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Abstract: In recent years, the development in the field of computer-aided diagnosis (CAD) 
has increased rapidly. Many traditional machine learning algorithms have been proposed 
for identifying the pathological brain using magnetic resonance images. The existing 
algorithms have drawbacks with respect to their accuracy, efficiency, and limited learning 
processes. To address these issues, we propose a pathological brain tumour detection 
method that utilizes the Weiner filter to improve the image contrast, 2D- discrete wavelet 
transformation (2D-DWT) to extract the features, probabilistic principal component 
analysis (PPCA) and linear discriminant analysis (LDA) to normalize and reduce the 
features, and a feed-forward neural network (FNN) and modified particle swarm 
optimization (MPSO) with ant colony optimization (ACO) to improve the accuracy, 
stability, and overcome fitting issues in the classification of brain magnetic resonance 
images. The proposed method achieves better results than other existing algorithms. 
 
Keywords: Discrete wavelet transformation, ant colony optimization, feed-forward 
neural network, linear discriminant analysis. 

1 Introduction 
Brain tumours are life-threatening growths faced by people of different age groups around 
the world. The pathological brain detection system (PBDS) was developed to check the 
human brain for the effects of tumours [Mohsin, Sheikh and Abbas (2009); Sanchez, 
Garcia, Angulo et al. (2010)] and has proven to be highly effective in directing health care 
practitioners to make correct decisions. Magnetic resonance imaging (MRI) is the advanced 
imaging technology used in the PBDS to analyse the human brain. In addition to this, MRI 
is radiation-free and non-invasive compared to CT scans and X-rays. Compared with other 
techniques, MRI produces clearer images of the brain tissue [Li, Chao and Zhang (2019)]. 
The aforementioned properties have made the MRI a popular tool for brain diagnosis. 
However, analysing the large volumes of brain images manually is a tedious task. Hence, 
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an automated system is required to classify MRI images quickly and accurately. CAD is 
one of the automated systems that can be utilized to perform diagnoses processes.  
Many traditional algorithms have been proposed for the PBDS, but they are currently in 
their initial stage due to the difficulty involved in the implementation of feature 
extraction and the classification of images. The main goal of this paper is to improve the 
accuracy of the PBDS when classifying MR images. Section 2 details the progress of 
related work in the pre-processing, feature extraction, and classification of brain images. 
Section 3 contains the methodology of a proposed model for the PBDS system. Section 4 
provides an experimental analysis of the proposed model, along with different parameters. 
Finally, Section 5 concludes the research work. 

2 Related work 
In recent years, many researchers have proposed image classification mechanisms for brain 
imaging. Hebli et al. [Hebli and Gupta (2017)] proposed the three-level sub-band 
approximation of 2D-DWT for feature extraction in MR images. They used DAUB-4 
decomposition filters with a support vector machine (SVM) and self-organization maps 
(SOM) to classify the images. This method achieved 98% accuracy in MR image 
classification. The major drawback of the SOM classifier is that it requires more computation 
time to classify the images. El-Dahshan et al. [El-Dahshan, Hosny and Salem (2010)] 
developed the improved DWT (IDWT) algorithm for extracting features of brain MRIs. This 
method implements the k-nearest neighbor and feed-forward ANN algorithms to differentiate 
between normal and abnormal images. The accuracy of the algorithm is almost 97% in 
identifying normal images and 98% in abnormal images. The major problem with the IDWT 
algorithm is that the features of MR images are not compared with an online database. Zhang 
et al. [Zhang, Wang and Wu (2010)] proposed hybrid algorithms for the classification of 
brain images. They used three-level sub-band 2D-DWT in all of the algorithms for feature 
extraction. However, different image classifiers, such as feed-forward ANN [Shakeel, Tobely, 
Al-Feel et al. (2019)], the adaptive chaotic PSO algorithm [Saba, Mohamed, El-Affendi et al. 
(2020)], the scaled chaotic ABC algorithm [Zhang, Wu and Wang (2011)], kernel SVM 
[Zhang and Wu (2012)], and KSVM+PSO [Zhang, Wang, Ji et al. (2013)] have been used for 
the classification of brain images. Das et al. [Das, Chowdhury and Kundu (2013)] developed 
the Ripplet transformations for extracting the different features from the MR images. The 
PCA has been employed for feature reduction and LS-SVM is currently implemented for the 
classification of diseased and non-diseased brains through MR images. The Ripplet method 
achieved high accuracy in terms of classification when it was applied to larger datasets. This 
method involves a complex procedure when it is operated with online datasets. Saritha et al. 
[Saritha, Joseph and Mathew (2013)] proposed a feature extraction method using the wavelet 
entropy SWP. This method computes the entropy of the DAUB-4 wavelet and implements 
the PNN to classify brain images. The results of the feature extraction method are effective in 
comparison with other algorithms [Mudukshiwale, Amit and Patil (2019); Armin, Sharif, 
Yasmin et al. (2018), Sharma, Purohit and Mukherjee (2018); Othman, Abdullah and Kamal 
(2011); Padlia and Sharma (2019)].  
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3 Methodology 
3.1 Pre-processing phase 
The Wiener filter is a powerful tool for pre-processing MR images. This method is used 
to decrease signal noise by replacing the impulse filter [Naimi, Adamou and Mitiche 
(2015)]. Wiener filtering is one of the approaches that convey a trade-off between the 
noise smoothing and inverse filtering that provides the noise smoothing and inverts the 
image blurring. Wiener filtering uses the stochastic framework for applying the linear 
approximation to the original brain MR image. Eq. (1) shows the Wiener filtering method 
in the pre-processing stage in the Fourier transform. 
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where B (f1, f2) represents the blurring filter, Sx (f1, f2) represents the original brain MR 
image power spectrum, and Sn (f1, f2) represents the adaptive noise.  

3.2 Feature extraction phase 
In the proposed model, the discrete wavelet transform (DWT) is used as the feature 
extractor. For each training input MR image, we apply the DWT to extract dyadic scales 
and positions. The basic elements of the DWT are as follows: consider that x(t) is the 
square integral function. Ψ(t) is the real-valued wavelet related to x(t), which is a 
continuous wavelet transform given as 
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where Wψ (α, β) represents the wavelet transform, α represents the dilation factor and β 
represents the translation parameter. Eq. (3) shows the discrete variation of Eq. (2), which 
can be obtained by restraining α and β to a discrete lattice (α=2j and β=2jk). 
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where the aj,k(n) and dj,k(n) represent the coefficients of the approximation and detailed 
components, respectively. The low pass filter is represented by G(n) and the high pass 
filter by H(n). The wavelet scale factors are represented by j and the wavelet translation 
factor is represented by k. Figs. 1 and 2 show the representation of the 2D-DWT as it is 
applied in each dimension to the training input image. Here, we have taken a sample 
pathological brain image and applied the three-level decomposition of WT. 
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Figure 1: Signal progression analysis 
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Figure 2: Three-Level 2D-DWT decomposition on pathological brain image 

Fig. 2 shows the four sub-bands of the image, such as LL1, LH1, HL1, and HH1 at level 1. 
The sub-band LL1(aj) is further decomposed by using 2D-DWT and can be considered for 
approximating the components. The LH1(djh), HL1(djv), and HH1(djd) sub-bands are 
considered for detailed component analysis in the horizontal direction, vertical direction, 
and diagonal direction. Different types of wavelet transforms have gained popularity in 
wavelet analysis, among which the Haar wavelet has been used regularly in various 
applications [El-Dahshan, Hosny and Salem (2010)]. The Haar wavelet performs well in 
noisy conditions and can also be implemented in both orthogonal and symmetric form. The 
Haar wavelet extracts the basic components present in the image with high performance. In 
the proposed work, the approximation coefficients are computed in the level-3 Haar 
wavelet decomposition image. These coefficients are utilized as the feature vector for the 
image. Algorithm 1 shows the feature extraction procedure for brain MR images. 

Algorithm 1: Feature Extraction for Brain MR Images 
Input: K -> number of brain MR images of size N×N 
Output: FM [L, M] -> feature matrix, 
M -> number of features, 
wac( ) -> wavelet approximation coefficients of MR images, 
  EM -> empty matrix, 
  EV -> empty vector, 
Ij -> jth MR image 
Begin 
Set i=1, M -> N/8×N/8/* number of features to be extracted from image*/ 
Create EM [1:N/8,1:N/8], EV [1,1:M] 
For j in 1 to K do 
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  EM [1:N/8,1:N/8] -> wac(Ij) 
  While I<=M do 
For α in 1 to (N/8) do  
For β in 1 to (N/8) do 
  EV [1,1:M] ->EM [α,β] 
  i++ 
  End for  
  End for 
  End while 
Obtain FM which contain all vectors EV 
 End for  
End 

3.3 Feature normalization and reduction 
The features computed from Algorithm 1 have high dimensionality and require 
significant space and computational power. Therefore, there is a requirement for a feature 
reduction technique to reduce the dimensionality and extract the candidate features. 
PPCA is an important approach that reduces the high dimension features to low 
dimension features by connecting them to u, which is a P-dimensional observation vector, 
and v, which is a k-dimensional unobserved vector that performs normalization with zero 
mean and unit variance. Algorithm 2 shows the normalization with PPCA. 

Algorithm 2: Feature Normalization and Reduction 
Input: FM [L, M] -> feature matrix, 
  M -> number of features, 
O [1, 1:M], P [1, 1:M] -> empty vectors 
PPCA( ) -> Probabilistic principal component analysis function 
Output: η [1: L, 1: M] -> normalized FM 
μ( ) -> compute mean to the features 
S( ) -> compute standard deviation to the features 
ρ[1: L, 1 : R] -> reduced FM 
Begin 
Create an empty η [1: L, 1: M], O [1, 1:M], P [1, 1:M] 
O [1, 1:M] ->μ(FM) 
P [1, 1:M] ->S(FM) 
for i in 1 to m do 
  η [1: L, 1: M] -> (FM [1: L, i] – O [1, i])/P [1, i] 
 End for 
Select R 
 Create an empty ρ [1: L, 1: R] 
 Ρ [1: L, 1: R] -> PPCA(η, R) 
  Get ρ 
End 
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According to Algorithm 1, a normalized FM of size L×Mi and a reduced FM of size L×R 
are obtained after applying the PPCA. The reduced FM is smaller than the normalized 
FM. The PPCA removes the class labels for the data and the data is converted into an 
unsupervised mode. To address the unsupervised data, LDA is introduced. LDA is a 
supervised approach that distinguishes the classes that are outliers and differ significantly 
from the similarities in the data. Conventional LDA is not suitable for high dimensional 
features and small sample dataset problems. In these scenarios, LDA forms only a 
singular scalar matrix (SW). To overcome the limitations of LDA, PPCA+LDA is used in 
the proposed model, where P-dimensional data is reduced using the PPCA and k-
dimensional data is reduced using LDA. 

3.4 Classification using the FNN and MPSOACO 
In this section, we discuss the preliminaries of feed-forward neural networks (FNNs), MPSO, 
and ACO, after which we describe the proposed FNN and MPSOACO algorithm in detail. 

3.4.1 Feed-forward neural network (FNN) 
Since 2000, FNN is a well-known pattern recognition classifier and has been widely used 
by many researchers. The training dataset is given as input to the FNN and performs the 
batch mode training [Zhang, Wang, Ji et al. (2013)]. The configuration of the network is 
given as HiP ×Hhl ×Hop. Here, the two-layer neural network with input layer Hip, hidden 
layer Hhl, and output layer Hop identify that the brain is normal or pathological. 
Consider that ω1 and ω2 are the weighted matrices between Hip and Hhl, respectively. The 
following steps are then used to update the weighted values to train the dataset 
[Monochehri and Kolahan (2014)]. 
Step 1: The Hhl outputs are estimated using Eq. (4). 
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where ci represents the ith input value in the network, Aj represents the hidden layer output, 
fhl represents the Hhl activation function, and the sigmoid function is shown in Eq. (5). 
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Step 2: The Hop outputs are estimated using Eq. (5). 
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where fop denotes the Hop activation function and the values of the weights are assigned 
randomly. 
Step 3: The MSE is used to express the error based on the difference between the target 
value and output value [Zhang, Wang and Dong (2014); Zhang, Wang, Ji et al. (2014)]. 
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where Tk denotes the authentic variable kth value, Hs denotes the number of samples. 
Step 4: The fitness function for the Hs samples is given as 
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where ω denotes the vector of (ω1, ω2).  

3.4.2 Modified particle swarm optimization (MPSO) 
The PSO is an efficient optimization algorithm used for the process of searching through 
the group of particles that will be used in the updated iterative procedure. To find the 
optimal solution, every particle that moves in the direction of solution is selected as the 
local best (Pbest) or global best (gbest) in the group [Zhang, Wang, Ji et al. (2014)]. 
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where TP represents the total particles present in the swarm, v denotes the current iteration 
value, i denotes the particle index, f represents the function and P denotes the particle 
position. Eq. (11) is used to update the position P and velocity V of the particles.  
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)1()()1( ++=+ vVvPvP iii                                                                            (12) 

where a1 and a2 are the accelerated coefficients, r1 and r2 are the random variables that lie 
between 0 and 1. The proposed modified PSO (MPSO) is framed by adding the inertia ω 
to Eq. (11) 

))()(())(),(()()1( 2211 vPvgravPviPravVvV ibestibesti −+−+∗=+ ω                      (13) 

where the inertia ω represents the weight factor that balances the local search and global 
search.  

3.4.3 Ant colony optimization mechanism (ACO) 
The ACO algorithm proposed by Khorram et al. [Khorram and Yazdi (2019)] has proven to 
be effective in solving many optimization problems. In the ACO algorithm, ants 
simultaneously search for paths to the food. The ants choose the paths based on the quantity 
of pheromone left by the ants in the various paths. The probability of selecting a path 
depends on the amount of pheromone that has accumulated on a particular path. Eq. (14) 
shows the probability computation for selecting a path. 
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where χij represents the pheromone intensity of the ith ant in the jth pathway. K is used to 
identify whether the jth path needs to be selected or not. Τij is the probability of selecting 
the ith ant based on the jth path intensity. The fitness function for the feature subset 
generated at the time that the ant reaches food is evaluated using Eq. (15). 
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where AC denotes the feature subset accuracy, n denotes the number of ants in the feature 
subset, and λ denotes the weight factor. After finishing one cycle, the pheromone values 
of all paths are updated. Eq. (16) shows the pheromone update mechanism. 
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where Δχij is the incremental value of the pheromone update and ρ denotes the expiration 
of the updated pheromone trail. Δχij is further explained as follows: 
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In Eq. (17), S denotes the set of paths and b denotes the control parameter used to 
regulate the pheromone quantity.  

3.4.4 Proposed method 
The proposed method is composed of four modules: pre-processing, feature extraction, 
feature normalization and reduction, and classification. Fig. 3 shows the block diagram of 
the proposed pathological brain detection model (PBDM). The pre-processing is 
performed by using the Weiner filter, the feature extraction is conducted using the 2D-
DWT, feature normalization and reduction are processed by PPCA and LDA respectively, 
and the classification is performed using the FNN and MPSOACO. Algorithm 3 shows a 
detailed analysis of the proposed PBD model. 



 
 
 
Discrete Wavelet Transmission and Modified PSO with ACO                              1089 

Weiner Filter 2D-DWT PPCA+LDA Reduced Feature Set Feed Forward Neural 
Network

Training Modified PSO with 
ACO(MPSOACO)

Trained FNN2D-DWT

Normal Pathological

PC 
Coefficients 

Reduced Feature Set

Optimized 
weights 

Evaluation 
on testing 

data

Ground Truth 
MR images

Query MR 
images

Preprocessing
Feature 

Extraction
Feature Normalization and Reduction Classification

Offline model

Online model

Weiner Filter

  
Figure 3: Block diagram of the proposed PBD model 

Algorithm 3: Proposed PBD model 

Input: N-> Number of Brain MR images,  
Output: Classified images (Normal or pathological) 
Begin 
Offline learning: 
for i in 1 to N do  
 Apply wiener filter for all the images to improve the contrast. 
 Apply three level 2D-DWT and create a set of feature vectors with dimension P. 
end for  
for j in 1 to N do 
 Execute PPCA and LDA transmission for obtaining wavelet coefficients. 
end for 
Perform the cross validation on the generated data set and generate the training data, validation data and 
testing data. 
Train the FNN algorithm using the MPSOACO algorithm and select the optimal weights at input layer and 
hidden layer. 
Calculate the output layer weights using the optimal weights at input layer and hidden layer. 
Measure the performance of the classifier based on the testing data set. 
Online learning:  
The user submits the query image to the system.  
Apply Wiener filter for the image to perform pre-processing. 
Apply three-level 2D-DWT and create a set of feature vectors with dimension P. 
Obtain a reduced feature set by multiplying the wavelet coefficient by the feature vector coefficients. 
Input the reduced feature set to the FNN classifier that is trained by MPSOACO and determine whether the 
image is normal or pathological. 
End 
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4 Experimental analyses 
The proposed model was simulated using the MATLAB 9.5 R2018b in a PC with a 
configuration of 3.7 GHz, 12 GB RAM, and a Windows 10 operating system. The 
performance evaluation of the proposed model is compared with the other existing 
systems is shown in this section.  

Table 1: Parameter setting for K-fold validation of datasets 

 

Datasets 

Total Samples Training Testing Validation 

Normal Pathological Normal Pathological Normal Pathological Normal Pathological 

Dataset-66 18 48 12 32 3 8 3 8 

Dataset-160 20 140 12 84 4 28 4 28 

Dataset-255 35 220 21 132 7 44 7 44 

4.1 Dataset and cross-validation 
To measure the performance of the proposed model, three datasets are used: Dataset-66 
[Das, Chowdhary and Kundu (2013)], Dataset-160 [Nayak, Das and Majhi (2016)], and 
Dataset-255 [Zhang, Sun, Phillips et al. (2016)], which contain 66, 160, and 255 images 
of 256×256 plane resolution, respectively [http://med.harvard.edu/AANLIB]. Fig. 4 
shows the k-fold dataset cross-validation. Fig. 5 shows the pathological brain image 
dataset containing different types of diseases, such as (a) sarcoma, (b) glioma, (c) 
meningioma, (d) cerebral toxoplasmosis, (e) Creutzfeldt-Jakob disease, (f) herpes 
encephalitis, (g) Huntington’s disease, (h) Alzheimer’s disease, (i) cerebral calcinosis, (j) 
motor neuron disease, and (k) Pick’s disease. Tab. 1 shows the training validation and 
testing images. We selected 20 images randomly for each type of disease and one normal 
brain and seven pathological brains. In Dataset-66, 18 normal brains and 48 pathological 
brains are selected; in Dataset-160, 20 normal brains and 140 pathological brains are 
selected; and in Dataset-255, 35 normal brains and 230 pathological brains are selected. 

Investigation1

Investigation2

Investigation3

Investigation4

Investigation5

Training 

Validation

Testing

 

Figure 4: k-fold cross-validation for single iteration 
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4.2 Feature illustration and reduction results 
As an initial step, we applied wiener filter to improve the contrast of the images. Then, 
we carried three level 2D-DWT method (Algorithm 1) to divide the image in to 10 sub 
bands as shown in Fig. 3. This mechanism produces 32×32=1024 feature coefficients. 
The top left corner in the three level 2D-DWT image denotes the approximation 
coefficients. The size of the images is taken as 256×256=65536 which is of larger size.  
We applied PPCA +LDA on the Dataset-66, Dataset-160 and Dataset-255. Each image in 
the datasets is rearranged with a row vector and in the form of two dimensional matrix. 
Algorithm 2 shows the normalization mechanism using the PPCA+LDA. It reduces the 
features from 65536 to 1024 by considering the three level 2D-DWT transformations. Fig. 
6 shows the cumulative variance with respect to the principal components (features). It is 
observed that, PCA requires 13 features whereas PCA+LDA and PPCA+LDA require 
only 3 features when the threshold is fixed as 0.95. Therefore, PPCA+LDA are selected 
as suitable mechanism for identifying the significant components. 

 
(a)  

 
(b)    

 
         (c) 

 
(d)  

 
(e)   

 
(f)  

 
        (g) 

 
        (h) 

 
         (i) 

 
          (j) 

 
         (k) 

 
         (l) 

Figure 5: Sample ground truth brain MR images 

4.3 Performance evaluation of the FNN-MPSOACO classifier 
The performance of the FNN-MPSOACO classifier was tested with different numbers of 
features and the accuracies of Dataset-66, Dataset-160, and Dataset-255. Tab. 2 shows 
the classification accuracy of the proposed method with the existing KNN, BPNN, SVM, 
and extreme learning machine (ELM) classifiers. The proposed classifier achieved an 
accuracy of 100% in Dataset-66, 100% in Dataset-160, and 98.95% in Dataset-255, as 
illustrated in Fig. 7.  
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The classification accuracy of the proposed method is compared with the existing methods 
such as DWT+SVM [Mehrotra, Ansari, and Agrawal (2020)], DWT+SOM [Wahlang, 
Sharma, Saha et al. (2018)], DWT+SVM+RBF [Dixit and Nanda (2019)], 
DWT+PCA+FNN+SCABC [Zhang, Wu and Wang (2011)], DWT+PCA+FNN+ACPSO 
[Zhang, Wang and Wu (2010)], DWT+PCA+BPNN+SCG [Zhang, Dong, Wu et al. (2011)], 
DWT+PCA+KSVM [Zhang and Wu (2012)], DWT+PCA+ADBRF [Nayak, Dash and 
Majhi (2016)], RT+PCA+LS-SVM [Das, Chowdhury and Kundu (2013)], WT+PCA+ABC-
SPSO-FNN [Wang, Zhang, Dong et al. (2015)], DWT+PCA+k-NN [El-Dahshan, Hosny 
and Salem (2010)], and DWT+SUR+ADBSVM [Ranjan Nayak, Dash and Majhi (2017)], 
based on the average results of 10 iterations using five-fold cross-validation.  
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Figure 6: Cumulative variance vs. the number of features for three different datasets 

Table 2: Comparison of classification accuracy 
Classifiers Accuracy (%) 

Dataset-66 Dataset-160 Dataset-255 
KNN 98.49 98.12 95.69 
BPNN 100.00 98.75 95.29 
SVM 100.00 100.00 98.82 
ELM 100.00 99.94 99.18 
FNN-MPSOACO 100.00 100.00 98.95 

To evaluate the performance of the proposed model, the size of the population is taken as 
100, which consist of 50 particles and 50 ants, a1 and a2 values are taken as 2 and ω is taken 
as 0.75. The maximum iterations are restricted to 1000. Tab. 3 shows the performance 
comparison in terms of classification accuracy of the proposed and existing methods. It is 
observed that the proposed DWT+PPCA+LDA+FNN+MPSOACO method achieved 
accuracy of 100% in Dataset-66, 100% in Dataset-160 and 99.72% in Dataset-255. 
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Figure 7: Classification accuracy of KNN, BPNN, SVM, ELM and FNN-MPSOACO 
over three datasets 

Table 3: Accuracy comparison of different methods 
 
Approaches 

 
Feature 

Accuracy (%) 
Dataset-66 Dataset-160 Dataset-255 

DWT+SVM [Mehrotra, Ansari and Agrawal (2020)] 4761 96.15 95.38 94.05 
DWT+SOM [Wahlang, Sharma, Saha, et al. (2018)] 4761 94.00 93.17 91.65 
DWT+SVM+RBF [Dixit and Nanda (2019)] 4761 98.00 97.15 96.37 
DWT+PCA+FNN+SCABC [Zhang, Wu and Wang (2011)] 19 100.00 98.75 97.38 
DWT+PCA+FNN+ACPSO [ Zhang, Wang and Wu (2010)] 19 100.00 97.54 96.79 
DWT+PCA+BPNN+SCG [Zhang, Dong,Wu et al. (2011)] 19 100.00 98.93 97.81 
DWT+PCA+KSVM [Zhang and Wu (2012)] 19 100.00 98.29 97.14 
DWT+PCA+ADBRF [Nayak, Dash and Majhi (2016)] 13 100.00 99.30 98.44 
RT+PCA+LS-SVM [Das, Chowdhury and Kundu (2013)] 9 100.00 99.38 98.82 
WT+PCA+ABC-SPSO-FNN [Wang, Zhang, Dong et al. (2015)] 7 100.00 98.88 98.43 
DWT+PCA+k-NN [El-Dahshan, Hosny and Salem (2010)] 7 98.00 97.54 96.79 
DWT+SUR+ADBSVM [Ranjan Nayak, Dash and Majhi (2017)] 7 100.00 99.22 98.43 

DWT+PPCA+LDA+FNN+MPSOACO  
(Proposed) 

3 100.00 100.00 99.72 

4.4 Computing time analysis 
Tab. 4 shows the analysis of the computing time for each step in the 
DWT+PPCA+LDA+FNN+MPSOACO method. We considered offline learning and 
online prediction approaches to find the computing time of the proposed method. The 
offline learning is the process of finding a pathological brain with an available dataset, 
whereas online prediction uses real-time data. For the offline mechanism, the Weiner 
filter last 0.252 s, DWT lasts 0.685 s, PPCA lasts 0.243 s, LDA lasts 0.312 s, and FNN-
MPSOACO lasts 202.745 s. For the online mechanism, the Weiner filter lasts 0.002 s, 
DWT lasts 0.003 s, PC lasts 0.003 s, and prediction lasts 0.001 s.  
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Table 4: Computing time analysis of the DWT+PPCA+LDA+FNN+MPSOACO for 
dataset-255 

Offline Learning  Time (s) 
Weiner filter 0.252 
DWT 0.685 
PPCA 0.243 
LDA 0.312 
FNN-MPSOACO 202.745 
Online Prediction Time (s) 
Weiner filter 0.002 
DWT 0.003 
PC 0.003 
Prediction 0.001 

5 Conclusion 
This paper proposed the DWT+PPCA+LDA+FNN-MPSOACO image classification 
model for identifying pathological brains in MR images. The proposed model achieved 
the highest classification accuracy of 99.72% compared with other existing algorithms. 
As an initial step, the proposed method uses Weiner + DWT to extract the features from 
the brain MR images. PPCA+LDA is used to perform the normalization and feature 
reduction. The FNN-MPSOACO algorithm is used to classify the MR images into normal 
and pathological brains. In the future, the proposed method could be extended to evaluate 
other images, such as CT scans, PET, and MRSI, and the proposed algorithm could be 
improved by adding the deep learning mechanism.  
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