
 
 
 
Computers, Materials & Continua                        CMC, vol.65, no.2, pp.1237-1251, 2020 

CMC. doi:10.32604/cmc.2020.011492                                                        www.techscience.com/journal/cmc 

 
 

A New Idea of Fractal-Fractional Derivative with Power Law 
Kernel for Free Convection Heat Transfer in a Channel Flow 

between Two Static Upright Parallel Plates 
 

Dolat Khan1, Gohar Ali1, Arshad Khan2, Ilyas Khan3, *, Yu-Ming Chu4, 5 and 
Kottakkaran Sooppy Nisar6 

 
 
Abstract: Nowadays some new ideas of fractional derivatives have been used 
successfully in the present research community to study different types of mathematical 
models. Amongst them, the significant models of fluids and heat or mass transfer are on 
priority. Most recently a new idea of fractal-fractional derivative is introduced; however, 
it is not used for heat transfer in channel flow. In this article, we have studied this new 
idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow 
problem. More exactly, we have considered the free convection heat transfer for a 
Newtonian fluid. The flow is bounded between two parallel static plates. One of the 
plates is heated constantly. The proposed problem is modeled with a fractal fractional 
derivative operator with a power-law kernel and solved via the Laplace transform method 
to find out the exact solution. The results are graphically analyzed via MathCad-15 
software to study the behavior of fractal parameters and fractional parameter. For the 
influence of temperature and velocity profile, it is observed that the fractional parameter 
raised the velocity and temperature as compared to the fractal operator. Therefore, a 
combined approach of fractal fractional explains the memory of the function better than 
fractional only. 
 
Keywords: Fractal-fractional derivative, power law kernel, convection heat transfer, 
upright parallel plates. 

1 Introduction 
The phenomenon of heat transfer is studied by different researchers in many fields of 
study. Convection heat transfer plays a significant role in fluids dynamics. There is a lot 
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of work done by scientists in heat transfer in fluids dynamics such as [Sooppy, Khan, 
Khan et al. (2019)] investigated the phenomenon of heat transfer in a drilling nanoliquid 
to study the effect of clay nanoparticles. Shah et al. [Shah, Zafar and Fetecau (2018)] 
studied the analysis of free convection flow for a fractional viscous fluid. They used to 
apply shear stress to the fluid and the geometry is taken as a vertical plate. Furthermore, 
Rout et al. [Rout, Parida, and Panda (2013)] investigated the heat and mass transfer in a 
moving geometry. The heat source is considered for convective surface conditions. Shah et 
al. [Shah and Khan (2016)] discussed the heat transfer for a second-grade fluid, where the 
geometry is an oscillating plate. The solution is obtained in exact form via the Laplace 
transform method. Some recent applications via different researchers are reported as 
Sheikholeslami et al. [Sheikholeslami, Hayat and Alsaedi (2017)], [Ghara, Das, Maji et al. 
(2012)], [Raju, Sandeep, Sugunamma et al. (2016)] and [Vieru, Fetecau and Fetecau 
(2015)]. Imran et al. [Imran, Shah and Khan et al. (2018)] investigated the natural 
convection flow as an application of non-integer Caputo time-fractional derivatives. 
Recently, fractional calculus took the attention of scientists due to its significant role in 
daily life applications. Especially in fluid dynamics, it plays a significant role to 
generalize the models. Khan et al. [Khan, Abro, Tassaddiq et al. (2017)] using a 
fractional operator to study the starting solution of second-grade fluid. The operator is 
based on the exponential function. Atangana et al. [Atangana and Nieto (2015)] claimed 
that this fractional operator is suitable for some physical problems not for all. Ali et al. 
[Ali, Saqib, Khan et al. (2016)] used this fractional operator to find out the exact solution 
for free convection flow with the influence of MHD. The Walters-B fluid model is 
studied for the applications of this operator. However, the existing operators have some 
issues of non-singularity and non-locality. To solve this problem, Atangana et al. 
[Atangana and Baleanu (2016a)], [Atangana and Baleanu (2016b)] investigated the new 
fractional operator based on Mittag-Leffler function. Alkahtani [Alkahtani (2016)] used 
Atangana-Baleanu fractional operator to find out the solution or Chua’s circuit model. 
Furthermore, Sheikh et al. [Sheikh, Ali, Saqib et al. (2017)] reported a comparison of 
Atangana and Baleanu and Caputo-Fabrizio fractional operators. Casson fluid model is 
studied with the chemical reaction and heat generation. The enchantment of heat transfer 
is reported by Abro et al. [Abro, Memon, Abro et al. (2019)] using a fractional operator 
to generalize the study. The Jeffrey nanofluid is reported as an application in solar energy. 
Recently Arif et al. [Arif, Ali, Sheikh et al. (2019)] reported a comparative study for 
Couette flow with couple stress fluids. A time-fractional model with a non-local kernel is 
taken. Atangana and Baleanu and Caputo-Fabrizio operators are used for the comparison. 
Furthermore, Li et al. [Li, Feng and Chen (2017)] investigate improved kernel results for 
some FPT problems based on simple observations. The same author Li et al. [Li, Liu, 
Wang et al. (2019)] use the linear kernel for complementary maximal strip recovery. 
Recently, Abro et al. [Abro, Memon and Uqaili (2018)] used the same fractional operator 
for the comparative analysis of RL and RC electrical circuits. The Laplace technique is 
used to elaborate on the solution. Fan et al. [Fan and He (2012)] investigated the fractal 
derivative model to study air permeability as a porous medium. Chen [Chen (2006)] and 
Chen et al. [Chen, Sun, Zhang et al. (2010)] investigated the diffusion modeling for the 
diffusion equation by incorporate the fractal derivative and fractal time-space. Recently, 
Atangana [Atangana (2017)] investigated the connectivity between fractal and fractional 
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derivatives to calculate the problems in daily life problems. Furthermore, in the previous 
year Atangana et al. [Atangana and Khan (2019)], [Atangana and Shafiq (2019)] and 
Atangana et al. [Atangana and Qureshi (2019)] reported a detailed analysis on newly 
introduced operators to solve fractal fractional differential equations. Recently in 2020, 
Imran [Imran (2020)] investigated the fractal fractional derivative to find out the solution or 
the viscose fluid flow. The flow is in between two parallel infinite plates with the influence 
of MHD. Up to date, no one has applied the new idea of the fractal-fractional derivative to 
study the heat transfer problem with fluid flow via fractal-fractional derivative approach. 
Therefore, this new approach of the fractal-fractional derivative is applied here in this work 
for the first time to heat transfer problem combined with fluid motion.  
More specifically, this article is focused on the application of the fractal-fractional model 
of Newtonian viscose fluid between parallel infinite plates. Free convection flow with 
heat transfer is considered with physical boundary conditions. The fluid motion is 
between an upright channel such that the parallel plates are in a static position and the 
motion is induced due to convection heating of the plates. Such a study using the new 
idea of fractal-fractional derivatives with the power-law kernel is not reported yet. The 
problem solution is obtained by using the Laplace technique. The effects of both fractal, 
as well as fractional parameters on temperature and velocity, are plotted via Mathcad-15 
and discussed.  

2 Mathematical formulation  
Here we supposed that an incompressible Newtonian viscous fluid in two infinite parallel 
plates. The distance between plates is L  in a coordinate system. It is assumed that both 
plate are at reset and the temperature of the lower pate is 0Θ , while the upper plate 
temperature is wΘ . The flow of the fluid is due to free convection as show in Fig. 1. The 
Reynolds number neglected and no pressure gradient is assumed in the direction of flow, 
the governing equation with assumed boundary conditions are:   
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The physical conditions at initial and boundary are: 
( ) ( ) 0,0 0, ,0 for all  0,u y y y= Θ = Θ ≥   (3) 

( ) ( ) 00, 0, 0, , 0,u t t t= Θ = Θ >   (4) 
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the dimensionless variables are elaborate for non-dimensionalization:  
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By using (6) the dimensionless form of 1-5 is, for simplicity * sign is dropped.  
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3 Solution with fractal fractional model 
The fractal fractional model of Eqs. (7) and (8) as follows:  
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By applying Laplace transform of Eqs. (9)-(13) we get  
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Solution of Eqs. (14) and (15) subjected to Eqs. (16)-(18) is  
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where ( )1,
a

γ α β β β= + = Γ  

Eqs. (19) and (20) can be written as in the form of:  
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After Laplace inverse of Eqs. (21) and (22) we get: 
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4 Results and discussion 
A new approach of a fractal-fractional derivative is used in this problem to study the heat 
transfer due to free convection when the flow is between two parallel upright plates. The 
fractal-fractional model is developed with given physical boundary conditions. After the 
dimensionless analysis, the problem is solved via the Laplace technique to find the exact 
solution to the problem. The influence of fractal, as well as fractional operators on 
different profiles, is plotted graphically and discussed. Figs. 2 and 3 show the influence 
of fractal fraction parameters on temperature and velocity respectively. It is observed that 
influence of fractal fractional parameter decrease the temperature and as a result, the 
velocity decreases. The behavior of the fractional parameter without a fractal operator on 
temperature and velocity is highlighted in Figs. 3 and 8 respectively. It is observed that 
increasing fractional parameter, decrease both the temperature and velocity. It is because 
of the power-law kernel. This shows the memory effect of the velocity and temperature at 
a certain time. The variation of Pr on temperature is plotted in Fig. 4, the lower 
temperature is found out at the greeter value Pr . Fig. 5 shows the critical point for fractal 
fractional parameters on temperature while Fig. 6 shows the critical point for fractional 
parameter on temperature. It is observed that critical pints are different for fractal and 
fractional parameters. The thermal Grashof number for the fractal fractional derivative is 
highlighted in Fig. 9. It is noticed that the greater value of Gr results the greater velocity. 
The effect of Pr  drop the temperature, as a result, decreases the velocity which is shown 
in Fig. 10. Figs. 11 and 12 highlights the critical point for Figs. 7 and 8 respectively.    
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Figure 1: Physical sketch 

 
Figure 2: Variation of fractal parameter on temperature 
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Figure 3: Variation of fractional parameter on temperature 

 
Figure 4: Variation of Pr  on temperature 
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Figure 5: Variation of t  for fractal parameter on temperature 

 
Figure 6: Variation of t  for fractional parameter on temperature 
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Figure 7: Variation of fractal parameter on velocity 

 
Figure 8: Variation of fractional parameter on velocity 
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Figure 9: Variation of Gr  on velocity 

 
Figure 10: Variation of Pr  on velocity 
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Figure 11: Variation of t  for fractal parameter on velocity 

 
Figure 12: Variation of t  for fractional parameter on velocity 

5 Conclusion 
This article is dealt with the new idea in fractional calculus that is fractal fractional 
derivative in fluid dynamic flow to the study of free convection flow of viscous 
Newtonian fluid in an upright infinite parallel plates channel. The main outcomes of this 
study are given below.  
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• Fractal fractional and fractional parameter highlight the decreasing effect for both 
velocity as well as temperature for the large value of fractal-fractional and fractional 
parameter. 

• For the greater fractal-fractional parameter greater value and for the fractional 
parameter for temperature and velocity. 

• The behaviour of temperature for the lower time is decreased and after critical point 
it is revised for both fractal-fractional and fractional parameters and the same 
behaviour is notified for velocity. 

• For velocity the fractal-fractional parameter gives better results for the memory 
effect compare to the fractional parameter. 
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