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1 INTRODUCTION 
IN recent years, the demand for game player 

behavior analysis has increased as PC online game 

and mobile game markets grow. Gaming behavior 

analysis, specifically for abnormal or outlier 

behaviors, aims to help gamers to keep engaged in a 

gameplay by providing gamers with an appropriate 

level of difficulty. If a player faces a very difficult or 

unexpected gameplay experience, the player is likely 

to behave differently than usual. This may not be a 

problem if the situation occurs at a time intended by a 

game designer. However, an unexpected player 

experience is a factor for gamers to stop playing a 

game so if this behavior occurs at a time not intended 

by the game designer, the designer needs to determine 

the timing and reason and fix it to ensure a smooth 

gameplay experience (El-Nasr et al. 2016).  

Game player behavior analysis has been performed 

to determine these abnormal behaviors and to receive 

useful feedback from players. Typically, it is done 

with a variety of usability tests in separate gameplay 

rooms with a small number of player subjects. This 

process consists of recruiting and educating the 

subjects, followed by soliciting the feedback through 

post-play questionnaires. The post-play questionnaire 

analysis has advantages, including ease of execution 

as well as the intuitive nature of survey results (e.g., 

easy or difficult). However, it comes with a 

disadvantage in that it cannot provide accurate 

feedback on a specific event or a certain moment in 

the gameplay because it relies on the user's short-term 

memory after the gameplay, which may be incorrect 

and self-manipulated. 

To overcome these weaknesses, a variety of 

automatic evaluation systems have been suggested: 

facial expression, brain-computer interface (BCI), 

electromyography (EMG), galvanic skin response 

(GSR), heart rate (HR), etc. These methods were 

designed to find meaningful patterns by classifying or 

clustering a player’s biosignal responses that occur at 

key events during gameplay. Thus, it is possible to 

identify instant changes in players’ perception without 

heavily relying on the players’ memory afterward. 

However, it is necessary to have expertise on 

specialized equipment and analysis methodologies to 

apply these techniques in practice. The procedural 

difficulty and the cost of analysis are the burdens of 

game development teams and companies. They are 

obstacles to applying state-of-the-art behavior analysis 

techniques from academia to industry (Scherer et al. 

2010). The industry is thus in need of a 

straightforward methodology to perform a player 
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behavior analysis at low cost with common gaming 

hardware.  

This paper proposes a multimodal game player 

behavior analysis system based on general gaming 

hardware: a mouse that monitors a gamer’s 

physiological state changes during gameplay in a non-

intrusive way. With this system, we recorded changes 

in galvanic skin response, temperature and motion in 

relation to specific events during gameplay and 

applied a clustering algorithm based on dynamic time 

warping (DTW) for outlier analysis. Ark et al., 

proposed a system in which a mouse played a 

significant role in detecting physiological signals (Ark 

et al. 1999). Sykes et al. investigated the hypothesis 

that the player's arousal level corresponds to the 

pressure employed to press buttons on a gamepad 

(Sykes et al. 2003). However, to the best of our 

knowledge, there is no previous work that has tried to 

analyze gamers’ experiences by clustering multi-

dimensional physiological data gathered from a 

typical mouse for outlier detection. We evaluate our 

system with a bullet dodging game with single and 

multiplayer modes. Our experimental results show that 

our system is effective in detecting outliers in 

gameplay.  

2 RELATED WORK 
VARIOUS attempts have been made to evaluate 

the game player's reaction to game content using 

biometric information: including brain computing 

interface (BCI), electromyography (EMG), breathing 

signals, galvanic skin response (GSR) and 

representative physiology data. (Scherer et al. 2010) 

(Ozturk et al. 2018) 

BCI is one of the most popular biosignal analysis 

techniques (Kaplan et al. 2013). This classifies the 

user's behavior based on the user's brainwave pattern. 

BCI research related to games include level design 

issues of Role-Playing Games (Balducci et al. 2017), 

evaluation of the motivational factors of gamers by 

EEG (Berta et al. 2013), character control (Finke el a. 

2009), and difficulty adaptation and evaluation 

(Marshall et al. 2013). EMG analyzes the user's 

muscle movements and responsiveness. EMG research 

that is related to games includes user experience 

analysis in first person shooting games (Nacke et al. 

2010) and fatigue analysis in a driving simulator game 

(Balasubramanian et al. 2007). The relationship 

between breathing and gameplay has also been 

studied. This includes evaluating a player's pleasure 

while playing a racing game (Tognetti et al. 2010) and 

diagnosing the stress level by analyzing the user's 

breathing pattern (Bernardi et al. 2000). These BCI, 

EMG, and Breathing Signal analysis methods have the 

advantage of minimized errors while acquiring data by 

attaching sensors directly to the subject’s body. On the 

other hand, it involves the common burden of 

attaching devices to the body (Vliet et al. 2012).  

Compared with the BCI, EMG, and breathing 

signals, GSR signals can be detected in a relatively 

less-intrusive way. Due to the ease of wearing a GSR 

sensor and the intuitiveness of GSR analysis results, 

there have been several attempts to investigate the 

implications of GSR signal pattern in relation to 

players’ perceived difficulty and abnormal behavior. 

Moreover, a large number of GSR studies belong to 

the field of Dynamic Difficulty Adjustment (DDA) 

research. A DDA-based game has a structure that 

automatically adjusts the related parameters according 

to the gameplay progress by linking a part of the game 

system with the in-game behavior evaluation function 

(Hunicke et al. 2005). 

Mandryk et al. introduced the use of physiological 

measures as behavioral metrics (Mandryk et al. 2007). 

Dekker et al. adapted a GSR sensor that clipped on a 

player’s fingers to record and transfer biometric 

information to make changes in the game content of 

Half-Life 2, a commercial game engine, and suggested 

an adaptive horror game with GSR sensors. During 

gameplay, the game environment was designed to 

change dynamically based on the player’s biometric 

data to give the cinematically augmented horror 

experiences (Dekker et al. 2007). Tijs et al. discovered 

that players’ GSR arousals differed significantly when 

they played Pac-Man at different levels of difficulty 

(Tijs et al. 2008). Singh et al. found that the number of 

challenges that a player encountered during gameplay 

could give an impact on the magnitude of GSR 

arousals (Singh et al. 2013). Like other physiology 

signals, GSR is a signal generated by the autonomic 

nervous system, which has the advantage that the 

player cannot conceal her reaction intentionally. It has 

the further merit that it can be measured at a relatively 

lower cost. However, the experimental results are 

easily affected by the physiological characteristics of 

the subjects.  

Various multimodal physiology-based analysis 

techniques have been proposed to accurately infer a 

player’s state. Liu et al. suggested an affect-based 

DDA mechanism to evaluate an anxiety level of a 

player. In their experimental game, the difficulty level 

of the game automatically changes by referencing the 

player's emotional state in real time (Liu et al. 2009). 

Ambinder et al. introduced how a commercial game 

developer could analyze the difficulty level of the 

First Person Shooting (FPS) by using the player’s 

multimodal physiology signals (Ambinder et al. 

2011). Lobel et al. suggested a horror biofeedback 

game titled Nevermind which employs multimodal 

interface. In the game, the players' heart rate and eye-

movement are continuously monitored and sent to the 

game system, which is in turn interpreted to the 

player's level of negative affective arousal. Greater 

negative arousal causes the game’s horror-themed 

environment to become more disturbing (Lobel et al. 

2016). Most of these multimodal studies require the 

purchase of external emotional analysis hardware 
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specific to each signal and needs to be independently 

attached to the experimenter. In addition, it is difficult 

to synchronize all the signals between the signal 

analyzers after the experiment. 

In this paper, we propose a multimodal 

physiological signal analysis system that collects and 

analyzes biosignals (e.g., GSR and body temperature) 

and motion signal data in a non-intrusive way. We 

developed a small substrate that could be inserted into 

a typical commercial mouse and made it possible to 

detect multimodal signals. By using this hardware, the 

player can participate in the game experiment without 

attaching any external device. Our system acquires the 

user's multimodal data via the mouse, and it can 

analyze the user's sensory difficulty using the acquired 

data by using DTW and a dendrogram clustering 

algorithm. The key contributions of this paper can be 

summarized as follows.  

Contributions:  

1) Design of a mouse-based biosignal detector that 

detects biosignals of game players in a non-invasive 

way in typical PC gaming environments 

2) Abnormal behavior detection based on dynamic 

time warping (DTW) and a dendrogram algorithm 

with multimodal physiology and motion data 

3 BACKGROUND  
THERE were several technical problems and 

requirements in the application of multimodal analysis 

technology for outlier detection. We chose the 

following approach.  

Non-intrusive Physiology Detection System: If the 

player recognizes that the biosignal is being measured, 

it may affect the accuracy the biosignal measurement. 

Moreover, additional device attachments are 

burdensome for both game developers and game 

testers. To solve this problem, we developed a module 

integrated in a mouse for non-intrusive detection of 

players' biosignals. Due to recent technological 

advances, these modules can be integrated into mouse 

type hardware. In order to continuously measure 

various biosignals on the mouse, the user's hand must 

maintain a constant contact with the position of the 

sensor in the mouse. Various mouse hardware 

manufacturers have defined the user's mouse grip 

method as three types – 1) Palm grip, 2) Claw grip and 

3) Tip grip. Figure 1 illustrates the mouse grip types. 

The palm grip is the most popular type found from 

more than 50% of gamers. The advantage of the palm 

grip can be the natural and relaxed way the hand rests 

on the mouse with the most contact points and 

support. In the claw grip, the hand is arched up with 

fewer contact points on the mouse and forms a claw-

like shape. The tip grip is the most extreme grip type. 

It has minimal contact points between the hand and 

the mouse. This type of grip only uses the tip of the 

fingers to steer the entire mouse in extremely rapid 

movements with the least restraint of the hand and 

wrist (Epic Gear 2018). We set the position of our 

sensor for the palm grip and claw grip methods, which 

are used by the most players, to maintain constant 

contact with the player’s hand.  

 

Figure 1. Three types of mouse grip (a) Palm grip (b) Claw grip 
(c) Tip grip  

Outlier Detection Algorithm: Game players often 

show abnormal behaviors when they experience very 

enjoyable or uncomfortable experiences during 

gameplay. In a single-player game, the player has a 

definite behavioral response at the time of the event or 

game play result that has a direct influence on the 

game’s outcome (i.e., success or failure). During the 

game play, which demands continuous input 

(movement, skill, input, etc.) in real time, the user's 

biosignal reactions do not occur much. However, 

when a character being manipulated by the player is in 

danger of imminent to death or fails to clear the game, 

the related biosignal reaction is significant. We 

attempted to analyze specific behaviors by detecting 

biosignal responses at this time. In a competitive game 

with other players, only a few players can win top 

rewards. Thus, the relative comparisons among the 

players are important for determining the leading 

player. There is a high probability that the user's 

abnormal behaviors will be stronger. To detect the 

outlier behavior in single and multiplayer game 

modes, we developed a clustering algorithm to 

identify players who show the most unusual behavior 

at a specific time. We calculated the distance between 

the multimodal data collected using the DTW 

algorithm. Based on the DTW distance matrix, we 

constructed a dendrogram to distinguish the players 

who were out of the cluster in real time. Then, a 

client-based visualization tool was developed to make 

it easier for the development team to check the 

differences among the biosignals of the players in real 

time. 

4 SYSTEM  
AS a physiology multimodal system, we developed 

1) A mouse module for biosignal detection, 2) a DTW 

distance calculator, and 3) a dendrogram based outlier 

detector.  

4.1 Mouse Module for Biosignal Detection 
Our goal in this study was to detect the Galvanic 

Skin Response (GSR), temperature, and motion 

variation in a non-intrusive way. The GSR detects the 

electrical resistance of the skin surface caused by 



208 KANG and PARK 

 

sweating caused by the autonomic nervous system. In 

general, the GSR sensor measures the change in 

resistance between two points at a given time. 

Particularly, it is measured by attaching two electrodes 

to the index finger. We painted conductive paint on a 

mouse click button and measured the GSR with the 

signal received in this area. With this, we were able to 

measure the GSR signal without the player feeling any 

physical contact. We attached a GSR, temperature, 

and motion sensor to an off-the-shelf mouse. The 

detection module and transmitter were integrated into 

the mouse and connected to the USB connector. 

Figure 2 shows our customized mouse hardware. The 

features of each module constituting this hardware are 

as follows. 

 

Figure 2. Mouse module to collect multimodal data (left), and 
the developed Arduino module (right) 

4.2 Biometric information collection device 
The biometric information collection device was 

developed using Arduino. We used WeMos's 

ESP8266 model, which is small enough to be attached 

to a player with a WiFi communication function. The 

built-in Arduino is connected to a mobile battery. The 

WiFi connection had a WiFi network with a 

predetermined name, and the biometric information 

collected through a predetermined internal IP address 

was transmitted as a message. 

4.3 Skin conductivity sensor 
The Grove GSR Skin Sensor Module v1.2 

manufactured by Seeedstudio was used as a skin 

conductivity sensor as an early stage prototype. As the 

play progressed, the electrical signals were accepted 

using two lines electronic painting on two mouse 

buttons to maintain more stable adhesion to the 

player's fingers. In order to obtain a stable and smooth 

graph, Kalman filter was applied for the raw data. 

4.4 Infrared temperature sensor 
To measure the body temperature, we used an 

infrared temperature sensor. The infrared temperature 

sensor was modeled by MLX90614 manufactured by 

Sparkfun Inc. Unlike conventional temperature 

sensors that measure ambient temperature, this sensor 

is capable of measuring the temperature at one point. 

The temperature can be measured from minus 70 

degrees to 380 degrees, and the measurement 

resolution is 0.02 degrees. 

4.5 Nine-axis IMU (Inertial Measurement Unit) 
We used the 9 DoF Sensor Stick model, which was 

manufactured by SparkFun and supports a 3-axis 

accelerometer, 3-axis magnetometer, and 3-axis 

gyroscope (i.e., rotation sensor) to measure the 

player’s mouse movement. The geographical 

information was used to determine whether the cause 

of the unclassifiable state was caused by the 

movement of the player by detecting the movement of 

the user's hand. 

4.6 Data transmission 
The measured values from each sensor were 

transmitted in one string data type. We used a 

delimiter to identify each sensor value: the skin 

conductivity value, the filtered skin conductivity 

value, the 3-axis gyro value, the 3-axis acceleration 

value, the 3-axis geomagnetism value, the calculated 

Pitch value, and the Roll value.  

5 OUTLIER DETECTION  

5.1 Dynamic Time Warping Algorithm 
THE data obtained in this system was time series 

data. We had to determine at what point in the time 

series data and at what intervals we would use for 

specific behavioral analysis. We tried to compare 

behavioral characteristics among users using 

multimodal data for a limited time in the game.  

DTW is a dynamic programming algorithm that 

compares two series data and to determine the 

optimum warping path between them. DTW first 

creates a matrix D of pointwise distances. The 

algorithm then runs through D, enumerates all paths 

w, and finds the optimal warping path Ws. DTWD is 

mainly used to measure the distance between time 

series data of different lengths. To calculate DTWD, 

the starting and ending points must be clearly defined. 

If the signal is nearly horizontal, it is difficult to 

determine the starting and ending points. Since we 

measured the changes of the bio-signals during a 

specific event (i.e., a short game play), the length of 

all the signals could be easily defined. We applied a 

linear interpolation and compared points in one signal 

to point-point segments in the other to produce better 

results. We weighted the DTW score by giving more 

weight heuristically to the conductance level, 

temperature, and 3-axis motions. This weighting is 

useful, especially when measurements are less precise 

for stable parts of the time-serious input data. 

5.2 Hierarchical Clustering   
The similarity value among the players thus 

obtained should determine which player will react 

most prominently. This can be solved by classification 

or clustering techniques. In this case, it is impossible 

to apply machine learning-based classification 

techniques because it is very difficult to obtain prior 
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personalized learning data from the player. For the 

clustering method, it is also difficult to define in 

advance how many clusters can be detected. We used 

Dendrogram which is a hierarchical clustering 

algorithm. The algorithm generates a hierarchy of 

clusters in which, as the level in the hierarchy 

increases, clusters are generated by merging the lower 

level clusters, such that an ordered sequence of 

clusters is obtained (Steinbach et al. 2000). To decide 

a way how the merging is performed, a distance 

measure between clusters needs to be specified, in 

addition to the one that is used to calculate pairwise 

similarities. However, a specific number of clusters 

does not need to be defined for the hierarchy to be 

created.  

To better understand the players, we applied an 

additional classification technique as post-processing. 

Our system was able to accumulate players' 

biomedical signals over time. We classified typical 

signal patterns with these data. We clustered all 

accumulated biosignals up to the current time and 

selected a representative clustering group and 

extracted the representative multimodal patterns by 

calculating the mean value of the multimodal data of 

the selected group. This approach generates 

presentative biosignal templates which is robust with 

few data. It potentially requires less training data than 

machine learning-based or feature-based methods. The 

generated representative pattern can be used as a 

separate classification criterion when enough data is 

acquired. 

5.3 Data Visualization  
The goal of this study is to give the game 

developer a quick feedback about the abnormal factors 

in the game level by detecting the player's outlier 

behavior in a specific event. We found that we needed 

a monitoring tool that provides fast feedback in real 

time. Figure 3 shows our real-time monitoring tool 

interface. This tool can be run simultaneously with 

any game running. All the biosignals measured on the 

mouse are displayed in time series graphs and 

quantified numbers as well as every frame of the 

screenshot of the game desktop to create a movie file. 

In addition, the CSV file is used to export the 

measured data. By marking the time synchronized 

with the recorded video in the CSV file, it is possible 

to easily identify the event in the game. This 

synchronism is advantageous in enhancing data 

interoperability with a game to be analyzed with 

existing biosignal equipment. In addition, it can grasp 

the change of the biological signal in real time, so that 

it can instantly grasp an abnormal element in the game 

level in the test field. 

 

Figure 3. The user interface of the developed monitoring 
system  

6 EXPERIMENT RESULTS 
WE verified our anomaly detection performance 

through two experiments. For this, we developed an 

experimental game using Unity3D engine. The game 

is a typical bullet dodge style in which a player tries to 

avoid bullets flying from four sides for up to 30 

seconds. Figure 4 shows the screenshot of the game. 

We developed two game modes, a single mode and a 

multiplayer mode. In the single player mode, one 

player plays a game, and in the multiplayer mode, five 

players play the game simultaneously. This is to 

confirm the difference between the reactions in the 

single and multiplay experiences. The difficulty was 

created at three levels. We recruited a total of 100 

players (10 groups x 10 player) for experiments. All 

players played the three different levels of difficulty in 

single mode and multiplayer mode. A total of 600 

signal sets were measured (100 players x 3 levels x 2 

modes).  

 

Figure 4. The developed bullet dodge game for an experiment 

We first evaluate the overall signal pattern 

difference according to the level of difficulty in the 

single player mode. Figure 5 shows an average of 10 

group signals at the easiest and the hardest modes. 

This graph shows that the GSR and temperature signal 

received through our hardware is reliable. The X-axis 

of the graph represents the time and the Y-axis the 

sum of the normalized value of skin conductivity and 

temperature values. The red line denotes the end of the 

game. The players' skin conductivity increased as the 
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game difficulty became increased. This is presumably 

because the players felt more nervous as the game 

became more difficult. This result re-confirms the 

strong relationship between the difficulty level and the 

GSR, which was verified in previous biosignal studies 

(Tijs et al. 2008).  

 

 

Figure 5. The GSR signal difference at easy (top) and hard 
(bottom) game play 

Figure 6 shows the average and standard deviation 

of the easy, normal and hard level of difficulty for 10 

groups. In the graph we find that overall biosignal 

averages were higher at the hard level than the easy 

one, and there was almost no difference between the 

normal and hard level. The higher the degree of 

difficulty, the higher the biosignal, but it did not 

increase any more above a certain level. 

In the standard deviation graph, we found that the 

standard deviation at the easy level was much higher 

than at the other levels, and the standard deviation of 

the normal level was slightly higher than the one at the 

hard level. As a result, the biosignals showed very low 

variability with the relatively high average value at the 

hard level, and the low average value showed high 

variability at the easy level.  

In our biosignals compared to GSR signals, the 

temperature was less influenced by the difficulty 

levels. The temperature showed a pattern in which the 

overall temperature rose during the hard level 

gameplay. However, unlike expectations, the rate of 

temperature change during the game play was not 

significantly high. It seemed that the temperature 

sensor did not have a high enough resolution to 

discriminate between signals from different difficulty 

levels. 

 

 

Figure 6. The average (top) and standard deviation (below) bar 
chart of three different difficulty level 

Next, we attempted to determine if our system 

could detect outliers based on the total play data of the 

game in a single play mode. A total of 14% of the 

plays were detected as outliers on average for 

biosignals. The distance was calculated by the DTW 

algorithm and then clustered with the dendrogram 

algorithm. During the clustering process, we tried to 

find representative clustering patterns with 

accumulated biosignals. We generated a representative 

pattern of each signal group with mean values of 

biosignals extracted from the dendrogram cluster 

results. The most representative clustering cases are 

shown in Figure 7. These graphs can be typical 

response patterns of players in the bullet dodge game. 

(a) Graph decreasing; (b) Graph increasing; (c) Graph 

maintaining high pitch; and (d) Graph maintaining low 

pitch. All graphs show a small rise in the initial 

position of the graph. This shows that a certain 

amount of multimodal signal changes occurred in 

common when the players started the game.  

 

Figure 7. Dendrogram clustering results and representative 
graphs 
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In graph (a), the graph is very high and then falls 

off sharply, and in the graph (b), the graph is gradually 

increasing. However, in graphs (c) and (d), the graph 

strength is relatively more stable. Here we found that 

in graph (a) the pattern has some psychological 

stability, even though the players were somewhat 

disturbed with the play result. However, in graph (b) 

the pattern did not decrease the strength of the 

multimodal signals but gradually increased their 

intensity, indicating that they maintained tension and 

excitement during play time. We classify signals with 

the greatest distance difference as outliers based on 

the detected representative patterns. We selected 15 

signals with the biggest difference and confirmed their 

gameplay results. As a result, twelve of the detected 

players failed to clear the game, and three of them 

cleared the game with a relatively high score. These 

results show that specific behaviors are more 

frequently caused by negative results than positive 

results. 

In the second experiment, we tried to confirm the 

difference in the clusters by the relative comparison 

among the players in the multiplayer mode. Five 

players played the same level simultaneously through 

the online mode, which allowed them to experience 

the same play at the same stage. Players were able to 

view their scores in real time, sorted by score and 

displayed on the screen. As a result, our system 

classified one outlier as the 1-4 classification pattern 

at 9% and two outliers as the 2-3 classification pattern 

at 91% in total. Figure 8 shows the clustering case. 

Pattern 1-4 occurred mainly from the competitive play 

among the players. In this pattern, the amount of 

changes in the vital sign and facial expression changes 

was relatively larger, and the play classified as outliers 

was mainly detected from players who scored low at 

the easy level. Pattern 2-3 occurred mainly in the non-

competitive play patterns. This mainly occurred when 

the difference between the players was relatively small 

and the play difficulty was high.  

We tried to evaluate another outlier detection 

model with 3-axis motion data. Figure 9 shows the 

results of the hardest mode and the motion measured 

by the 3-axis sensor. The bullet dodge game used in 

this experiment had more bullets moving in four 

directions as the difficulty increased. At the hardest 

difficulty level, more elaborate control was needed. 

Therefore, at the hardest difficulty level, the range of 

movement became narrower. It can be seen that the 

hardware proposed in this system normally detects the 

movement of such players, which shows that our 

system could detect this characteristic movement of a 

player in the game. We further utilized motion 

information detected in three axes to increase the 

classification accuracy of outliers detected by the 

GSR. We calculated the mean shift distance and 

standard deviation obtained from the three difficulty 

levels and then calculated the difference from the 

sampled value. When the difference was larger than 

the threshold value, we classified it as outliers in terms 

of gameplay. This can be interpreted as an outlier 

based on the player’s control patterns. We used the 

same clustering method as with the 3-axis signal 

analysis. We found that play patterns changed very 

sharply at the hardest difficulty level but moved very 

little at the easiest. 

To evaluate the usefulness of the outlier detection 

results, a brief survey and interview were conducted 

after the gameplay. The questionnaire in the survey 

prompted each player to select the most upsetting 

moment. 69% of the outliers we detected were 

included in the levels that the players had marked. 

After the survey, we conducted a brief interview with 

the players who showed the most changes in the 

psychological measures and asked what they felt and 

why there were psychological fluctuations. The 

majority of reasons of the mental fluctuations were 

“not knowing where to move my spaceship", and 

"feeling nervous because the bullet is faster than I 

expected". This feedback on psychological reactions 

Figure 8. Clustering dendrogram pattern and its time-serious data.  
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gave the most negative outlier factors. Through these 

interviews, we were able to conclude that players 

often experienced outlier behaviors for negative 

reasons rather than for positive reasons. About 35% of 

the subjects said that they did not feel disturbed at the 

moments detected by the system. The reasons are that 

"I usually feel a lot of tension, so I sweat a lot.", " I 

laughed habitually," and "I moved my body frequently 

because I was nervous throughout the experiment.". 

Most of these responses were due to the individual 

habits of the players or intentional behavior to the 

others.  

Table 1 shows the results classified as outliers by 

the system. About 15% of the subjects in the single 

mode and about 11% in multiplayer mode were 

classified as outliers with biosignals. 10% in the single 

mode and about 8% in the multiplayer mode were 

classified as outliers with motion data. 8% in the 

single mode and about 6% in the multiplayer mode 

were classified as outliers with biosignals plus motion 

data. This shows that there is a clearer signal 

difference in the multiplayer mode than in the single 

player mode. The number of cases classified as outlier 

by GSR signals were greater than ones by motion 

data. When classified by the 3-axis sensor, there was a 

difference in behavior pattern, whereas outlier play 

classified by GSR signals had only partial differences 

in the play movement pattern. We conjectured that 

they were psychologically agitated and that their 

movements were thus not accurate. 

  

Figure 9. 3-axis movement at hard (above) and easy (below) 
difficulty levels. 

Table 1. Outlier detection result with proposed system 

Mode Difficulty 
Biosignal 

Outliers 

Motion 

Outliers 

Biosignal & 

Motion 

Outliers 

Single Easy 15% 15% 11% 

Normal 13% 9% 8% 

Hard 18% 6% 5% 

Ave.  15% 10% 8% 

Multi Easy 8% 8% 6% 

Normal 11% 9% 7% 

Hard 14% 7% 5% 

Ave. 11% 8% 6% 

7. DISSCUSSION  
OUR study had some room for improvement in the 

following areas. The GSR signal is sensitive to body 

movements during measurement. If the player does 

not place the fingers on the mouse button 

continuously, a disconnected GSR signal is detected. 

This reduces the accuracy of the detection. This 

happens when the player has a mouse grip shape that 

does not attach the palm to the mouse. Most of the 

players who participated in the game test had a mouse 

grip shape with the palm of the mouse attached to the 

mouse. The GSR signal has a different level of 

perspiration for each player, which can improve the 

accuracy of the classifier when applying the 

personalization process. This study did not go through 

a personalized process. However, if each player has an 

individual mouse for the experiment, we can expect 

personalized classified results by accumulating long 

game play data. 

8. CONCLUSION 
THIS paper suggests an outlier detection technique 

using a multimodal physiological signal analysis 

system. We suggested a mouse type detector module, 

DTW and a dendrogram based clustering algorithm. 

The proposed system detects the major outliers among 

the players in a shooting game and gives the various 

types of useful information to the development team 

in real time, thereby enabling the level designer to 

experience a fast feedback process that was not 

available in the previous development process. We 

showed how affective computing technology can be 

applied in the actual game development process. 

Through this study, we showed that affective 

computing technology can be utilized as a fun 

stimulus element in the content development domain.  
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