SIDDIQUI ET AL

rr:objectMap [rr:column ‘‘Course’’];].

Nested Select Mapping

@prefix rr:<http://www.w3.org/ns/r2rml#>.

@prefix teacher: <http://example.com/ns#>.

<#triplesMapteacher>

a rr:TriplesMap;

rr:logicalTable [rr:tableName ‘‘teacher’’];

rr:subjectMap [rr:template

http://www.example.com/teacher/‘‘Teacher_Id’’

];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

teacher:Teacher_Name];

rr:objectMap [rr:column ‘‘First Name’’];];

[rr:predicateMap [rr:constant

teacher:Laboratory];

rr:objectMap [rr:column ‘‘Laboratory Name’’];

];

[rr:predicateMap [rr:constant

teacher:Department];

rr:objectMap [rr:column ‘‘Department Title’’];];

[rr:predicateMap [rr:constant

teacher:Designation];

rr:objectMap [rr:column ‘‘Position’’];];

rr:logicalTable [rr:tableName ‘‘student’’];

rr:subjectMap [rr:template

http://www.example.com/student/

‘‘Student_Id’’];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Student_Name];

rr:objectMap [rr:column ‘‘First Name’’];

];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Lab_Name];

rr:objectMap [rr:column ‘‘Laboratory’’];

];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Professor_Name];

rr:objectMap [rr:column ‘‘Supervisor’’];];

rr:predicateObjectMap

[rr:predicateMap [rr:constant

student:Degree_Name];

rr:objectMap [rr:column ‘‘Course’’];].

Join Select Mapping

@prefix rr:<http://www.w3.org/ns/r2rml#>.

@prefix student: <http://example.com/ns#>.

<#triplesMapstudent>

a rr:TriplesMap;

rr:logicalTable [rr:tableName ‘‘student’’];

rr:subjectMap [rr:template

http://www.example.com/student/

‘‘STUDENT’’];

[rr:predicateMap [rr:constant student:Student_Id];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘student_id’’];];

rr:subjectMap [rr:template

http://www.example.com/student/‘‘STUDENT’’];

[rr:predicateMap [rr:constant student:Lab_Name];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘lab_name’’];];

rr:subjectMap [rr:template

http://www.example.com/student/‘‘STUDENT’’];

[rr:predicateMap [rr:constant student:Lab_Id];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘lab_id’’];];

rr:subjectMap [rr:template

http://www.example.com/student/‘‘STUDENT’’];

[rr:predicateMap [rr:constant

student:Professor_Name];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘professor_name’’];];

rr:subjectMap [rr:template

http://www.example.com/laboratory/

‘‘LABORATORY’’];

[rr:predicateMap [rr:constant laboratory:Lab_ID];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘lab_id’’];];

rr:subjectMap [rr:template

http://www.example.com/laboratory/

‘‘LABORATORY’’];

[rr:predicateMap [rr:constant laboratory:Lab_Name];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘lab_name’’];];

rr:subjectMap [rr:template

http://www.example.com/course/‘‘COURSE’’];

[rr:predicateMap [rr:constant course:Course_Id];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘course_id’’];];

rr:subjectMap [rr:template

http://www.example.com/course/‘‘COURSE’’];

[rr:predicateMap [rr:constant course:Student_Id];

rr:predicateObjectMap

rr:objectMap [rr:column ‘‘student_id’’];];

5 PERFORMANCE EVALUATION
WE evaluate SARM through Berlin SPARQL

Benchmark (BSBM) (Bizer & Schultz, 2009), dataset

that presents RDB for an e-commerce scenario.

BSBM provides most synthetic large-scale datasets

which are very similar with industry level data loads.

BSBM also provides set of queries to evaluate system

under test for RDB2RDF data transformations. The

performance metrics used in this evaluation are; (i)

mapping generation time, (ii)planning time, and (iii)

total execution time for each SPARQL query.

5.1 Evaluation Environment
The experimentation is conducted over a node

having Intel Core processor i5-3470 CPU with speed

of 3.20 GHz and with 4.00GB RAM, Microsoft

Windows 8.1 OS and 1TB Disk Drive. The BSBM

benchmark RDB datasets comprises of 50K, 250K,

1M, 5M, and 25M tuples and occupies approximately

4.69MB, 23.7MB, 96.2MB, 481MB, and 2.36GB of

physical storage respectively.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 115

5.2 Evaluation Results
The performance evaluation of SARM is

conducted over two scenarios:

1) Total time to parse SPARQL query over SARM

and generate mapping patterns in Turtle file.

2) Total time to execute Turtle file and retrieve

queried RDB data.

The performance matrices to evaluate SARM are:

(i) Mapping Generation Time (MGT), (ii) Average

Planning Time (APT) and, (iii) Average Total

Execution Time (ATET). We use random Basic select

queries for BSBM Benchmark RDB tables and adopt

respective schema having variation range between 1 to

20 columns. We processed similar set of queries to

Spyder R2RML mapping work-flow and obtained

results based on two-step procedure as:

Step 1. MGT obtained through customized and entire

RDB schema.

Step 2. APT and ATET obtained through execution of

ttl file and retrieval of RDB data as RDF views.

We have used five Basic Select SPARQL queries

having custom and entire RDB schema of tables:

products, features, vendors, customers, and reviews as

Queries: 1, 2, 3, 4, and 5, respectively. We evaluate

that time taken for parsing and generation of mapping

pattern is 0.02, 0.03, 0.02, 0.03, and 0.02 seconds

respectively for each query over SARM. The Spyder

generates mapping patterns in 11 seconds for entire

schema. In the same way, we use another five Nested

Select SPARQL queries over same tables.

We evaluate that time taken for parsing and

generation of mapping patterns is 0.19 seconds, 0.21

seconds, 0.2 seconds, 0.21, and 0.2 for each query

over SARM respectively. The Spyder still generates

mapping patterns in 11 seconds. Similarly, we use five

Join Select SPARQL queries having custom select and

entire RDB schema of tables: products, features,

vendors, customers and reviews. We evaluate that

time taken for parsing and generation of mapping

patterns is 0.45 seconds, 0.47 seconds, 0.43 seconds,

0.47, and 0.46 for each nested query over SARM

respectively. The Spyder’s time to generate mapping

is same as 11 seconds, due to the fact that it generates

mapping pattern for entire schema with each

processing. The results are observed in Figure 4(a),

5(b) and, 5(c). As evident from Figures 4(a), 4(b) and,

4(c) that SARM reduces a huge time slice in

RDB2RDF with each generation of mapping file. It is

found as a suitable approach for RDB2RDF over large

scale smart data stores, where RDB schema is often

evolved and updated. After mapping files are

generated through SARM and Spyder, we perform

planning procedure using generated map file over

R2RML processor. This process identifies and

matches mapping patterns with fetched RDB table

instances using metadata from R2RML maps and

stored procedure calls. We used 5 mapping files of

Basic Select SPARQL query to evaluate planning

times of generated mapping files over R2RML

processor.

We observe that SARM is 18.4% efficient than

Spyder in Query-1 map file planning, 8.8% efficient

than Spyder in Query-2 map file planning, 9%

efficient than Spyder in Query-3 map file planning,

8.7% efficient than Spyder in Query-4 map file

planning, and in last, the SARM is observed 7.4%

efficient than Spyder in Query-5 map file planning, as

seen from Figures 5(a, b, c, d, and e). At last, we

execute map files over R2RML processor to retrieve

RDB dataset. We evaluate total execution time of the

steps involves i.e., (i) Query submission to SPARQL

End Point, (ii) SARM map file generation, (iii) Map

file planning and execution over R2RML processor,

(iv) Generation of SQL and retrieval of RDB dataset

over generated SQL. We use 5 Basic Select SPARQL

queries to the overall execution steps of customized

and entire RDB schema and evaluate average total

execution time (ATET). We observe that for Query-1,

SARM is observed 9% efficient than Spyder in total

execution workflow, 8.6% efficient than Spyder in

Query-2 total execution work-flow, 8.9% efficient

than Spyder in Query-3, 9.5% efficient than Spyder in

Query-4 total execution work-flow, and in last, we

observe that SARM is 8.1% efficient than Spyder in

Query-5 total execution workflow, as seen from

Figures 6(a, b, c, d, and e). After evaluating MGT,

ATET and APT, we find a prominent decrease in

computing resources of smart meter. Moreover, we

observe that smart meter consumes much lower

battery energy than traditional RDF tuple generation

processing and decrease energy drain with increment

of lifespan of smart meter as shown in Table-III. The

detailed percentage improvements of SARM over

Smart meter battery against each query is also given in

details, which clearly shows the significant battery

performance improvement using SARM.

Table 3: Impact (percentage improvement) of SARM over Smart Meter Battery

116 SIDDIQUI ET AL

Figure 4 (a) (b) (c). “Mapping Generation Time (MGT)”

Figure 5. (a), (b), (c), (d) and (e) “Average Planning Time (APT)”

INTELLIGENT AUTOMATION AND SOFT COMPUTING 117

Figure 6. (a), (b), (c), (d) and (e) “Average Total Execution Time (ATET)

6 CONCLUSIONS AND FUTURE WORKS
THE approach presented is towards an effective

knowledge-based strategy of reducing battery drain

problem in smart meters. The state-of-art smart meters

are collecting RDB dataset and generating RDF tuple

datasets. The RDF tuple generation involves full

schema of RDB and consumes huge amount of battery

energy. As a result, batteries are affected with drain

problem resulting in low lifespan. We resolve this

problem by presenting a knowledge-based solution for

data-centric operations for battery data of smart

meters. The proposed approach is evaluated and

compared with existing state-of-art techniques of

RDB2RDF. We observe that SARM significantly

decreases APT and ATET time and reduces battery

drain problem with an effective increment of lifespan.

In the future, our focus would be towards other

semantic-aware knowledgebase solutions for data-

centric operations in smart batteries of smart grid.

7 ACKNOWLEDGMENT
THIS work was supported by the National

Research Foundation of Korea (NRF) grant funded by

the Korean government (MSIP) (No. NRF-

2016R1C1B2008624).

8 REFERENCES
Abbas, A., Siddiqui, I. F., Lee, S. U. J., & Bashir, A.

K. (2017). Binary pattern for nested cardinality

constraints for software product line of IoT-based

feature models. IEEE Access, 5, 3971-3980.

Abbas, A., Siddiqui, I. F., Lee, S. U. J., Bashir, A. K.,

Ejaz, W., & Qureshi, N. M. F. (2018). Multi-

objective optimum solutions for IoT-based feature

models of software product line. IEEE Access, 6,

12228-12239.

Adida, B., Birbeck, M., McCarron, S., & Herman, I.

(2012). RDFa Core 1.1. W3C Recommendation,

June 2012. World Wide Web Consortium.

http://www. w3. org/TR/2012/REC-‐rdfa-‐core-‐
20120607.

Albu, M. M., Sănduleac, M., & Stănescu, C. (2017).

Syncretic use of smart meters for power quality

monitoring in emerging networks. IEEE

Transactions on Smart Grid, 8(1), 485-492.

Amin, S. M., & Wollenberg, B. F. (2005). Toward a

smart grid: power delivery for the 21st century.

IEEE power and energy magazine, 3(5), 34-41.

Arenas, M., Prud'hommeaux, E., & Sequeda, J.

(2011). Direct mapping of relational data to RDF.

W3C Working Draft.

Azmat, M., Liaqat, U. W., Qamar, M. U., & Awan, U.

K. (2017). Impacts of changing climate and snow

cover on the flow regime of Jhelum River,

Western Himalayas. Regional environmental

change, 17(3), 813-825.

Azmat, M., Qamar, M. U., Huggel, C., & Hussain, E.

(2018). Future climate and cryosphere impacts on

the hydrology of a scarcely gauged catchment on

the Jhelum river basin, Northern Pakistan. Science

of the Total Environment, 639, 961-976.

Backes, M., & Meiser, S. (2013). Differentially

private smart metering with battery recharging. In

Data Privacy Management and Autonomous

Spontaneous Security (pp. 194-212). Springer,

Berlin, Heidelberg.Wagner, A., Speiser, S., &

Harth, A. (2010, November). Semantic web

118 SIDDIQUI ET AL

technologies for a smart energy grid:

Requirements and challenges. In In proceedings of

9th International Semantic Web Conference

(ISWC2010) (pp. 33-37).

Baig, Z., & Zeadally, S. (2019). Cyber-security risk

assessment framework for critical infrastructures.

Intelligent automation and soft computing, 25(1),

121-129.

Beckett, D., & McBride, B. (2004). RDF/XML syntax

specification (revised). W3C recommendation,

10(2.3).

Bell, C. (2018). Introducing the MySQL 8 Document

Store. Apress.

Berners-Lee, T., & Connolly, D. (2011). Notation3

(N3): A readable RDF syntax. W3C team

submission, 28.

Bizer, C., & Schultz, A. (2009). The berlin sparql

benchmark. International Journal on Semantic

Web and Information Systems (IJSWIS), 5(2), 1-

24.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S.,

Becker, C., Cyganiak, R., & Hellmann, S. (2009).

DBpedia-A crystallization point for the Web of

Data. Web Semantics: science, services and agents

on the world wide web, 7(3), 154-165.

Brickley, D. (2000). Resource Description Framework

Schema (RDF/S) Specification 1.0. W3C

Recommendation.

Bussar, R., Lippert, M., Bonduelle, G., Linke, R.,

Crugnola, G., Cilia, J., ... & Marckx, E. (2013).

Battery energy storage for smart grid applications.

Association of European Automotive and

Industrial Battery Manufacturers.

Calbimonte, J. P., Corcho, O., & Gray, A. J. (2010,

November). Enabling ontology-based access to

streaming data sources. In International Semantic

Web Conference (pp. 96-111). Springer, Berlin,

Heidelberg.

Chhaya, P., Lee, K. H., Shin, K. S., Choi, C. H., Cho,

W. S., & Lee, Y. S. (2016, July). Using D2RQ and

Ontop to publish relational database as Linked

Data. In 2016 Eighth International Conference on

Ubiquitous and Future Networks (ICUFN) (pp.

694-698). IEEE.

Daki, H., El Hannani, A., Aqqal, A., Haidine, A., &

Dahbi, A. (2017). Big Data management in smart

grid: concepts, requirements and implementation.

Journal of Big Data, 4(1), 13.

Das, S., Sundara, S., & Cyganiak, R. (2012). R2RML:

RDB to RDF Mapping Language, W3C Working

Draft.

Das, S., Sundara, S., & Cyganiak, R. (2012). R2RML:

RDB to RDF Mapping Language, W3C Working

Draft.

Ghassemi, A., Bavarian, S., & Lampe, L. (2010,

October). Cognitive radio for smart grid

communications. In 2010 First IEEE International

Conference on Smart Grid Communications (pp.

297-302). IEEE.

Gungor, V. C., Sahin, D., Kocak, T., Ergut, S.,

Buccella, C., Cecati, C., & Hancke, G. P. (2013).

A survey on smart grid potential applications and

communication requirements. IEEE Transactions

on industrial informatics, 9(1), 28-42.

Gungor, V. C., Sahin, D., Kocak, T., Ergut, S.,

Buccella, C., Cecati, C., & Hancke, G. P. (2013).

A survey on smart grid potential applications and

communication requirements. IEEE Transactions

on industrial informatics, 9(1), 28-42.

Harris, S., & Seaborne, A. (2010). SPARQL 1.1

Query. W3C Working Draft 22 October 2009.

Hazber, M. A., Li, R., Xu, G., & Alalayah, K. M.

(2016, August). An approach for automatically

generating R2RML-based direct mapping from

relational databases. In International Conference

of Pioneering Computer Scientists, Engineers and

Educators (pp. 151-169). Springer, Singapore.

Kenner, S., Thaler, R., Kucera, M., Volbert, K., &

Waas, T. (2017). Comparison of smart grid

architectures for monitoring and analyzing power

grid data via Modbus and REST. EURASIP

Journal on Embedded Systems, 2017(1), 12.

Longe, O., Ouahada, K., Rimer, S., Harutyunyan, A.,

& Ferreira, H. (2017). Distributed demand side

management with battery storage for smart home

energy scheduling. Sustainability, 9(1), 120.

Malhotra, A. (2009). W3c rdb2rdf incubator group

report. W3C Incubator Group Report.

Pena, A., & Penya, Y. K. (2011). Distributed semantic

repositories in smart grids. In 2011 9th IEEE

International Conference on Industrial Informatics

(pp. 721-726). IEEE.

Pipattanasomporn, M., Feroze, H., & Rahman, S.

(2009, March). Multi-agent systems in a

distributed smart grid: Design and implementation.

In 2009 IEEE/PES Power Systems Conference and

Exposition (pp. 1-8). IEEE.

Prud’hommeaux, E., Carothers, G., Beckett, D., &

Berners-Lee, T. (2013). Turtle–terse rdf triple

language. Candidate Recommendation, W3C, 41.

Qureshi, F. M. N., & Shin, D. R. (2016). RDP: A

storage-tier-aware Robust Data Placement strategy

for Hadoop in a Cloud-based Heterogeneous

Environment. KSII Transactions on Internet &

Information Systems, 10(9).

Qureshi, N. M. F., Shin, D. R., Siddiqui, I. F., &

Chowdhry, B. S. (2017). Storage-tag-aware

scheduler for hadoop cluster. IEEE Access, 5,

13742-13755.

Roberts, B. P., & Sandberg, C. (2011). The role of

energy storage in development of smart grids.

Proceedings of the IEEE, 99(6), 1139-1144.

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K.,

Thibodeau Jr, T., Auer, S., ... & Ezzat, A. (2009).

A survey of current approaches for mapping of

relational databases to RDF. W3C RDB2RDF

Incubator Group Report, 1, 113-130.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 119

Siddiqui, I. F., Abbas, A., & Lee, S. U. J. (2016). A

hidden markov model to predict hot socket issue in

smart grid. Journal of Theoretical and Applied

Information Technology, 94(2), 408.

Siddiqui, I. F., Lee, S. U. J., Abbas, A., & Bashir, A.

K. (2017). Optimizing lifespan and energy

consumption by smart meters in green-cloud-

based smart grids. IEEE Access, 5, 20934-20945.

Siddiqui, I. F., Qureshi, N. M. F., Shaikh, M. A.,

Chowdhry, B. S., Abbas, A., Bashir, A. K., & Lee,

S. U. J. (2018). Stuck-at Fault Analytics of IoT

Devices Using Knowledge-based Data Processing

Strategy in Smart Grid. Wireless Personal

Communications, 1-15.

Sood, V. K., Fischer, D., Eklund, J. M., & Brown, T.

(2009, October). Developing a communication

infrastructure for the smart grid. In 2009 IEEE

Electrical power & energy conference (EPEC) (pp.

1-7). IEEE.

Sporny, M., Kellogg, G., Lanthaler, M., & W3C RDF

Working Group. (2014). Json-ld 1.0-a json-based

serialization for linked data. W3C

Recommendation, 16, 127.

Su, X., Zhang, H., Riekki, J., Keränen, A., Nurminen,

J. K., & Du, L. (2014). Connecting IoT sensors to

knowledge-based systems by transforming SenML

to RDF. Procedia Computer Science, 32, 215-222.

Tuballa, M. L., & Abundo, M. L. (2016). A review of

the development of Smart Grid technologies.

Renewable and Sustainable Energy Reviews, 59,

710-725.

Wang, X., & Xie, J. (2017, January). An iterative

method for accelerated degradation testing data of

smart electricity meter. In AIP Conference

Proceedings (Vol. 1794, No. 1, p. 040002). AIP

Publishing.

Yi, P., Iwayemi, A., & Zhou, C. (2011). Developing

ZigBee deployment guideline under WiFi

interference for smart grid applications. IEEE

transactions on smart grid, 2(1), 110-120.

Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A.

V., & Alan, İ. (2017). Enhancing smart grid with

microgrids: Challenges and opportunities.

Renewable and Sustainable Energy Reviews, 72,

205-214.

Zheng, J., Gao, D. W., & Lin, L. (2013, April). Smart

meters in smart grid: An overview. In 2013 IEEE

Green Technologies Conference (GreenTech) (pp.

57-64). IEEE.

Zhou, Q., & Luo, J. (2017). The study on evaluation

method of urban network security in the big data

era. Intelligent Automation & Soft Computing, 1-

6.

Zhou, Q., Simmhan, Y., & Prasanna, V. (2012,

November). Incorporating semantic knowledge

into dynamic data processing for smart power

grids. In International Semantic Web Conference

(pp. 257-273). Springer, Berlin, Heidelberg.

9 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

10 NOTES ON CONTRIBUTORS
Isma Farah Siddiqui

received her Ph.D. in

Computer Science and

Engineering from Hanyang

University, South Korea.

Since 2010, she has been an

Assistant Professor in

Department of Software

Engineering at Mehran

University of Engineering

and Technology, Pakistan.

Her research interests include semantic web and

semantic data analytics, Big Data analytics, context-

aware data processing of Internet of Things and green

cloud computing.

Scott Uk-Jin Lee received

his Ph.D. degree in

computer science from the

University of Auckland,

New Zealand. After the

doctoral degree, he worked

as post-doctoral research

fellow at Commissariat à

l'énergie atomique et aux

énergies alternatives

(CEA), France. He is

currently an associate

professor in the Department of Computer Science and

Engineering at Hanyang University, Republic of

Korea. His research interests include Software

Engineering, Formal Methods, Software Quality

Management, Software Product Line, Requirement

Engineering, Web, Semantic Web, CyberSecurity and

Internet of Things.

Asad Abbas received his

BS degree in Information

Technology from

University of Punjab

Pakistan in 2011. He

received scholarship for MS

leading to Ph.D. program

from Higher Education

Commission (HEC)

Pakistan in 2014 and

received Ph.D. degree in

Computer Science and Engineering from Hanyang

University South Korea in 2018. Currently, he is

serving as Assistant Professor at Software Engineering

Department, University of Lahore, Lahore, Pakistan.

His research interests include Software Product Line,

Software Requirement Traceability and IoT

Applications.

