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1 INTRODUCTION  
THE idea of smart grid is about enabling the 

automation to power generation and electricity 

management. The grid architecture consists of power 

system, intelligent agents, on-grid Battery Energy 

Storage (BES), communication technology and IT 

infrastructure, IoT-enabled smart meters, distribution 

ends, electric transportation and finally, data 

management systems (Tuballa et al., 2016; Abbas et 

al., 2017). The power system produces electric energy 

for consumer ends i.e., factories, product plants and 

for home consumers through plug-and-play 

interconnects (Amin et al, 2005). The intelligent 

agents are capable of monitoring, visualizing and 

coordinating energy needs with in the smart grid 

(Siddiqui et al., 2017; Baig & Zeadally, 2019). 

Secondly, they ensure cost effective supply, reduction 

of carbon emissions and micro-storage of electricity in 

smart grid (Pipattanasomporn et al., 2009; Siddiqui et 

al., 2018). On-grid BES provides a back-up to 

irregular renewable energy and offers a balanced 

energy supply on demand. BES improves efficiency 

and management of distribution networks with a 

facility of reduction in energy cost (Bussar et al., 

2013; Azmat et al., 2017). The energy storage 

 
ABSTRACT 

The issue of battery drainage in the gigantic smart meters network such as 
semantic-aware IoT-enabled smart meter has become a serious concern in the 
smart grid framework. The grid core migrates existing tabular datasets i.e., 
Relational data to semantic-aware tuples in its Resource Description Framework 
(RDF) format, for effective integration among multiple components to work 
aligned with IoT. For this purpose, WWW Consortium (W3C) recommends two 
specifications as mapping languages. However, both specifications use entire 
RDB schema to generate data transformation mapping patterns and results 
large quantity of unnecessary transformation. As a result, smart meters use 
huge computing resources, maximum energy capacity and come across battery 
drain problems. This paper proposes a novel semantic-aware battery drain 
optimization strategy ‘SPARQL Auto R2RML Mapping (SARM)’ that generates 
custom RDF patterns with precise metadata and avoids use of full schema 
along with optimized usage of network resources through (i) selective metadata 
migration, and (ii) optimal battery usage. The proposed approach effectively 
increases battery life with a balanced proportion of energy consumption and 
reduces meter load congestion which happens to be another vital reason of 
battery drain problem. The presented knowledge-based battery drain 
prevention strategy is evaluated over an RDB dataset using three types of 
SPARQL queries; Basic, Nested and Join. Furthermore, the R2RML processors 
evaluated SARM over the most recent Berlin SPARQL Benchmark datasets which 
depicts that SARM is efficient 40.4% in mapping generation time and 10.46% in 
average planning time than default RDB2RDF transformations. Finally, SARM 
significantly improves total execution time of RDB2RDF migration with an 
efficiency of 8.82% and conserves battery drain by 18.5% over the smart grid 
data cluster. 
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Table 1.  Smart meter battery usage statistics (Longe et al., 2017) 

 
 

application over batteries consists of four levels i.e., 

(i) generation, (ii) transmission, (iii) distribution, and 

(iv) customer level. 

The generation level supply depends on arbitrage, 

curtailment reductions and capacity firming. The 

transmission level feed covers frequency and voltage 

control, curtailment reductions, black staring and 

investment deferrals. The distribution level support 

relies on voltage control, curtailment reduction and 

capacity support. The consumer level supply depends 

on peak shaving, off-grid and cost management time-

line supply (Roberts, 2011). The next important 

component of grid architecture is the communication 

technologies such as software and hardware, to 

provide a medium to control and transmit power 

generation and battery storage perspectives in the 

smart grid (Yoldaş et al., 2017). The software 

perspective includes generation of sensor data profiles, 

transformation of datasets and storing big size of data 

into scalable repositories (Kenner et al., 2017). The 

sensor data generation is carried out through IoT-

enabled smart meters in industry standard formats 

such as ‘CSV’ and ‘JSON’ (Siddiqui et al., 2016; 

Abbas et al., 2018). The smart grid provides a 

functional layer of semantic web to communicate and 

store grid analytics. Therefore, the transformation of 

generated datasets is performed through a semantic-

aware strategy i.e., Resource Description Framework 

(RDF) (Su et al., 2014). The transformed ‘Tuple’ 

dataset is stored over smart grid tuple-store (Pena et 

al., 2011). The grid core synchronizes dataset tuples 

through big data analytics and stores over giant smart 

grid repository (Daki et al., 2017; Qureshi et al., 2017; 

Qureshi et al., 2017; Zhou & Luo, 2017). The 

hardware perspective discusses wired and wireless 

scenarios such as copper-wire line, fiber optics, Power 

Line Communication (PLC) (Sood et al., 2009), 

ZigBee (Yi et al., 2011), GSM/GPRS/3G/WiMAX 

(Gungor et al., 2013), and Cognitive Radio (Ghassemi 

et al., 2010). The grid infrastructure requires peer-to-

peer communication between all nodes and therefore, 

network adopts mesh topology (Gungor et al., 2013). 

The IoT-enabled smart meter provides two-way 

communication, data collection, data transformation 

and programming, security, display, and billing 

facility to the distribution ends of smart grid (Zheng et 

al., 2013; Azmat et al., 2018). The functional features 

of smart meter include usage time rate at battery 

energy and interval data for monitoring analytics 

(https://www.smart-energy.com/). The usage rate 

stores sensor data in idle and active states with the log 

of battery energy consumption. The monitoring 

analytics perspective involves fetch and transform 

dataset to store at the distribution end (Albu et al., 

2017). The smart meter provides Real Time Clock 

(RTC) that records events during the power-cut and 

functionally rely on the health of battery (Wang & 

Xie, 2017). The meter battery provides a storage of 1 

year at 30 _A with a back-up time of 10 minutes per 

year at 200 _A between temperature of ±0°C…+50°C 

at 2.7 V (Longe et al., 2017). The routine battery 

consumption of an individual smart meter for 

generating sensor data can be observed from Table-1. 

The reason of gradually decreasing lifespan and 

battery drain depends over the additional workload of 

RDF transformation (Backes & Meiser, 2013). The 

semantic-aware data processing channel transports 

light-weight data chunks and is 
1 

7
 times less carrier 

overhead than schema data processing (Wagner et al., 

2010). The network nodes involved in passing of RDF 

tuples consumes 23.7% less computing and network 

resources than traditional RDB tabular dataset 

transportation (Zhou et al., 2012). In order to maintain 

such network performance of smart grid, a candid 

scheme is needed that minimizes lifespan and battery 

drain problems with a continuity of default smart 

meters’ data-centric operations. Therefore, we propose 

SPARQL auto R2RML Mapper (SARM) that 

generates custom RDF tuples metadata without using 

complete tabular schema. The proposed approach 

significantly reduces battery drain problem by 

adopting fewer computing resources and gradually 

stabilizes lifespan of smart meter battery. 

The noteworthy contributions of proposed 

approach are in particular as: 

 A novel knowledge-based battery drain reducer 

using data engineering. 

 An advanced approach of stabilizing battery 

lifespan in smart meter using data analytics. 

 A novel SQL-less mapping parser for reducing 

privacy infringements on smart meter sensor 

data in grid core. 

 A state-of-the-art RDF dataset SPARQL query 

parsing through Basic, Nested and Join 

SPARQL queries. 

 A novel Java coded tool SARM as R2RML 

generator for custom RDF tuples for on-the-fly 

data transformations. 

The remaining paper is well-ordered in the 

following sections. The section 2 deals with related 
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knowledge of semantic data format and languages 

used for processing over smart meter battery with 

state-of-art technologies. The section 3 provides detail 

explanation of SARM methodology. The section 4 

evaluates the proposed approach with examples. The 

section 5 depicts performance evaluation over 

transformation of benchmark datasets into RDF tuple. 

Finally, section 6 concludes the paper along with 

potential future works. 

2 BACKGROUND 
THE smart meter RDF tuple processing includes 

the roles of smart grid, smart meter, sensor data 

generation, RDF transformation and storage of 

R2RML data tuples over smart grid repository. As the 

proposed approach revolves around semantic-aware 

data-centric strategy and RDF transformation of 

sensor data, we focus to discuss semantic web 

technology and integral components only. 

 
Table 2: Common Used Term in this Paper 

 

2.1 Resource Description Framework  
THE standardized data format for semantic web is 

Resource Description Framework (RDF); given by 

Brickley (2010). This model represents an object as a 

resource in triple format. An RDF triple comprises of 

three main sections, a subject resource’s IRI, a 

predicate resource’s IRI and an object resource’s IRI 

or simply literal. In order to simplify RDF, we 

consider set notations such as the uppercase letter 

denotes sets; lower case letters represent elements and 

relations and calligraphic capital letter depicts sets of 

identical elements. The significant set abbreviations 

can be represented as: 

1) Ir as set of IRI. 

2) L as set of literals. 

3) V as set of variables. 

4) T as set of terms, set of (Ir × L). 

The RDF tuple is a subset of (T×T×T) and the 

graph as subset of (Ir × Ir ×T). A tuple T consists of 

three elements subject, predicate and object as (s, p, 

o). It is graphically represented as a directed graph 

having node identity resource, i.e., subject and object 

and an arc to represent a predicate between two nodes. 

The resources inter-connects through single object of 

n resource to single subject of m resource. The most 

suitable example of object interconnected graph 

database is DBPedia (Bizer et al., 2009). Unlike the 

structure of RDF tuple, it is not possible to read and 

understand a large size of graph dataset. Therefore, 

translation languages such as Terse RDF Triple 

Language, also known as, Turtle (ttl) 

(Prud’hommeaux et al., 2013), RDF/XML (Beckett et 

al., 2004), Notation3 (N3) (Berners-Lee & Connolly, 

2011), RDFa (Adida et al., 2012), and JSON (Sporny 

et al., 2014) are used to translate large graph datasets 

into human readable formats. We use Turtle markup 

language to transform custom RDF tuples in the smart 

meters. An example RDF tuple in Turtle syntax is 

written as: 

<http://www.abc.com/student/242> 

<http://www.abc.com/student_name> 

"Lucy". 

The above example shows a tuple with subject IRI 

as <http://www.abc.com/student/242> having 

predicate IRI as <http://www.abc.com/student_name> 

with object element of string literal "Lucy". This 

example RDF tuple elaborates that an RDF resource is 

available at an IRI <http://www.abc.com> as a smart 

grid web resource. 

2.2 SPARQL Protocol and RDF Query Language  
THE RDF view and tuples are retrieved from tuple 

store and RDB database through SPARQL (Harris et 

al., 2010). The query does not use case sensitive 

language and consists of five clauses: 

1) PREFIX [none or more] - for declaration of 

short hand URI prefix, 

2) SELECT [one] - for declaring variables to hold 

query results, 

3) FROM or FROM NAMED [none or more] - for 

identifying RDF tuple dataset, 

4) WHERE [one] - for queried tuple statements of 

RDF graph pattern, 

5) Solution sequence modifiers in SPARQL 

(LIMIT, PROJECTION, REDUCED, OFFSET, 

ORDER BY, and DISTINCT.) [none or one each] - 

used in mentioned order for giving sequence to query 

results. 

The literal syntax of SPARQL query to extract 

RDF tuple data matches with literal syntax of SQL 

query for tabular RDB data. The SPARQL endpoint is 

a query processor and grid web server that manages 

RDF tuple dataset over HTTP transportation protocol. 

An example SPARQL query is highlighted as: 

PREFIX type: <www.abc.com/type/> 

SELECT ?var1 ?var2 

WHERE 

{?var1 type:is_of_type ?var2.} 

The above example query contains a SELECT 

clause that holds two variables for storing results (i.e., 

var1 and var2) with a parameter ‘?’ sign of variables. 

The WHERE clause tracks variable condition and 
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returns identical tuple entries of subject and object 

elements. The SPARQL query is flexible to relate n 

number of semantics with resource and predicate and 

motivates the proposed approach to adopt this feature 

for extracting custom RDF tuples. 

2.3 Relational Database to Resource 
Description Framework (RDB2RDF) 

The term RDB2RDF indicates a transformation 

process of tabular dataset into tuples. A mapping file 

is used for this process having identical pattern and 

variables. The patterns are matched with the SQL 

clauses of legacy database RDB and generate an RDF 

tuple dataset (Calbimonte et al., 2010). Initially W3C 

RDB2RDF Incubator Group (Sahoo et al, 2009; 

Malhotra, 2009) reviewed the work of researchers and 

endorsed various comparison techniques of 

RDB2RDF data mapping and translations. Later on, 

the incubator group was acquired by W3C group and 

they introduced two mapping standards; i. Direct 

Mapping, and ii. RDB2RDF Mapping Language 

(Arenas et al., 2011; Das et al., 2012). The Direct 

Mapping adopts Extract-Transform-Load (ETL) 

function to generate duplicate RDF dataset of existing 

RDB schema and store over RDF triple stores. The 

direct mapping parameters process full schema and 

consume huge length of computing resources to 

generate direct graph. Therefore, it is only suitable for 

large scale enterprise dataset, where energy 

consumption is not a primary concern. The R2RML 

mapping uses Turtle language with ETL to generate 

full and partial RDF triple datasets (Hazber et al., 

2016). The Turtle language plays a vital role and 

provides human readable syntax that supports 

developer to produce partial RDF triple. This reduces 

a huge workload of transforming unwanted large RDF 

triples and consumes less computing resources with 

minimized battery energy. 

 

2.4 RDB2RDF Mapping Language (R2RML) 
This R2RML standard language processes RDB 

schema through Turtle language and compatible 

mapping processor (Das et al., 2012; Chhaya et al., 

2016). The mapping patterns such as tripleMap, 

subjectMap, predicateObjectMap, predicateMap and 

objectMap builds an association with RDB schema 

elements such as table and column. After 

synchronizing map entities, a tree structure is formed 

which consists of root, sub-levels and leaves. The root 

states triplesMap having RDB table entities and 

extends to sublevels with logicalTable, subjectMap 

and predicateObjectMap. The tree concludes at leaves 

having predicateMap and objectMap entities of 

predicateObjectMap sublevel. The relational schema 

elements associates n subjectMap to m columns of 

RDB table, n + i objectMap to m + x columns and p 

{n + i; m + x} predicate to subjectMap and objectMap 

entities. An example R2RML mapping pattern of 

RDB ‘Student’ is written as: 

@prefix r2r: <http://www.w3.org/ns/r2rml\#>. 

@prefix st: <http://www.xyz.com/ns\#>. 

<#triplesMapstudent> a r2r:TriplesMap; 

r2r:logicalTable [rr:tableName ‘student’]; 

r2r:subjectMap [rr:template 

"http://www.xyz.com/student/{S_Id}"]; 

r2r:predicateObjectMap 

[r2r:predicateMap 

[r2r:constant student:s_name]; 

r2r:objectMap 

[r2r:column "F_Name"]; ]. 

3 SPARQL AUTO R2RML MAPPING (SARM) 
SARM is a custom mapping approach that uses 

SPARQL query to generate smart grid custom RDF 

triples. It consists of four phases i.e., (i) Relational 

Database (RDB) Scenario, (ii) SPARQL-Query 

Parser, (iii) Generation of R2RML mapping patterns, 

and (iv) RDB2RDF data transformation. The smart 

meter collects sensor data and produces ‘CSV’ dataset 

in the form of relational database (RDB). The 

SPARQL parser receives n number of queries and 

produces a (n) ’ttl’ mapping files. The Turtle language 

perform mapping operation over ‘ttl’ files and 

generate m(ttl) mapping patterns. The RDB2RDF 

processor produces custom RDF dataset over smart 

meter as seen from Fig.1. 

 

Figure 1. Custom transformation of Smart meter energy data 
using RDB2RDF 

3.1 Relational Database Scenario 
The smart meter collects sensor data and build a 

relational database having n Tables and c (n) columns 

dataset. Assume a relational database ‘Department’ 

built with the help of MySQL RDBMS (Bell., 2018). 

The RDB consists of six tables i.e., student, teacher, 

course, laboratory, exam, and grade as seen from 

Fig.2. The tables are connected through aggregation 

and cardinality properties such as teacher -> (1; n) <- 

student, teacher -> (1; 1) <- course, student -> (1; n) 

<- course, laboratory-> (1; 1) <-  student, student-> (1; 

n) <- grade and exam -> (1; n) <- course cardinalities. 

The ‘Department’ RDB contains in-built locks, stored-
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procedures, views, key associations and security 

parameters that gives weight-age to dataset and build 

huge amount of schema metadata. In case of n number 

of smart meter z generate m RDB schema, smart meter 

bears huge amount of RDF triple metadata and 

consumes large amount of battery energy to transform 

and dispatch RDF triple over smart grid repository. 

Therefore, SARM removes in-built RDB 

functionalities and co-relate tabular data 

transformation as, 

𝑅𝐷𝐵𝑑𝑎𝑡𝑎𝑠𝑒𝑡= ∑ (Tablesn−m)
Department𝑖𝑛−𝑏𝑢𝑖𝑙𝑡(𝑚)

DepartmentTabulardataset
 

3.2 SPARQL-Query Parser 
The SPARQL-Query Parser generates p (Table n) 

mapping patterns of RDBDataset through grid query 

m and store in ‘ttl’ file m(ttl) as seen from Fig.3. The 

parsing method is working in two steps: 

1) SPARQL query parser: The identification of 

query p (Table n) elements. 

2) Generation of R2RML mapping patterns: The 

association of p (Table n) elements with logicalTable, 

subjectMap, predicateObjectMap, predicateMap and 

objectMap parameters. 1) Algorithms for Parsing 

SPARQL Query and Generating R2RML Mapping 

Patterns: The default SPARQL query syntax 

comprises of an optional PREFIX statement and 

mandatory SELECT and WHERE clauses. The 

?variable elements are user-defined and changes with 

the specification requirement of smart grid. SARM 

adopts three types of SPARQL query i.e., (i) Basic 

Select (ii) Nested Select and, (iii) Join Select; to 

extract smart meter data.  

The KEYWORD and variable elements in syntax 

of SPARQL query are written as: 

Basic Select 

PREFIX Name_of_prefix:<http://IRI-Title 

/ns#> 

SELECT ?Variable-1 ?Variable-2 

WHERE 

{ ?Variable-1 Name_of_prefix:Predicate 

?Variable-2. } 

 

Nested Select 

PREFIX Name_of_prefix:<http://IRI-Title 

/ns#> 

SELECT ?Variable-1 ?Variable-2 

WHERE { SELECT ?Variable-3 ?Variable-4 

WHERE 

{ ?Variable-3 Name_of_prefix:Predicate 

   ?Variable-4. }} 

 

Join Select 

PREFIX Name_of_prefix:<http://IRI-Title 

/ns#> 

SELECT ?Variable-1 ?Variable-2 

WHERE 

{?x Table-1:Variable-1 ?variable-1. 

?x Table-1:Variable-2 ?variable-2. 

?x Table-1:Variable-3 ?variable-3. 

?x Table-1:Variable-4 ?variable-4. 

?v Table-2:Variable-3 ?variable-3. 

?v Table-2:Variable-5 ?variable-5. 

?m Table-3:Variable-4 ?variable-4. 

?m Table-3:Variable-5 ?variable-5.} 

The basic syntax of an R2RML mapping template 

of SARM is written as: 

@PREFIX rr:<http://www.w3.org/ns/r2rml#>. 

@PREFIX namespace:<http://namespaceIRI/ 

ns#>. 

<#triplesMapName > 

a rr:TriplesMap; 

rr:logicalTable [[rr:tableName 

"Tablename"]; 

rr:subjectMap [rr:template 

"http://IRI-Title/namespace/{Subject- 

Column}"]; 

rr:predicateObjectMap 

[rr:predicateMap[rr:constant 

namepspace:Predicate]; 

rr:objectMap [rr:column "Object1- Column"]; ]; 

The Algorithm-1 extracts Basic Select mapping file 

from query Q and includes prefix IRIs and tablename 

information with WHERE clause condition to retrieve 

query result. The algorithm starts with identifying the 

Name_of_prefix followed by an IRI-Title in the input 

SPARQL query. This Name_of_prefix serves at name- 

space, triplesMapName_of_prefix and Tablename in 

generated R2RML mapping file. The IRI-Title 

replaces namespace IRI and reaches at next line of 

SPARQL query stating SELECT clause and identifies 

variable names. The first variable is used as Subject-

Column inside SubjectMap and the remaining 

variables are used as Object-Column for ObjectMap in 

generated R2RML mapping. After that, the WHERE 

clause of query is processed and the 

Name_of_prefix:Predicate is identified as 

namespace:Predicate at predicateMap in mapping 

pattern. Each of the triple statement from WHERE 

clause of SPARQL query indicates a unique predicate 

which results in different RDF triples. 

Algorithm-2 executes Nested Select mapping file from 

query Q with prefix IRIs and chosen columns of 

tablename having where clause to another chosen 

select columns. After the two columns are mapped, 

table procedure followed by where clause condition is 

processed and generates query result. 

Algorithm-3 uses Join Select query Q with prefix 

IRIs and overlapped select columns with tablename on 

Join conditions having where clause condition having 

Join operators {x; v; m} and generate query result. 

The operators x, v and m represent three RDB tables 

to extract dataset. 
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Figure 2. EER Model of Department RDB

 

Figure 3. Work-flow of SPARQL-Query Parser 

3.3 Generation of R2RML mapping patterns 
The generation of R2RML mapping patterns is 

made at SARM. SARM processes the parsed query 

and generate custom mapping patterns. The results are 

stored into a R2RML mapping file in Turtle language 

(.ttl). 
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3.4 RDB2RDF data transformation 
The data transformation requires processing of 

R2RML mapping file over RDB2RDF processor. The 

compiler is programmed to generate RDF views and 

stores them to the triple store. The processor compiles 

mapping files in two ways: 

1) Compile .ttl file and generate RDF View. 

2) Compile .ttl file and store RDF triples over 

smart meter data repository. 

4 EXPERIMENTATION USING SPARQL-QUERY 
PARSER PROCESS 

THIS section is about evaluation of our developed 

parser. we evaluate SARM over a R2RML processor 

‘Spyder’ (http://www. revelytix.com/content/spyder/), 

which is an early commercial mapping compiler and 

supports W3C’s standards of R2RML mappings. It is 

open source software developed by Revelytix and 

supports MySQL RDB integration for SPARQL query 

processing. SARM evaluates Basic Select, Nested 

Select, and Join Select queries and generate RDF 

triple of student, teacher and course tables in 

‘Department’ RDB. An example for each stated query 

type is given below: 

Basic Select 
PREFIX student: <http://example.com/ns#> 

SELECT ?Student_Id ?First_Name 

?Laboratory ?Supervisor ?Course 

Where 

?Student_Id student:Student_Name 

?First_Name. 

?Student_Id student:Lab_Name ?Laboratory. 

?Student_Id student:Professor_Name 

?Supervisor. 

?Student_Id student:Degree_Name ?Course. 

Nested Select 
PREFIX teacher: <http://example.com/nst#> 

PREFIX student: <http://example.com/ns#> 

SELECT ?Teacher_Id ?First_Name ?Laboratory 

?Department ?Designation 

Where 

{SELECT ?Student_Id ?First_Name ?Laboratory 

?Supervisor ?Course 

Where 

?Student_Id student:Student_Name 

?First_Name. 

?Student_Id student:Lab_Name ?Laboratory. 

?Student_Id student:Professor_Name 

?Supervisor. 

?Student_Id student:Degree_Name ?Course.} 

Join Select 
PREFIX student: <http://example.com/ns#> 

PREFIX teacher: <http://example.com/nst#> 

PREFIX course: <http://example.com/nsc#> 

SELECT ?Student_Id ?First_Name ?Laboratory 

?Supervisor ?Course 

Where { 

?x STUDENT:Student_Id ?student_id. 

?x STUDENT:Lab_Name ?lab_name. 

?x STUDENT:Lab_ID ?lab_id. 

?x STUDENT:Professor_Name ?professor_name. 

?v LABORATORY:Lab_ID ?lab_id. 

?v LABORATORY:Lab_Name ?lab_name. 

?m COURSE:Course_Id ?course_id. 

?m COURSE:Student_Id ?student_id.} 

When the above mentioned queries are processed 

by SARM, the R2RML mappings patterns are 

generated at this stage using Turtle language syntax. 

The contents of R2RML mapping are shown below. 

 

Basic Select Mapping 
@prefix rr:<http://www.w3.org/ns/r2rml#>. 

@prefix student: <http://example.com/ns#>. 

<#triplesMapstudent> 

a rr:TriplesMap; 

rr:logicalTable [rr:tableName ‘‘student’’]; 

rr:subjectMap [rr:template 

http://www.example.com/student/‘‘Student_Id’’ 

]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Student_Name]; 

rr:objectMap [rr:column ‘‘First Name’’]; ]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Lab_Name]; 

rr:objectMap [rr:column ‘‘Laboratory’’]; ]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Professor_Name]; 

rr:objectMap [rr:column ‘‘Supervisor’’]; ]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Degree_Name]; 
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rr:objectMap [rr:column ‘‘Course’’]; ]. 

Nested Select Mapping 

@prefix rr:<http://www.w3.org/ns/r2rml#>. 

@prefix teacher: <http://example.com/ns#>. 

<#triplesMapteacher> 

a rr:TriplesMap; 

rr:logicalTable [rr:tableName ‘‘teacher’’]; 

rr:subjectMap [rr:template 

http://www.example.com/teacher/‘‘Teacher_Id’’ 

]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

teacher:Teacher_Name]; 

rr:objectMap [rr:column ‘‘First Name’’]; ]; 

[rr:predicateMap [rr:constant 

teacher:Laboratory]; 

rr:objectMap [rr:column ‘‘Laboratory Name’’]; 

]; 

[rr:predicateMap [rr:constant 

teacher:Department]; 

rr:objectMap [rr:column ‘‘Department Title’’];]; 

[rr:predicateMap [rr:constant 

teacher:Designation]; 

rr:objectMap [rr:column ‘‘Position’’]; ]; 

rr:logicalTable [rr:tableName ‘‘student’’]; 

rr:subjectMap [rr:template 

http://www.example.com/student/ 

‘‘Student_Id’’]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Student_Name]; 

rr:objectMap [rr:column ‘‘First Name’’]; 

]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Lab_Name]; 

rr:objectMap [rr:column ‘‘Laboratory’’]; 

]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Professor_Name]; 

rr:objectMap [rr:column ‘‘Supervisor’’];]; 

rr:predicateObjectMap 

[rr:predicateMap [rr:constant 

student:Degree_Name]; 

rr:objectMap [rr:column ‘‘Course’’];]. 

Join Select Mapping 

@prefix rr:<http://www.w3.org/ns/r2rml#>. 

@prefix student: <http://example.com/ns#>. 

<#triplesMapstudent> 

a rr:TriplesMap; 

rr:logicalTable [rr:tableName ‘‘student’’]; 

rr:subjectMap [rr:template 

http://www.example.com/student/ 

‘‘STUDENT’’ ]; 

[rr:predicateMap [rr:constant student:Student_Id]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘student_id’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/student/‘‘STUDENT’’]; 

[rr:predicateMap [rr:constant student:Lab_Name]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘lab_name’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/student/‘‘STUDENT’’ ]; 

[rr:predicateMap [rr:constant student:Lab_Id]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘lab_id’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/student/‘‘STUDENT’’]; 

[rr:predicateMap [rr:constant 

student:Professor_Name]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘professor_name’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/laboratory/ 

‘‘LABORATORY’’]; 

[rr:predicateMap  [rr:constant laboratory:Lab_ID]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘lab_id’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/laboratory/ 

‘‘LABORATORY’’]; 

[rr:predicateMap [rr:constant laboratory:Lab_Name]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘lab_name’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/course/‘‘COURSE’’]; 

[rr:predicateMap [rr:constant course:Course_Id]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘course_id’’]; ]; 

rr:subjectMap [rr:template 

http://www.example.com/course/‘‘COURSE’’]; 

[rr:predicateMap [rr:constant course:Student_Id]; 

rr:predicateObjectMap 

rr:objectMap [rr:column ‘‘student_id’’]; ]; 

5 PERFORMANCE EVALUATION 
WE evaluate SARM through Berlin SPARQL 

Benchmark (BSBM) (Bizer & Schultz, 2009), dataset 

that presents RDB for an e-commerce scenario. 

BSBM provides most synthetic large-scale datasets 

which are very similar with industry level data loads. 

BSBM also provides set of queries to evaluate system 

under test for RDB2RDF data transformations. The 

performance metrics used in this evaluation are; (i) 

mapping generation time, (ii)planning time, and (iii) 

total execution time for each SPARQL query. 

5.1 Evaluation Environment 
The experimentation is conducted over a node 

having Intel Core processor i5-3470 CPU with speed 

of 3.20 GHz and with 4.00GB RAM, Microsoft 

Windows 8.1 OS and 1TB Disk Drive. The BSBM 

benchmark RDB datasets comprises of 50K, 250K, 

1M, 5M, and 25M tuples and occupies approximately 

4.69MB, 23.7MB, 96.2MB, 481MB, and 2.36GB of 

physical storage respectively. 
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5.2 Evaluation Results 
The performance evaluation of SARM is 

conducted over two scenarios: 

1) Total time to parse SPARQL query over SARM 

and generate mapping patterns in Turtle file. 

2) Total time to execute Turtle file and retrieve 

queried RDB data.  

The performance matrices to evaluate SARM are: 

(i) Mapping Generation Time (MGT), (ii) Average 

Planning Time (APT) and, (iii) Average Total 

Execution Time (ATET). We use random Basic select 

queries for BSBM Benchmark RDB tables and adopt 

respective schema having variation range between 1 to 

20 columns. We processed similar set of queries to 

Spyder R2RML mapping work-flow and obtained 

results based on two-step procedure as:  

Step 1. MGT obtained through customized and entire 

RDB schema. 

Step 2. APT and ATET obtained through execution of 

ttl file and retrieval of RDB data as RDF views. 

We have used five Basic Select SPARQL queries 

having custom and entire RDB schema of tables: 

products, features, vendors, customers, and reviews as 

Queries: 1, 2, 3, 4, and 5, respectively. We evaluate 

that time taken for parsing and generation of mapping 

pattern is 0.02, 0.03, 0.02, 0.03, and 0.02 seconds 

respectively for each query over SARM. The Spyder 

generates mapping patterns in 11 seconds for entire 

schema. In the same way, we use another five Nested 

Select SPARQL queries over same tables.  

We evaluate that time taken for parsing and 

generation of mapping patterns is 0.19 seconds, 0.21 

seconds, 0.2 seconds, 0.21, and 0.2 for each query 

over SARM respectively. The Spyder still generates 

mapping patterns in 11 seconds. Similarly, we use five 

Join Select SPARQL queries having custom select and 

entire RDB schema of tables: products, features, 

vendors, customers and reviews. We evaluate that 

time taken for parsing and generation of mapping 

patterns is 0.45 seconds, 0.47 seconds, 0.43 seconds, 

0.47, and 0.46 for each nested query over SARM 

respectively. The Spyder’s time to generate mapping 

is same as 11 seconds, due to the fact that it generates 

mapping pattern for entire schema with each 

processing. The results are observed in Figure 4(a), 

5(b) and, 5(c). As evident from Figures 4(a), 4(b) and, 

4(c) that SARM reduces a huge time slice in 

RDB2RDF with each generation of mapping file. It is 

found as a suitable approach for RDB2RDF over large 

scale smart data stores, where RDB schema is often 

evolved and updated. After mapping files are 

generated through SARM and Spyder, we perform 

planning procedure using generated map file over 

R2RML processor. This process identifies and 

matches mapping patterns with fetched RDB table 

instances using metadata from R2RML maps and 

stored procedure calls. We used 5 mapping files of 

Basic Select SPARQL query to evaluate planning 

times of generated mapping files over R2RML 

processor. 

We observe that SARM is 18.4% efficient than 

Spyder in Query-1 map file planning, 8.8% efficient 

than Spyder in Query-2 map file planning, 9% 

efficient than Spyder in Query-3 map file planning, 

8.7% efficient than Spyder in Query-4 map file 

planning, and in last, the SARM is observed 7.4% 

efficient than Spyder in Query-5 map file planning, as 

seen from Figures 5(a, b, c, d, and e). At last, we 

execute map files over R2RML processor to retrieve 

RDB dataset. We evaluate total execution time of the 

steps involves i.e., (i) Query submission to SPARQL 

End Point, (ii) SARM map file generation, (iii) Map 

file planning and execution over R2RML processor, 

(iv) Generation of SQL and retrieval of RDB dataset 

over generated SQL. We use 5 Basic Select SPARQL 

queries to the overall execution steps of customized 

and entire RDB schema and evaluate average total 

execution time (ATET). We observe that for Query-1, 

SARM is observed 9% efficient than Spyder in total 

execution workflow,  8.6% efficient than Spyder in 

Query-2 total execution work-flow, 8.9% efficient 

than Spyder in Query-3, 9.5% efficient than Spyder in 

Query-4 total execution work-flow, and in last, we 

observe that SARM is 8.1% efficient than Spyder in 

Query-5 total execution workflow, as seen from 

Figures 6(a, b, c, d, and e).  After evaluating MGT, 

ATET and APT, we find a prominent decrease in 

computing resources of smart meter. Moreover, we 

observe that smart meter consumes much lower 

battery energy than traditional RDF tuple generation 

processing and decrease energy drain with increment 

of lifespan of smart meter as shown in Table-III. The 

detailed percentage improvements of SARM over 

Smart meter battery against each query is also given in 

details, which clearly shows the significant battery 

performance improvement using SARM.  

 

Table 3: Impact (percentage improvement) of SARM over Smart Meter Battery 
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Figure 4 (a) (b) (c). “Mapping Generation Time (MGT)” 

 

 

Figure 5. (a), (b), (c), (d) and (e) “Average Planning Time (APT)” 
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Figure 6. (a), (b), (c), (d) and (e) “Average Total Execution Time (ATET)

6 CONCLUSIONS AND FUTURE WORKS 
THE approach presented is towards an effective 

knowledge-based strategy of reducing battery drain 

problem in smart meters. The state-of-art smart meters 

are collecting RDB dataset and generating RDF tuple 

datasets. The RDF tuple generation involves full 

schema of RDB and consumes huge amount of battery 

energy. As a result, batteries are affected with drain 

problem resulting in low lifespan. We resolve this 

problem by presenting a knowledge-based solution for 

data-centric operations for battery data of smart 

meters. The proposed approach is evaluated and 

compared with existing state-of-art techniques of 

RDB2RDF. We observe that SARM significantly 

decreases APT and ATET time and reduces battery 

drain problem with an effective increment of lifespan.  

In the future, our focus would be towards other 

semantic-aware knowledgebase solutions for data-

centric operations in smart batteries of smart grid. 
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