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1 INTRODUCTION 
IN recent years, speech recognition technology has 

been advanced in accordance with technical 

breakthrough of deep learning technology. The 

technical advancement achieved successful 

commercialization of speech recognition, while 

various smart devices such as smartphones adopted 

speech recognition functions. In current days, speech 

recognition technology permeates electronics in home 

environments such as smart televisions and smart 

home assistant speakers (Deng  and Gong (2014)).  

A lot of experts expect that smart home devices 

will be further evolved along with technical 

advancement of Internet of Things (IoT) and Artificial 

Intelligence (AI) technologies. Their progress in 

functions and services will provide people with more 

convenient home life by automating living systems in 

home. And the speech recognition is certainly a core 

technology of smart home devices by enabling 

automatic home control and even conveying a 

communication way between a human and the devices.   

To provide more reliable human-machine 

interaction services based on speech recognition, 

several problems that negatively affect the recognition 

performance should be mitigated. The most serious 

problem is noises surrounded by home environments. 

The smart home devices are exposed to various types 

of background noises including music, audio sounds 

in a television, or talks (Plapous, et. al. (2006), 

Shrawankar and Thakare (2011)). The noises may 

significantly degrade the speech recognition 

performance.  

For the past decades, many researchers have 

attempted to eliminate noise signals contaminating 

speech signals for the purpose of enhancing the 

recognition accuracy. A lot of noise cancellation 

techniques have been introduced, including spectral 

subtraction (Lu and Loizou (2008)), Wiener filter 

(Benesty, et. al. (2005), EI-Fattah, et. al. (2014)) 

Kalman filter (Widrow and Stearns (1985), So and 

Paliwal (2011)) and minimum mean square error 

(MMSE) (Ephraim and Malah (1984), Schwerin and 

Pailwal (2014)). Even though the conventional 

techniques have been successfully employed for 

enhancing the speech recognition accuracy, they 

exhibit different noise cancellation performance 

according to noise types or characteristics.  

This paper is organized as follows. Section 2 

introduces several conventional noise cancellation 

approaches. Section 3 discusses noise cancellation for 

smart home devices, and Section 4 describes the 

proposed approach. In Section 5, experimental setup 

 
ABSTRACT 

Variety types of smart home devices have a main function of a human-machine 
interaction by speech recognition. Speech recognition system may be 
vulnerable to rapidly changing noises in home environments. This study 
proposes an efficient noise cancellation approach to eliminate the noises 
directly on the devices in real time. Firstly, we propose an advanced voice 
activity detection (VAD) technique to efficiently detect speech and non-speech 
regions on the basis of spectral property of speech signals. The VAD is then 
employed to enhance the conventional spectral subtraction method by steadily 
estimating noise signals in non-speech regions. On several experiments, our 
approach achieved superior performance compared to the conventional noise 
reduction approaches. 



150 PARK and KIM 

 

and results are explained. The paper concludes in 

Section 6. 

2 THE CONVENTIONAL NOISE 
CANCELLATION TECHNIQUES 

A lot of studies on reducing variety types of noises 

including background noise and channel noise have 

been introduced with the aim of enhancing quality of 

speech. Several techniques reported successful 

application to Automatic Speech Recognition (ASR) 

systems as a pre-processing procedure in which they 

play a role in recovering the contaminated speech 

signals. 

According to the approaches, the noise signals are 

usually assumed to be stationary, additive and 

uncorrelated to speech. The common procedures 

consist of the estimate of the noise components and 

the elimination of them in noisy speech. The 

approaches work well based on the assumption that if 

the noise signals are stationary, it is possible to 

estimate noise components in non-speech regions. 

Therefore, correct detection of non-speech regions is 

prior to noise cancellation. The Voice Activity 

Detection (VAD) techniques are generally used for 

this work. The VAD gives information of voice 

activity in each frame, thus allowing to estimate noise 

components, using the following equation. 

2 2 2
( , ) ( , 1) (1 ) ( , )N n N n X n       

  (1) 

where ( , )X n and ( , )N n  are the spectrum of 

the noisy speech and noise signals, respectively. n  is 

the index of the current frame and   refers to a 

smoothing coefficient. On consecutive noise frames, 

this equation becomes true and the VAD indicates a 

value of zero. 

Several studies introduced more sophisticated noise 

cancellation methods. The most representative method 

is the spectral subtraction (Boll (1979), Bittu (2016), 

Martin (1994)). This technique assumes that the noise 

signals and speech signals are not correlated each 

other and additively combined in the time domain. 

Thus, the power spectrum of noisy speech signals can 

be described as the sum of the noise spectrum and the 

speech spectrum. The spectral subtraction method 

considers that if the characteristics of noise signals 

change slowly compared to speech signals, the noise 

components estimated on non-speech frames are used 

to eliminate noise signals contained in speech regions. 

Let ( )x t , ( )s t  and ( )n t  be the noisy speech 

signal, original clean speech signal, and additive noise 

signal, respectively. According to spectral subtraction 

approaches, a spectrum of clean speech signals            

( ˆ( )S  ) can be estimated by subtracting an average 

spectrum of noise signals ( ˆ ( )N  ) from a spectrum 

of noisy speech ( ( )X  ) (Boll (1979)), as follows. 
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  (2) 

Another enhancement scheme is called Wiener 

filter (Scalart and Filho (1996)). The Wiener filter also 

assumes the stationarity characteristics of noise 

signals to estimate the power spectrum of the clean 

speech signals and the noise signals. The basic 

principle of the Wiener filter is to minimize the 

following expectation value. 

 

2(( ( ) ( )) )k

k

E s n x n k
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

  
 (3) 

where ( )s n , ( )x n , and k  indicate the clean 

speech signals, the noisy speech signals, and the filter 

coefficient, respectively. To realize this filter in the 

frequency domain, the speech signals and the noise 

signals are assumed to be normally distributed and 

uncorrelated each other. This assumption leads the 

following equations. 

 

2 2 2( ( ) ) ( ( ) ) ( ( ) )E S E X E N   
 (4) 

If the expected values disappear, the frequency 

response of the filter is obtained as follows. 
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Next, the right part of this equation can be 

generalized as follows. 
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( )   refers to a priori SNR (Signal-to-Noise Ratio) 

described as follows. 
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Figure 1. Noise Signals in Home Environments. 
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To evaluate the Wiener filter in the spectral 

domain based on SNRs, this ratio is estimated 

separately in each frequency. The general posteriori 

SNR is calculated as: 
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A priori SNR can be obtained by filtering the 

noisy speech. 
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From this equation, both a posteriori SNR and a 

priori SNR are used to obtain the frequency response 

of the Wiener filter.  

The Mean Squared Error (MSE) has been 

successfully investigated for speech enhancement. 

And the Minimum Mean Squared Error (MMSE) 

estimator minimizing the MSE gave superior 

performance of noise reduction in log spectral 

domain (Ephraim and Malah (1984), Malah, et. al. 

(1999), Kim and Rose (2003)). The MMSE estimator 

of clean speech signals is described as the power 

spectrum of noisy speech signals multiplied by a 

spectral gain function. The function is dependent on 

frequency and  obtained from noise spectrum, SNR, 

and speech absence probability. 

3 NOISE CANCELLATION FOR SMART HOME 
DEVICES 

NOISE signals in home environments have 

property of non-stationary noise that rapidly and 

continuously changes, as shown in Figure 1. Types of 

noises are various, including music, audio sounds in a 

television, motor sounds of electronic devices, or 

talks. In addition, for rapid noise cancellation, smart 

home devices are necessarily required to process 

noise reduction directly instead of depending on 

remote server. For the direct processing on devices in 

real time, computationally low intensive noise 

cancellation algorithms are suitable for smart home 

devices. For this reason, we concentrate on spectral 

subtraction among others, as this technique is known 

to provide stable performance in spite of relatively 

low computation. 

 

Figure 2. General procedure of the conventional spectral 
subtraction. 

3.1 The conventional spectral subtraction 
As addressed in Section 2, the spectral subtraction 

technique assumes that the noise signals and speech 

signals are not correlated each other and additively 

combined in the time domain. As the power spectrum 

of noisy speech signals are to be the sum of the noise 

spectrum and the speech spectrum, the power 

spectrum of speech signals is derived by suppressing  

the noise components estimated on non-speech 

frames from the power spectrum of noisy speech 

signals.  

 ( ) ( ) ( )x t s t n t   (10) 

Let ( )x t , ( )s t  and ( )n t  be the noisy speech 

signal, original clean speech signal, and additive 

noise signal, respectively. 

 ˆ ˆ( ) ( ) ( )X S N      (11) 

The noisy speech spectrum ( ( )X  ) is regarded 

as the sum of the noise spectrum and the speech 

spectrum. In spectral subtraction methods, the clean 

speech spectrum ( ˆ( )S  ) can be estimated by 
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subtracting the average noise spectrum ( ˆ ( )N  ) 

from the noisy speech spectrum ( ( )X  ) (Boll 

(1979)), as mentioned with (2). 

Figure 2 shows the general procedure of the 

conventional spectral subtraction approach. To 

reduce the distortion of the noisy speech signals, each 

frame is covered by the Hamming window function. 

Most of the frames are also calculated by performing 

the Fast Fourier Transform (FFT) to estimate the 

spectral component. The first consistent frames 

assume that noise regions are in signals, and they are 

then subtracted from every frame of the contaminated 

signals after estimating the average noise spectrum 

using their sum. After spectral subtraction, half-wave 

rectification is performed to remove negative spectral 

components. When signals are obtained in the 

spectral domain through such a series of processes, 

an enhanced signal in the time domain by applying 

the Inverse Fourier Transform (IFFT). 

The conventional spectral subtraction method 

estimates the average noise spectral energy from 

consecutive frames of starting point of input signals, 

assuming that the starting signals are pertinent to 

non-speech regions. The estimated spectral energy is 

subtracted for entire signal regions. As shown in this 

figure, the starting point of input signals (the red 

section) is assumed to be non-speech regions. 

3.2 Drawbacks of spectral subtraction 
The conventional method is vulnerable to non-

stationary noise although it is quite effective for 

stationary noise. Therefore, there are two issues. 

First, residual noise remains in non-speech regions. 

Typical spectral subtraction depends on the 

magnitude of each frame in the spectral domain. The 

average noise spectrum calculated by the number of 

first consistent frames is fixed. When it is subtracted 

sequentially from the entire frame, the magnitude of 

the current frame may be relatively larger than that of 

the previous frame. That is, it is necessary to update 

the spectral components to solve this problem in the 

non-speech regions. 

The second problem is that because of the above 

problem. Because noise signals and speech signals 

are not correlated in the contaminated signal, the 

noise signal magnitudes that are added to the non-

speech and speech regions of the clean speech signal 

are not the same. For this reason, after spectral 

subtraction, noise reduction in the speech region may 

not be performed smoothly owing to the negative 

spectral components that are removed using half-

wave rectification. 

4 SPECTRAL SUBTRACTION USING 
SPECTRAL VARIATION BASED VOICE 
ACTIVITY DETECTION  

A main drawback of the conventional spectral 

subtraction is that dependency on the firstly estimated 

noise components in a non-speech region may lead to 

inaccurate subtraction in following speech regions, 

especially when the noise properties rapidly change. 

The proposed approach aims to consecutively detect 

non-speech regions expected to preserve noise signals, 

estimate spectral components of the noise signals in 

the region, and then subtract the estimated 

components from following speech regions with 

spectral subtraction technique.  

In consideration of continuously estimating and 

updating noise components to be used for spectral 

subtraction, we attempt to advance the conventional 

voice activity detection technique for the purpose of 

more sophisticated detection of non-speech regions 

for non-stationary noises.  

4.1 Voice activity detection based on spectral 
variation 

Various voice activity detection approaches have 

been introduced for the correct detection of speech 

regions (Yiming and Rui (2015), Yang, et. al. (2010), 

Ramirez, et. al. (2007), Moattar and Homayounpour 

(2009)). The most representative VAD techniques 

include energy-based approach and zero-crossing rate 

approach. The energy-based approach considers a 

general tendency that speech signals preserve higher 

signal energy than non-speech signals. Based on this 

property, the approach classifies speech regions that 

indicate higher energy compared to a pre-determined 

threshold. The zero-crossing rate means a frequency 

of changing in between a positive value and a 

negative value of signals. This approach also 

considers a general property of signals that higher 

zero-crossing rate occurs in speech regions compared 

to non-speech regions. The rate is used to determine 

speech or non-speech regions. 

Even though the conventional VAD techniques 

have been successfully applied for speech recognition, 

most of them demonstrated different performance 

according to input noise signals, in particular, non-

stationary noises. The main reason of the 

performance deterioration is that most of the 

conventional techniques highly depend on a pre-

determined threshold that determines if a given frame 

is a speech or non-speech region. The most 

representative example is that energy-based VAD 

may incorrectly categorize a non-speech region as a 

speech region, as the threshold adjusted to noiseless 

signals determines non-speech regions as speech 

regions, in which background noise signals increase 

the energy of the non-speech regions more highly 

than the threshold. 
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Figure 3. Optimal Threshold Variation according to Different SNRs (dB) in the Conventional Spectral Energy based VAD. 

 

Figure 4. Spectral Characteristics of Speech and Non-speech Regions of Noisy Speech. 

To solve the drawback of the conventional VAD 

techniques, the threshold should be changed 

according to noise levels called signal-to-noise ratio. 

We examined optimal threshold for VAD to 

investigate this drawback, by using spectral energy 

based VAD technique. Figure 3 demonstrates that 

optimal thresholds estimated for VAD significantly 

vary according to different SNRs. But defining 

different thresholds for SNRs does not provide an 

optimal solution in non-stationary noise 

environments such as home devices in which SNRs 

of input noise signals cannot be predicted. 

In this study, we propose a way of determining a 

fixed threshold irrelevant to SNRs. For this work, we 

investigated spectral characteristics of speech regions 

and non-speech regions in different SNRs. Figure 4 

represents a spectrogram (below) pertinent to a 

speech waveform (above) recorded in noisy 

environments. As shown in the spectrogram of this 

figure, non-speech regions indicate a tendency that 

spectral energy persists in same frequency bins. On 

the other hand, in speech regions, the energy varies in 

each frequency bin according to time.  

Concentrating on this spectral tendency, we 

examined a variation of spectral energy for each of 

two regions with the standard deviation. First, for 

each frame of a same length (20ms), spectral energy 

is calculated in each frequency bin. And then an 

average of spectral energy values calculated from a 

certain number of frames (we note a set of the frames 

as the slice window) is obtained as follows. 
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where L  and l  means the number of frames 

belonging to a slice window and the index of the 

current slice window, respectively. , [ ]l kP m  is the 

spectral energy of the m -th frequency bin of the k -

th frame in the l -th window. For each frequency bin 

of the k -th frame, a difference between , [ ]l kP m  

and the average is calculated. The difference is then 

used to calculate the variance over the given slice 

window, as follows. 
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Finally, a standard deviation is obtained for each 

frequency bin. And then the average of the standard 

deviation values from overall frequency bins is 

calculated to observe an entire variation of spectral 

energy for the given slice window, as follows.  
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Figure 5. Optimal Threshold Variation according to Different SNRs (dB) in the Standard Deviation based VAD. 

 

Figure 6. Optimal Threshold Variation according to Different SNRs (dB) in the Second Standard Deviation based VAD. 
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where N  means the number of entire frequency bins. 

To observe the efficiency of the standard 

deviation based VAD on different SNRs, we 

investigated variations of thresholds according to 

SNRs in the same way as Figure 3. As shown in 

Figure 5, the standard deviation calculated in non-

speech regions was relatively lower than that in 

speech regions, thus providing sufficient criterion for 

VAD. In particular, the variation of thresholds on 

different SNRs was reduced in comparison of the 

conventional VAD technique based on spectral 

energy.  

Even though the standard deviation represents a 

very efficient criterion for VAD, the thresholds still 

vary over SNRs. In order to further reduce variations 

of thresholds, we examined a variation of the 

standard deviation for each region, calculating the 

standard deviation from the first deviation results 

repeatedly. First, the average of the deviations 

obtained from each slicing window is calculated, as 

follows. 

 

1

,

0

1 L

l l k

k

Std
L






     (16) 

where ,l kStd  is the deviation of the k -th frame in 

the l -th slicing window that was calculated in (15). 

The prime in this equation denotes the second 

calculation, distinguishing the average obtained from 

(12). Next, the variance and the standard deviation 

for each window are sequentially calculated, as 

follows. 
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 l lStd V    (18) 
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The efficiency of the secondly estimated standard 

deviation (shortly denoted as the second deviation) 

based VAD on different SNRs was validated in the 

same way as the first deviation-based approach by 

observing variations of thresholds according to SNRs. 

As shown in Figure 6, the second deviation 

calculated in non-speech regions was still relatively 

lower than that in speech regions, thus satisfying 

conditions for a criterion for VAD. A remarkable 

result is that the variation of thresholds on different 

SNRs was significantly reduced compared to the first 

deviation-based VAD approach as well as the 

conventional one.  

 

 

Figure 7. Procedure of the Proposed VAD based on Spectral 
Variation. 

 

Figure 8. Procedure of the Proposed Noise Cancellation based 
on Spectral Variation based VAD. 

Considering the observation and validation results 

addressed above, we propose an advanced VAD 

approach based on variations of spectral energy. 

Figure 7 represents the procedure of the proposed 

approach. For every frame, spectral energy of each 

frequency bin is estimated. The first standard 

deviation is then calculated from the energy within 

each slice window. Next, the second deviation is 

obtained from the first deviation results. It is used for 

decision of speech regions and non-speech regions by 

comparing with pre-determined threshold. This 

threshold is fixed regardless of SNRs.  

4.2 Spectral subtraction for noise cancellation 
The proposed VAD based on spectral variation is 

used in conducting noise cancellation based on 

spectral subtraction. Figure 8 illustrates a procedure 

of the proposed noise cancellation approach. In this 

figure, ( )X  denotes the noisy speech signals. 

ˆ ( )N   and ˆ( )S   mean the noise components and 

de-noised speech signals, respectively.  

For a set of frames belonging to each slice 

window, spectral variation based VAD determines if 

the region is speech or non-speech. If a given frame 

window is categorized as a non-speech region, the 

noise components are estimated and registered as a 

current noise member. If there is a noise member 

registered already, the member is updated to current 

noise frames.  

Once a frame window is determined as a speech 

region, the frames of the window are submitted to a 

spectral subtraction process. In the noise cancellation 

process, noise components registered as a current 

noise member are eliminated from the speech frames 

according to (2).  

5 EXPERIMENTAL SETUP AND RESULTS 

5.1 Experimental setup 
WE performed several experiments to validate the 

efficiency of the proposed approach. The main 

purpose of our experiments is to investigate the 

stability of the noise cancellation performance over 

SNR variation. For this reason, we used stationary 

noise data that is suitable for simulating varying SNR 

conditions. The representative stationary noise data in 

home environment include air conditioner noise, fan 

noise, and vacuum noise. Among them, we collected 

vacuum sounds that convey the severest noise level.  

For a fair verification, we compared the 

performance of the proposed approach with that of 

the conventional spectral subtraction technique over 

three varying SNR conditions (15dB, 5dB, 0dB). 

Naturally, in our approach, the threshold for VAD 

was fixed as an optimal value obtained using spectral 

variation based approach. On the other hand, in the 

conventional technique, optimal threshold values 

were estimated differently according to three SNR 

levels.  



156 PARK and KIM 

 

5.2 Experimental results 
There are several ways to investigate noise 

cancellation performance. A way is to compare the 

difference between original signals and de-noised 

signals with visual data such as waveform or 

spectrogram. Even though the waveform is very 

intuitive and easy to figure out the difference, it 

conveys insufficient information over speech regions 

compared to non-speech regions.  

Figure 9 demonstrates the waveform figures of 

noise-contaminated speech, de-noised speech by 

conventional spectral subtraction and de-noised  

speech by the proposed approach. In non-speech 

regions, a tendency is observed that the conventional 

and proposed approaches efficiently eliminate noise 

components of the original signals. In particular, the 

proposed approach significantly outperforms the 

conventional subtraction method. However, the 

performance improvement is not clearly investigated 

in speech regions.  

 

 

Figure 9. Noise Cancellation Performance Comparison in 
Waveform (SNR 5dB). 

Spectrogram figures reflecting spectral energy 

properties in frequency domain relatively provide 

more significant performance improvement on both 

non-speech and speech regions. As shown in Figure 

10, the proposed approach remarkably eliminated 

noise components included in speech regions. Such a 

tendency was observed in other SNR levels (15dB 

and 0dB), as shown in Figure 11.  

Those visual data proves that the proposed 

approach successfully outperforms the conventional 

spectral subtraction technique, although it uses a 

fixed VAD threshold over different SNR levels. 

Another method to compare noise cancellation 

performance is to use particular measures based on 

mathematical measurement. The representative 

measures are signal-to-noise ratio and spectral 

distance (also called spectral distortion).  

SNR means a ratio of clean speech signals and the 

rest of the noise signals after noise cancellation, as 

follows. 

 
Figure 10. Noise Cancellation Performance Comparison in 
Spectrogram (SNR 5dB). 

 
Figure 11. Noise Cancellation Performance Comparison in 
Spectrogram (SNR 15dB and 0dB). 
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where ( )s t  and ˆ( )s t  are clean speech signals and 

de-noised speech signals, respectively. As correctly 

eliminated the noise signals are, the denominator is 

closer to 0, increasing the SNR. Figure 12 

demonstrates the performance comparison between 

the proposed and the conventional spectral 

subtraction. Two approaches improved the SNR 

levels by successful noise reduction. The proposed 

approach provided better performance, indicating 

higher SNRs. 

 

Figure 12. Noise Cancellation Performance Comparison using 
Signal-to-Noise Ratio Measurement. 

The spectral distance (SD) measures the 

difference between clean speech signals and de-

noised speech signals, as follows. 
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where ( )X k  and ˆ ( )X k  denotes clean speech 

signals and de-noised speech signals, respectively. 

N  is the number of frequency bins. Hence, this 

equation calculates the distance using spectral energy 

in N  bins. As perfectly reduced the noise 

components are, the spectral distance indicates low 

value. Figure 13 shows the results using spectral 

distance. As shown in this figure, the proposed 

approach indicated lower distance over each SNR 

levels than the conventional method, explaining 

superior noise cancellation performance.  

Two measures certainly proved the efficiency of 

the proposed approach. A common property shown in 

two results is that the proposed approach further 

significantly outperforms on lower SNR levels (0dB 

and 5dB). This tendency supports very remarkable 

efficiency of the proposed approach in eliminating 

severe noise signals.  

 

Figure 13. Noise Cancellation Performance Comparison using 
Spectral Distance Measurement. 

6 CONCLUSION 
THIS paper proposed an efficient noise 

cancellation approach for smart home devices. The 

proposed method aims to enhance the conventional 

spectral subtraction, using an advanced voice activity 

detection (VAD). The conventional VAD methods 

may vulnerable to home environment noises, 

representing different thresholds according to SNRs. 

The proposed VAD uses a spectral variation 

difference between noise signals and speech signals. 

The advanced VAD steadily detects non-speech 

regions and estimates noise components. Currently 

estimated noise components are used for spectral 

subtraction.  

We verified the efficiency of the proposed 

approach by conducting several experiments. Our 

approach demonstrated superior performance 

compared to the conventional approaches.  
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