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Abstract: The Global Positioning System (GPS) offers the interferometer for attitude 
determination by processing the carrier phase observables. By using carrier phase 
observables, the relative positioning is obtained in centimeter level. GPS interferometry 
has been firstly used in precise static relative positioning, and thereafter in kinematic 
positioning. The carrier phase differential GPS based on interferometer principles can 
solve for the antenna baseline vector, defined as the vector between the antenna 
designated master and one of the slave antennas, connected to a rigid body. Determining 
the unknown baseline vectors between the antennas sits at the heart of GPS-based attitude 
determination. The conventional solution of the baseline vectors based on least-squares 
approach is inherently noisy, which results in the noisy attitude solutions. In this article, 
the complementary Kalman filter (CKF) is employed for solving the baseline vector in 
the attitude determination mechanism to improve the performance, where the receiver-
satellite double differenced observable was utilized as the measurement. By using the 
carrier phase observables, the relative positioning is obtained in centimeter level. 
Employing the CKF provides several advantages, such as accuracy improvement, 
reliability enhancement, and real-time assurance. Simulation results based on the 
conventional method where the least-squares approach is involved, and the proposed 
method where the CKF is involved are compared and discussed. 
 
Keywords: Global positioning system (GPS), attitude determination, complementary 
Kalman filter, baseline vector. 

1 Introduction 
The Global Positioning System (GPS) [Hofmann-Wellenhof, Lichtenegger and Wasle 
(2008); Parkinson, Spilker, Axelrad et al. (1996); Farrell and Barth (1999)] has 
traditionally been a position, velocity and time sensor using the code observable. Code 
and carrier phase observables are two common types of observables that can be extracted 
from the GPS signals. Due to its higher accuracy and precision compared to code 
observables, carrier phase observables can be used to achieve very high accuracy of 
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estimated position. Although carrier phase observable can be very accurately measured, it 
is not possible to use pure carrier phase observable for absolute positioning due to 
inherently contained integer cycle ambiguity. However, it provides relative positioning in 
centimeter level and has been widely applied to surveying, attitude determination [Boccia, 
Amendola and Di Massa (2008); Hauschild, Montenbruck and Langley (2020); Li, Nie, 
Chen et al. (2019); Li, Efatmaneshnik and Dempster (2012); Raskaliyev, Hosi Patel, 
Sobh et al. (2020); Ryzhkov (2019); Zhang, Zhao, Lin et al. (2020)] and precision 
approach and automatic landing.  
If two antennas are attached to a vehicle, a baseline vector defined as a vector from the 
master antenna to one of the other antennas, sometimes referred to as the slave antennas, 
can be determined using relative positioning techniques. Very accurate relative position 
estimate in the centimetre level will be available if the integer ambiguities are properly 
resolved [Boccia, Amendola and Di Massa (2008); Hauschild, Montenbruck and Langley 
(2020); Li, Nie, Chen et al. (2019); Lu, Ma, Wu et al. (2019)]. The attitude of a vehicle can 
be precisely determined using GPS carrier phase measurements from more than two 
antennas attached to the vehicle. Attitude determination using GPS does not have the error 
accumulation, which happens in the inertial navigation system (INS) [Farrell and Barth 
(1999)]. There have been many efforts on real time GPS attitude determination problem. 
Real-time integer ambiguity resolution techniques and attitude determination are two main 
issues to be resolved for determining the vehicle attitude when applying GPS double-
differenced carrier phase. Most of the investigation has been on the real-time integer 
ambiguity resolution techniques and attitude determination from the baseline vectors. GPS 
interferometry has been firstly used in precise static relative positioning, and thereafter in 
kinematic positioning. Some investigators utilized certain constraint factors such as 
baseline length or known geometry to resolve integer ambiguity in real-time manner. 
The carrier phase differential GPS based on interferometer principles can solve for the 
antenna vector, shown as in Fig. 1 [Boccia, Amendola and Di Massa (2008)]. Define the 
baseline vector as the vector between the antenna designated master and one of the slave 
antennas. The approach is based on the difference in the GPS carrier phase received at 
two or more nearby antennas connected to a rigid body. By using carrier phase 
observables, the relative positioning is obtained in centimeter level provided that the 
integer ambiguity is resolved. In the beginning of 1990s, Van Grass et el. [Van Grass and 
Braasch (1991, 1992)] conducted research on the GPS to the field of aircraft attitude 
determination using carrier phase was developed. In their work, the receiver-satellite 
double differenced observable was employed.  
Investigators have presented several Kalman filter [Brown and Hwang (1997); Gelb 
(1974); Lewis (1986); Grewal and Andrews (2001); Jwo and Cho (2007)] related 
applications in the fields of navigation, such as GPS receiver position and velocity 
determination [Brown and Hwang (1997); Farrell and Barth (1999)], inertial navigation 
alignment [Wang, Yang, Wu et al. (2019)], attitude determination [Li, Efatmaneshnik and 
Dempster (2012); Raskaliyev, Hosi Patel, Sobh et al. (2020)], and integrated navigation 
system design [Farrell and Barth (1999)]. Since the conventional baseline vector 
estimation in attitude determination algorithms based on the least-squares technique is 
inherently noisy, the Kalman filter  incorporated into the GPS interferometer to improve 
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the solution is accessible.  
Recent works on the issues of other filter related applications have been popular in 
various areas of expertises. Chen et al. [Chen, Wang, Liu et al. (2019)] presented the 
multiscale fast correlation filtering tracking algorithm based on a feature fusion model. A 
multiscale fast correlation filtering tracking algorithm based on the feature fusion model 
has been proposed. In the paper by Yin et al. [Yin, Shi, Sun et al. (2019)], an efficient 
privacy-preserving collaborative filtering algorithm was proposed based on differential 
privacy protection and time factor. In view of the long execution time and low execution 
efficiency of support vector machine in large-scale training samples, Chen et al. [Chen, 
Xiong, Xu et al. (2019)] proposed a paper where the online incremental and decremental 
learning algorithm was based on the variable support vector machine (VSVM). 

 

 

  
Figure 1: GPS interferometer 

Simulation results of the attitude solutions by the conventional and proposed methods will 
be carried out and discussion will be presented. The remainder of this paper is organized as 
follows. In Section 2, preliminary background on the GPS carrier phase observation model 
is reviewed. The GPS-based attitude determination algorithms are introduced in Section 3. 
Section 4 presents the solutions of the baseline vector. In Section 5, simulation experiments 
are carried out to evaluate the performance on estimation error using the proposed method 
as compared to the conventional approach. Conclusions are given in Section 6. 

2 GPS carrier phase observation model 
The GPS pseudorange observable can be expressed as 

ρρ vdddTdtcr tropion +++−⋅+= )(                                                                                    (1) 

Carrier phase observables in GPS include sum of range, an unknown integer ambiguity 
and some ranging errors given by: 

φλ vddNdTdtcr tropion ++−⋅+−⋅+=Φ )(                                                                          (2) 

where the parameters involved in Eqs. (1) and (2) are defined as: 
r : true range between a satellite and receiver; 
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c : speed of light; 
dt : offset of the satellite clock from GPS time; 
dT : offset of the receiver clock from GPS time; 

iond : ionospheric error; 

tropd : tropospheric error; 

λ : carrier phase wavelength; 
N : carrier phase integer ambiguity; 

ρv , φv : measurement noises of code and carrier phases. 

Since the carrier phase observables contain measurement noise much smaller than that of 
code observables, mosteffort has been made to develop a technique to utilize the carrier 
phase observables. To utilize the carrier phase observables, the number of integer 
wavelengths contained in the phase difference needs to be determined, referred to as the 
‘integer ambiguity resolution’. By measuring the phase of the GPS carrier relative to the 
carrier phase at a reference site, single, double, and triple differences can be employed to 
determine the vector between the reference (designated master) and slave antennas and 
subsequently solve for the solutions of attitude determination problem. The receiver-
satellite double differencing operator is defined as 

( ) ( ) ( ) ( )∇∆ = ∆∇ =∇ − ∆     

where 1 2( ) ( ) ( )∆ = −   denotes the between receiver single differencing operator for 
receivers 1 and 2, and ( ) ( ) ( )i j∇ = −   denotes the  between satellites single differencing 
operator for satellites i and j. It can be seen that the receiver-satellite double-differenced 
observable is essentially formed by a linear combination of four observations:  

12 2 2 1 1( ) {( ) ( ) } {( ) ( ) }ij j i j i∇∆ = − − −                                                                                       (3) 

where the symbols ‘  ’ can be either Φ , ρ , r , or N , and so on.  
The between-receiver single-differenced observable greatly reduces the effects of errors 
associated with the satellites; while the between-satellite single-differenced observable is 
free from receiver clock errors. The receiver-satellite double-differenced observable 
eliminates or greatly reduces the satellite and receiver timing errors. 
Adding the double-differenced noise term, v , and rewriting the observation equation 
between two receivers and two satellites by combining the carrier phase data from master 
(denoted as ‘1’) and slave (denoted as ‘2’) receivers to satellites i  and j , we have 

12 12 12
ij ij ij

ion tropr N d d vλ∇∆Φ =∇∆ + ∇∆ −∇∆ +∇∆ +                                                             (4) 

For a very short baseline, e.g., less than one meter between two antennas, most of the 
ionospheric and tropospheric errors become negligible. The resulting double-differenced 
phase equation when ignoring atmospheric, satellite ephemeris, and residual clock errors  
possesses the form 

12 12 12
ij ij ijr N vλ∇∆Φ =∇∆ + ∇∆ +                                                                                            (5) 
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3 GPS-based attitude determination algorithms 
The rotation angles that relate a coordinate system fixed in the body (body frame) to a 
coordinate system fixed in space are referred to as the attitudes. The purpose of attitude 
determination essentially includs calculation of the three Euler angles, namely roll, pitch, 
and yaw. The space coordinate system is typically defined to be a local level NED (north-
east-down) frame, also referred to as the navigation frame. The baseline vector is defined 
as the vector between the antenna designated master and one of the slave antennas. The 
carrier phase differential GPS based on interferometer principles can solve for the 
antenna vector. The approach is based on the difference in the GPS carrier phase received 
at two or more nearby antennas connected to a rigid body. Multiple antenna vectors from 
an antenna array can be used to calculate the vehicle attitude. In general, three non-
collinear antennas simultaneously receiving signals from two satellites are the minimum 
requirement to determine the three-dimensional attitude. 
Referring to the configuration as in Fig. 2 [Van Grass and Braasch (1991, 1992)], when 
using the carrier phase signal from satellite i , the between-receiver single-differenced 
observable is a linear combination of two phase observables received by two antennas 

i
i

iii N∆+⋅=Φ−Φ=∆Φ λeb21                                                                                             (6) 

Similarly, the single-differenced observable received for the same antennas from 
satellite j  is 

j
j

jjj N∆+⋅=Φ−Φ=∆Φ λeb21                                                                                          (7) 

where b  is the baseline vector formed by two antennas, and e  represents the line-of-sight 
unit vector from antennas to satellites. The receiver-satellite double difference obtained 
by taking two independent single-differenced observables can be shown to be:  

ij
ji

ji
ji

jiij NNN 1212 )()()( ∆∇+−⋅=∆−∆+−⋅=∆Φ−∆Φ=∆Φ∇ λλ eebeeb                         (8) 
Based on Eq. (8), signals received from n  satellites by one GPS interferometer provide 

1n −  independent double differences 
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When the integer ambiguity parameter ( 12
ijN∇∆ ) is resolved, the range-based equivalent 

of Eq. (9) is depicted as follows: 
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which can be expressed in the matrix form 

Gbr =∆∇                                                                                                                          (11) 
There have been various approaches proposed for the integer ambiguity resolution, 
including the ambiguity function, antenna exchange/swap, and baseline rotation methods 
[Li, Nie, Chen et al. (2019)]. The solution of the baseline vector T][ zyx bbb=b  is the 
approximate interferometer coordinates, which directly influence the performance of the 
GPS-based attitude determination. The accuracy of the attitude measurement depends on 
the baseline to noise ratio, and is also a function of antenna placement and GPS satellite 
geometry. There are several methods available for solving vehicle attitudes, typically 
including Euler angle method and quaternion method [Farrell  and Barth (1999)]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Receiver-satellite double differences and interferometer  

Since the vehicle attitude is defined by the angles between the NED type of local frame 
and body frame, therefore, the rotation transformation matrix that relates the body and 
NED frames provides the information for finding the vehicle attitude [Farrell and Barth 
(1999); Van Grass and Braasch (1991, 1992); Kayton and Fried (1997)] 

2b n

C C C S S S C S S C S C
C S C C S S S S C C S S

S S C C C

θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ

θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ ψ

θ ϕ θ ϕ θ

 − + +
 = + − + 
 − 

R                                                    (12) 

where the subscripts n  and b  represent the local and body frames, respectively. Since 
2b nR  is an orthonormal matrix, its inverse can obtained through its transpose 

Z 

X 

Y 

Master Antenna (M) 
  

Baseline vector b  

Slave Antenna (S) 

Signals from 
GPS satellite i 

1∆Φ  

2∆Φ  

Signals from 
GPS satellite j 
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1 T
2 2 2n b b n b n

−= =R R R                                                                                                           (13) 

The vehicle attitude can be obtained through the calculation: 

1
2sin [ (3,1)]b nθ −= −R ； 1 2 (3,2)sin

cos
b nϕ

θ
−  =  
 

R
； 1 2 (2,1)sin

cos
b nψ

θ
−  =  
 

R                        (14) 

In Eq. (12), the notations ( ) sin( )S ≡


  and ( ) cos( )C • ≡   are defined. 

To perform the calculation of a platform attitude, the antennas should be set up as 
nonzero and are on the non-collinear vector. The configuration for the body-frame-
mounted GPS antennas, and for two typical geometries based on two γ  angles are shown 
as in Fig. 3. In this paper, we consider two body-frame-mounted baseline 
vectors: MSA1 −=b  and 2 BS M= −b . The master antenna ( M ) position is located at 

T]000[  described in the body frame, while the two slave antennas AS  and BS  are at 
T[1 0 0] d  and T[cos sin 0] dγ γ , respectively, where d  is the baseline length 

parameter used to adjust the length, and γ  is the angles between two baseline vectors 
which is adjustable for design felxibility. For the case of / 3γ π= , the two slave antennas 

AS  and BS  are located at dT]001[  and dT]0866.05.0[ , respectively; for the case 

of  / 2γ π= , the two slave antennas AS  and BS  are located at T[1 0 0] d  and 
T[0 1 0] d , respectively. Once the baseline vector is determined, estimation of the 

coordinate frame transformation 2
ˆ

b nR  can be achieved and subsequently the 
transformation matrix from body to local frame can be estimated through the following 
calculation [Farrell and Barth (1999)] 

1
2

ˆ ˆ ( )n b
b n

−=R B B                                                                                                                 (15) 

where 1 2 1 2
ˆ ˆ ˆ ˆ ˆ[ ]n n n n n, ,= ×B b b b b  and 1 2 1 2[ ]b b b b b, ,= ×B b b b b .  
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Figure 3: Antenna differential position vector geometry: (a) configuration for body-
frame-mounted GPS antennas; (b) / 3γ π= ; (c) / 2γ π=  

4 Solutions of the baseline vector for the GPS interferometer 
Determination of the unknown baseline between the antennas sits at the heart of attitude 
determination. Eq. (11) interpretes the relation between the double-differenced carrier 
phase observables and the baseline vector. The solution is traditionally obtained based on 
the least-squares approach: 

rGGGb ∆∇= − T1T )(                                                                                                         (16) 

Since the result based on least-squares approach is noisy due to the inherently noisy 
double-differenced measurements, and therefore, the noisy estimation results for the 
baseline vector will result in noisy estimate of the platform/vehicle attitude. Utilization of 
the Kalman filter in the complementary configuration provides an approach for 
improving the accuracy. 

4.1 The Kalman filter 
The purpose of the Kalman filter [Brown and Hwang (1997); Gelb (1974); Lewis (1986); 
Grewal  and Andrews (2001); Jwo and Cho (2007)] is to provide an optimal estimate of 
the system state vector. It has been successfully applied in the integrated GPS/INS 
navigation system design, stand-alone GPS receiver position/velocity determination, and 
the carrier-smoothed-code (CSC) processing. In this paper, the Kalman filter will be 
employed as the attitude estimator. Utilization of the Kalman filter enhances the accuracy 
and reliability of the attitude solution. 
The Kalman filter algorithms are now briefly reviewed. Consider a dynamical system 
whose state is described by a linear, vector differential equation. The process model and 
measurement model are represented as 

Process model: GuFxx +=                                                                                             (17) 
Measurement model: vHxz +=                                                                                      (18) 
It is assumed that )(tu  and )(tv  are white-noise processes with zero means and 
mutually independent:  
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)()]()([ T τδτ −= ttE Quu ; )()]()([ T τδτ −= ttE Rvv ; 0)]()([ T =τvu tE                              (19) 
where )( τδ −t  is the Dirac delta function, ][⋅E  represents expectation, and superscript 
“T” denotes matrix transpose. The discrete-time representation of Eq. (17) has the form 

1 k kk k+ = +x Φ x w                                                                                                            (20) 

and the corresponding state transition matrix and process noise covariance matrix, 
respectively, are given by  

-1 1
k £ [( ) ] ts − ∆= − = FΦ I F e                                                                                               (21) 

τd
0

k
τTTt τ FF eGQGeQ ∫

∆
=                                                                                               (22) 

where t∆  is the step size. These two equations can also be approximated by the Taylor 
series expansion as follows: 

3 3

3k
t tt

2! !
∆ ∆

= + ∆ + + +
2 2F FΦ I F                                                                                      (23) 

T T T
T

k
tt

2!
+ ∆

= ∆ + +
2(FGQG GQG F )Q GQG                                                           (24) 

Numerical approach for evaluating kΦ and kQ  can be found in Brown et al. [Brown and 
Hwang (1997)] and will not be discussed here. The vectors kw and kv are white noise 
sequences with zero means and having zero cross-correlation with each other: 

T[ ]k i k ikδ=E w w Q ; T[ ]k i k ikδ=E v v R ; T[ ]k i =E w v 0                                                        (25) 
where kR  is the measurement noise covariance matrix. The symbol ikδ  stands for the 
Kronecker delta function: 





≠
=

=
ki
ki

ik ,0
,1

δ  

Tab. 1 provides a list for the Kalman filter equations. More detailed discussion can be 
referred to Brown et al. [Brown and Hwang (1997)], and Gelb [Gelb (1974)]. 

Table 1: The Kalman filter equations 
System Model 1k k k k+ = +x Φ x w , )(N~ kk Q0,w   
Measurement Model kkkk vxHz += , )(N~ kk R0,v  
Initial Conditions 0xx =−= )(ˆ)(E 00 ; )()~~(E 000 −= Pxx T  
Kalman Gain Matrix 1TT R)H(PH)H(PK −+−−= ][ kkkkkkk  
State Estimate Update ]ˆ[ˆˆ )(xHzK)(x)(x −−+−=+ kkkkkk  
Error Covariance Update [ ] )(PHKI)(P −−=+ kkkk  
State Estimate Propagation 1ˆ ˆk k k+ − = +x ( ) Φ x ( )  
Error Covariance Propagation 

1k k k k k+ − = + +TP ( ) Φ P ( )Φ Q  
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4.2 The complementary Kalman filter for baseline vector estimation 
The attitude estimator can be designed as a special case of the feedback complementary 
Kalman filter, shown as in Fig. 4. Without an inertial sensor to provide a reference 
trajectory, the process dynamics of the baseline vector states do not represent random 
sensor errors but rather “total” observer dynamics. When using the complementary 
configuration of Kalman filter for attitude estimation processing, attention should be paid 
on modelling the baseline vector kinematics. The baseline vector b  can be calculated as 
the value at time 0tt = , plus a ramp function and a parabolic function. It can, therefore, 
be treated as taking the Taylor’s series expansion for b  about epoch k: 





32

32

1
ttt kkkkk

∆
⋅+

∆
⋅+∆⋅+=+ bbbbb                                                                             (26) 

The accurate description of the dynamics in the Kalman filter process model depends on 
the type of baseline vector (or platform/vehicle on which the antennas are attached) 
dynamics encountered in a given application, discussed as follows. 
 Stationary platform. In the most basic form, the state vector should consist of three 
attitude states. The three-state filter, which includes three components of baseline vector 
in each of the three orthogonal directions, is ideal for a stationary receiver, where the 
random walk model is appropriate for the attitude states 

)(1 tub =                                                                                                                           (27) 

where T
1( ) [u u u ]x y zt =u  with strength (power spectral density, or simply PSD) 

T
1 ][ zyx qqq=q  for the first-order model. The noise involved is a zero mean, 

Gaussian white noise process in each of the three orthogonal directions, and can be 
denoted as ),0(~)( 11 qu Nt . The associated discrete form for this process is 

kkk )( 11 wbb +=+                                                                                                             (28) 

As for the Kalman filter applications, a cure of unmodelled states induced divergence is 
to add additional ‘fictitious’ process noise to the system. The process noise has to be 
added to compensate for the unmodelled dynamics when ignoring the nonlinear terms. 
Therefore, it is necessary to select a sufficiently large 1q  for the process noise to reflect the 
values of higher-order time derivative terms. Nevertheless, an appropriate (sufficiently 
large) 1q  will help to catch the baseline vector dynamics, however, the solution accuracy 
may be decreased. Selection of a smaller 1q  will result in a smoother output, with the risk 
that the baseline vector dynamics may be lost and filter divergence may occur. 
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Figure 4: The complementary Kalman filter for baseline vector estimation 

 Low to medium dynamic platform. If the baseline vector is moving nearly constant 
velocity, the model corresponding to the double integrator will be more suitable: 

)(2 tub = , ),0(~)( 22 qu Nt                                                                                                (29) 

where the noise vector T
2 ]uuu[ zyx 

=u , with the PSD vector T
2 ][ zyx qqq



=q  for 
the second-order model. The associated discrete form is 

kkkk t )( 21 wbbb +∆⋅+=+
  

Selecting the state vector that contains the baseline vector position, b , and the velocity, b . 
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the second-order filter model which possesses six states is then established 
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 High dynamic platform. When the baseline vector velocity cannot reasonably be 
modelled as constant, then acceleration states can be added. 

)(3 tub = , ),0(~)( 33 qu Nt                                                                                              (31) 

where T
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=u , and T
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=q  for the third-order model. The 
associated discrete form can be shown to be 
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In this case, the state vector contains the baseline vector position, b , velocity, b , and 
acceleration, b  

3 1 3 1 3 1
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× × × ≡  x b b b   

the resulting third-order filter model where nine states are involved, then becomes 
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With the double-differenced carrier phases as the measurements, it is seen that, when the 
second-order filter model is employed, the following relation holds: 
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It should be noted that, in the step of ‘update estimate’ in the flow chart, the 
parameter measuredk−∆∇ r  represents the double-differenced measurements from GPS 
satellites, while the predicted double-differenced measurements are 

)(ˆ)(ˆ −=−∆∇ e
kkk bHr                                                                                                          (34) 

in which the measurement matrix for the second-order filter model is given by 
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Based on the discussion above, the proposed algorithm for implementing the attitude 
determination is highlighted as follows: 
1) Obtain the initial states (which include baseline vector and perhaps its time derivatives) 
and error covariance matrix. 
2) Form the Kalman gain matrix. 
3) Compute the predicted double-differenced measurements according to Eq. (34) to be 
shown later. 
4) Update the state vector and error covariance matrix. 
5) Propagate the state estimate to the next measurement epoch using the assumed model 
for the process dynamics. 
6) Construct the rotation transformation matrix according to Eq. (15). 
7) Determine the vehicle attitudes according to Eq. (14). 
A flow chart is provided in Fig. 5 for implementation details. 
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Figure 5: Flow chart of the proposed attitude determination mechanism 

5 Illustrative examples 
To validate the effectiveness of the proposed approach, simulation experiments have been 
carried out to evaluate the performance of the proposed approach in comparison with the 
other conventional methods for GPS-based attitude determination. Simulation was 
conducted for evaluating the filtering estimation performance of attitude solutions. The 
commercial software Satellite Navigation (SATNAV) Toolbox by GPSoft LLC [GPSoft 
LLC (2003)] was employed for generation of the GPS satellite orbits/positions and 
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thereafter, the satellite pseudoranges, carrier phase measurement, and constellation, 
required for simulation. The illustrative pseudorange error sources corrupting GPS 
measurements include ionospheric delay, tropospheric delay, receiver noise and 
multipath errors. 
The antenna geometry is set up as that introduced in Section 3, with the baseline length 
variable d  set to 1 meter and γ  equal to 90 degrees. The attitude kinematics for 
simulation is assumed to be 

( ) 8sin( )
60

t tπϕ = ; ( ) 5sin( )
100

t tπθ = ; ( ) 0.02 3sin( )
200

t t tπψ = +  

for the time-varying roll, pitch, and yaw attitude angles, respectively. For this simulation 
example, a second-order Kalman filter model is employed. The noise variances for the 
process and measurement models are 
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where n  is the number of double-differenced measurements. After the integer ambiguity 
has been resolved, the proposed method in which Kalman filtering is used provides the 
baseline vector estimate with much better accuracy than the conventional method in 
which the least-squares approach is utilized. To avoid the filter divergence, it should be 
noted that setting the process noise variance to zero is not acceptable, since it can be very 
detrimental to the filtering performance, especially if the vehicle is manoeuvring rapidly. 
As a result, when the system reaches steady-state condition, the steady-state gain won’t 
become zero and, subsequently, the filter is able to follow the time-varying attitude 
dynamics. A small value is admissible in practical design. However, one still needs to 
find the good values that meet the specific design/mission requirement. Figs. 6 and 7 
present the estimate of the three-dimensional baseline vectors 1b  and 2b , respectively. 
The estimation accuracy of the baseline vectors are essential and directly influence the 
resulting accuracy of attitude angles. To confirm the correctness of the solutions, the 
estimated lengths for the baseline vectors are examed for validation. The estimated 
lengths for the two baseline vectors are shown as in Fig. 8. The attitude solutions are 
shown in Fig. 9 and thereafter Tab. 2 summarizes the error statistic of attitude solutions 
for both methods. It can be seen that estimation accuracy by the proposed method are 
improved remarkably. Incorporating the Kalman filter could catch the attitude kinematics 
well and achieved improved accuracy. 
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Figure 6: Estimate of the three-dimensional baseline vector 1b   
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Figure 7: Estimate of the three-dimensional baseline vector 2b  
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Figure 8: Estimate of the antenna baseline lengths: 1|| ||b and 2|| ||b  

Table 2: Error statistics for the attitude solutions 

Axis Roll Pitch Yaw 

Methods 

Conventional 
Mean (deg) -0.0444 -0.0621 -0.0373 

Variance (deg2) 1.7160 1.9520 0.4095 

Proposed 
Mean (deg) -0.0351 -0.0606 -0.0243 

Variance (deg2) 0.4445 0.4248 0.0880 
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Figure 9: Estimate of attitude angles and errors: (a) roll; (b) pitch; (c) yaw 

6 Conclusions 
The conventional attitude solutions provided by the interferometry technique are 
inherently noisy. This is due to the fact that, when the least-squares approach is employed, 
the estimate of baseline vectors based on the noisy double-differenced measurements will 
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be also inherently noisy. One way to improve the attitude solutions can be achieved by 
using the Kalman filter for estimating the baseline vectors. Details on implementing the 
proposed algorithms have been provided. Numerical simulations by employing a second 
order Kalman filter have been carried out. Results show that, by incorporating the 
Kalman filter into the GPS interferometer, noise errors in baseline vector solutions has 
been remarkably mitigated and therefore the estimation accuracy of the attitude solutions 
has been significantly improved. 
In the example given in this paper, both the process and measurement noise parameters 
remained constant based on the assumption of stationary case. In the cases of high 
dynamic or multipath contaminated environment, the parameters in the two models need 
to be adequately tuned. Multipath is known as one of the dominant error sources in high 
accuracy satellite navigation systems. The multipath errors are among uncorrelated errors 
that are not cancelled out during observation differencing. When implementing the 
Kalman filter approach, poor knowledge of the noise statistics may seriously degrade the 
etimation performance, and even provoke the filter divergence. Further investigation can 
be carried on using the adaptive Kalman filter as the noise-adaptive filter for tuning the 
noise covariance matrices in the multipath environments. 
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