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Abstract: Nowadays, the world is fighting a dangerous form of Coronavirus that 
represents an emerging pandemic. Since its early appearance in China Wuhan city, many 
countries undertook several strict regulations including lockdowns and social distancing 
measures. Unfortunately, these procedures have badly impacted the world economy. 
Detecting and isolating positive/probable virus infected cases using a tree tracking 
mechanism constitutes a backbone for containing and resisting such fast spreading 
disease. For helping this hard effort, this research presents an innovative case study based 
on big data processing techniques to build a complete tracking system able to identify the 
central areas of infected/suspected people, and the new suspected cases using health 
records integration with mobile stations spatio-temporal data logs. The main idea is to 
identify the positive cases historical movements by tracking their phone location for the 
last 14 days (i.e., the virus incubation period). Then, by acquiring the citizen’s mobile 
phone locations for the same period, the system will be able to measure the Euclidean 
distances between positive case locations and other nearby people to identify the in-
contact suspected-cases using parallel clustering and classification techniques. Moreover, 
the daily change of the clusters size and its centroids will be used to predict new regions 
of infection, as well as, new cases. Moreover, this approach will support infection 
avoidance by alerting people approaching areas of high probability of infection using their 
mobile GPS location. This case study has been developed as a simulation system 
consisting of three components; positive cases/citizens movement’s data generation 
subsystem, big data processing platform including CPU/GPU tasks, and data 
visualization/map geotagging subsystem. The processing of such a big data system 
requires intensive computing tasks. Therefore, GPU tasks carried out to achieve high 
performance and accelerate the data processing. According to the simulated system 
results, data partitioning and processing speed up measures have been examined.   
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1 Introduction 
COVID-19 is a member of the coronaviruses family. These viruses may infect animals or 
humans.  For humans, coronaviruses are able to cause respiratory malfunction ranging 
from the common cold to Middle East Respiratory Syndrome (MERS) and Severe Acute 
Respiratory Syndrome (SARS) [WHO (2020b)].  
Regarding the COVID-19 pandemic outbreak, the World Health Organization (Situation 
Report-147), has recorded up to 7.8 million confirmed cases and+431,541 deaths 
worldwide so far [WHO (2020a)].  
It is believed that the patient-zero case has originated in Wuhan/China. Subsequently, 
several disorders such as kidney disorder and fluid development in the lungs became 
more common in those with critical cases. The just-completed guideline from the 
Chinese health authorities describes three main transmission ways of the COVID-19, 
droplets transmission, contact transmission, and aerosol transmission. Droplets 
transmission occurs when inhaling droplets produced by an infected person in close 
proximity. The contact transmission occurs when touching a surface contaminated with 
the virus and then touching one’s own mouth, nose, or eyes. The aerosol transmission 
occurs when inhaling a high dose of infected aerosols into the lungs in a relatively closed 
environment [Adhikari, Meng, Wu et al. (2020)]. Hence, avoidance of contact with 
infected cases or around infected areas and maintaining a safe distance to others is 
representing the essential defensive mechanism [CDC (2020)]. Also, countries with a 
few cases of COVID-19 should rely on their digital surveillance systems for timely case 
finding, isolate, test, and trace every contact subject to containment. 
The governments’ healthcare systems should control this outbreak among their citizens 
by using surveillance systems to track their movements in an automated manner to 
effectively identify the in-contact persons with positive cases and isolate them. 
Processing such a huge amount of data will eventually need to be adjusted for big data 
frameworks and ‘many-core’ high-performance technology, to support the measures 
against COVID-19. As such, correct and accurate information will be required to apply the 
best regulations and avoid severe economic side effects. 
Spatio-temporal data of the population is considered to be a key input for intervention 
policy to control the spreading of epidemic diseases because such diseases are contagious, 
and spreads significantly with human mobility [Peak, Wesolowski, Erbach-Schoenberg et 
al. (2018)]. Call detail records (CDR) data (i.e., mobile phone data) has been attracting 
the attention of policymakers and researchers in various fields because of the capacity of 
capturing population movement patterns and trajectories. For large scale monitoring, 
CDR data from mobile network base stations provide excellent spatial patterns that 
reflect the urban life temporal dynamics, and it could potentially become a new way to 
extract or identify less evident problems [Shibasaki (2017)]. 
The Association (GSMA) has developed guidelines for the appropriate use of (CDR) and 
Standard Messaging Services (SMS) data in emergency situations such as using mobile 
phone data for responding to the Ebola outbreak [GSMA (2014)]. In addition to the 
analysis of movements between locations, social network analysis methods are also 
commonly applied to CDR data to find connections between mobile phone users [Chen, 
Crespi, Ortiz et al. (2017)]. Surveillance data from mobile devices has been used to 
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construct a realistic contact network and determine the changes in that network during the 
Ebola outbreak [Chen Crespi, Ortiz et al. (2017)]. Moreover, the smartphones can be 
used as simple self-monitoring tools. For example, EbolaTracks, a SMS based platform 
has been used for self-monitoring of persons who visited an Ebola-infected region 
[Cinnamon, Jones and Adger (2016)]. Usually, Mobile phones became used to collect 
and transmit GPS coordinates to be recorded and used for further mapping analysis [Lee, 
Asher, Goldlust et al. (2016)]. Similarly, Bluetooth sensors on the phones can also be 
used to generate fine-grained contact networks that able to track in-door contacts. 
Using such techniques will increase the ability to predict early the positive cases 
especially when the critical care resources and intensive care beds are limited, and 
therefore clinicians must make difficult decisions to choose urgent mild-cases to help in 
time. Many research works have studied such healthcare challenges using Artificial 
Intelligence (AI) to provide accurate decision support information [Gianfrancesco, 
Tamang, Yazdany et al. (2018); Shortliffe and Sepúlveda (2018)]. Furthermore, machine 
learning algorithms can use big data sets to identify risk levels based on clustering and 
classification methods to divide observation data into related groups that being used later 
for model training and data labeling [Jiang, Coffee, Bari et al. (2020)]. 
Originally, big data frameworks are used to process a vast amount of data in structured data 
formats like Hive [Abdel Azez, Khafagy and Omara (2018); Shanoda, Senbel and Khafagy 
(2014)], and unstructured formats in the recommender systems [Mohamed, Khafagy and 
Ibrahim (2019)]. Moreover, analyzing healthcare data for positive cases with maintaining 
data privacy and security in concern is the urgent solution today. Also, high-performance 
computing technologies such as manycore computing system is crucial to shortening the 
time required for processing such huge data. So, big data processing technology can ease 
the process of detecting infected cases automatically and estimate the infection risk in real-
time. To achieve this, the system must distribute the collected citizen- movement dataset 
and the positive-cases dataset over a large spark cluster and calculate the Euclidean distance 
between every two points. By identifying the levels of unsafe interaction distance 
thresholds, we can simply classify unsafe distances into three risk levels; minor, moderate, 
and significant. Therefore, a suitable action could be taken for every case. 
Unsafe distances clustering will enable the system to identify the suspected areas of 
infection, as well as, classify citizens into levels of risk that will enable governments to 
apply more accurate and lower impact regulations on their citizen’s life. Such complex 
machine learning techniques will be conducted in a daily regular manner therefore, such 
huge and time-consuming processing requires more intelligent parallel processing 
frameworks that allows using of GPU and CPU concurrently [Haney and Mohan (2013)]. 
The work in this paper proposes a tracking system for COVID-19 cases to fight disease 
outbreak. Measuring the distance between in contact citizens every day is representing 
the backbone of our system to detect the suspected cases of infection, as well as, predict 
and estimate the rate of increase in new cases and the new regions of infection. According 
to the proposed system, a high performance processing big data platform in addition to 
many-core processors are used to achieve a real-time tracking solution that builds an 
accurate tree data structure to represent the relationships between cases, explains disease 
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spread, and provides end-users mobile application with web service to assess their risk level 
and avoid the regions of infection. 
The proposed COVID-19 cases tracking system is based on three main components; 
positive cases and citizen’s movement datasets generation, heterogeneous CPU/GPU big 
data processing platform, and data visualization and map geotagging service. These 
components are discussed in more detail in the next section. 

2 The proposed tracking system for COVID-19 cases  
Several researchers are working on introducing prediction techniques for COVID-19 
spread around the world. Tracking positive cases locations using CDR data and using 
time series prediction techniques to forecast disease spread levels are the growing areas 
of research today [Held and Meyer (2019)].  
Tracking the geographic locations of the positive cases, and studying the pathogen 
genetic DNA sequences are examined in Harris et al. [Harris, Cartwright, Cartwright et 
al. (2013); Jombart and Ahmed (2011)]. 
Interestingly, advanced genetic data has triggered several research-works to exploit 
different types of data in parallel [Mollentze, Nel, Townsend et al. (2014); Zaharia, 
Chowdhury, Das et al. (2012)]. However, not all of these works are widely available as 
computer software or a complete platform for infection outbreak control, this kind of 
analysis is still lacking because it depends on free open-source projects with a poor 
community of support. Moreover, advanced mathematical models have been proposed 
for forecasting spreading epidemics such as Ebola [Carias, O’Hagan, Gambhir et al. 
(2019)], and novel coronavirus [Read, Bridgen, Cummings et al. (2020)]. 
Unfortunately, all of these works didn’t figure out the solutions for how to track the 
suspected cases that are in contact with confirmed cases and provide authorities with 
such critical information to help their citizens and avoid the infection. The majority of 
these works have focused on the visualization of growth curves in number of confirmed 
deaths and recovered cases without real investigation about the pattern of spread or the 
suggested areas for being infectious. 
Therefore, the work in this paper tries to tackle this challenge by introducing a novel big 
data-based tracking system for automatically identifying the infected cases and predicting 
the in-contact (suspected) cases by measuring the distance between them using mobile 
phone location data. Also, the proposed system can cluster positive cases into central areas 
and classify the infection risk of COVID-19 into three risk levels in real-time. A high-
performance framework will be used to process such big data tasks and take advantage of 
GPU computing significant features to speed up the processing time of parallel tasks, 
Euclidian distance measure, K-Means clustering, and Decision Trees classification.  
The proposed tracking system consists of three components; datasets generation, big data 
processing framework, visualization and geotagging service. The architecture of the 
proposed tracking system is described in Fig. 1. The data collecting component is 
responsible for receiving streaming data from telecommunication-companies (cell phone 
stations) logs, in addition to the information about confirmed cases from the official health 
records daily. The big data framework (spark cluster) component is responsible for 
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distributing such huge data into cluster nodes and performs several parallel processing tasks, 
including Euclidean distance measure between two latitude/longitude points, clustering 
positive cases locations using K-Means and classifying cell phone numbers into their risk 
status using decision trees.  The data visualization and geotagging service is responsible for 
providing decision-makers with a real-time dashboard about infection status, and providing 
web services that can integrate with mobile application to provide the user with a geotagged 
areas of infection or suspicion and tracking the cell-phone locations on the infection 
annotated map. 

 
Figure 1: The proposed tracking system architecture 

2.1 Data collecting/generation component 
The zero-patient confirmed case of the COVID-19 virus represents the seed of the 
infection. Hence, the in contact person with this case is representing a new source of 
infection, and in turn, becomes a new seed. The way of tracking the source cases and 
their infected cases is the most effective way to control virus spread and build a solid tree 
for later investigations and prediction [Möller, du Plessis and Stadler (2018)]. Using a 
citizen’s cell phone location tracking is an interesting technique to identify the proximate 
person based on the distance measure. The main advantage of this technique is that many 
suspected cases from a single source can be derived by measuring the distance between 
their moving locations points and all other citizens for the last 14 days. This kind of data is 
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available at cell-phone communication companies, as well as, positive cases (seeds) can be 
collected from official health records. Also, these data are updatable regularly, so the 
calculation can be performed on a regular basis.  
So, the spread of COVID-19 can be digitally represented using a tree to narrow the area 
of investigation for close persons whose confirmed as a contagion source using medical 
tests. The positive case will be added as a tree node with its probable sources of infection 
as parents. In addition, the places in which this person went in last 14 days will be 
recursively added to the suspected places tree. Hence, each infection case can generate 
many infection instances as shown in Figs. 2 and 3. 

 
Figure 2: Calculated cell phone distance to 
identify suspected cases 

 
Figure 3: Calculated cell phone distance 
to identify suspected places 

The red person represents the seed of infection, and the red dashed oval represents an 
area of suspicion. According to Fig. 2, the orange person is a suspected case of infection, 
which needs fast medical examination while the green person outside the suspicion area 
is safe. In case of any suspected person confirmed as a positive case, this case will be 
converted to a new seed of infection as well. The places in Fig. 3 are put in the suspicion 
area which may have persons in contact with a positive case.  
In case of any suspected instance confirmed as a positive case, the area of suspicion will 
increase, and so the calculation of distance threshold will re-execute recursively to 
identify the new suspected cases and update the infection tree as shown in Fig. 4. 
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Figure 4: Infection tree and case relations 

Additional benefits of the tree structure are the ability to identify the missed 
relationships between cases and easily predict these relationships, as well as, the tree is 
a parallel enabled data structure that able to search through using parallel search 
algorithms in a distributed processing framework. 

2.2 Big data processing component 
The centralized design of real-time tracking of confirmed cases alongside the citizen’s 
locations requires measuring the distances for each citizen’s movements per day. For 
instance, if we have 100 moving points for each citizen per a day and on average 
1 million smartphones, hence, we have 100 million points per day to calculate its distance 
with the confirmed cases points. In addition, we should include in this calculation the 
points of the last 14 days’ for all citizens and all positive cases in the same period. 
Therefore, we have more than 108 points to measure their distances per a day. Moreover, 
the system has two extra tasks to do; 1) clustering the infection cases to highlight central 
areas of infection and clustering the areas of suspicion to maintain a list of highly 
suspected areas of infection for all suspected cases locations. 2) For each citizen who 
requests to assess his risk status, the system should classify the status into three levels of 
risk (i.e., minor, moderate, and significant). These intensive calculations require high-
performance parallel architecture to maintain its calculation periodically. 
Spark architecture [Zaharia, Chowdhury, Das et al. (2012)] is considered faster than 
Hadoop architecture because of its in-memory data processing technique, which 
outperforms Hadoop from 10 to 100 times [Dittrich and Quiané-Ruiz (2012)]. Therefore, 
the system uses spark jobs to execute almost tasks besides spark has the Mlib library, 
which contains a lot of implemented machine learning algorithms that saved a lot of 
effort [Assefi, Behravesh, Liu et al. (2017)]. In addition, Spark architecture supports 
python scikit-learn library to easily demonstrate all algorithms and Matplot library to 
visualize the demonstration results [Hao and Ho (2019)]. 
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To achieve noticeable acceleration, we decided to choose the K-Means algorithm for cases 
clustering and Decision Tree algorithm for risk assessment classification because these 
algorithms have been implemented with CUDA language and can run on GPU using spark 
CUDA driver [Soyata (2018)]. Fig. 5 illustrates the spark cluster architecture, and the 
algorithms (i.e., K-Means and Decision Tree) which will be executed on spark environment. 

 
Figure 5: Spark cluster architecture 

According to Fig. 5, the data processing passes through four steps as follows: 

Step 1: Data preprocessing 
CDR data contains all information about the cell-phone connections, such as, which cell 
towers the SIM card connected to at any time, the connection source and destinations 
(endpoints). So, CDR data can approximately identify the location of both sides of the 
connection. Telecommunication networks use the base tower location to infer the 
geographic location of the connected devices with accuracy varies from 50 to 300 meters 
only in dense urban environments. Also, the availability of data in most countries is limited 
to intelligence agencies and requires a lot of security approval procedures and regulations. 
Besides, the variation of data format requires data preprocessing and cleansing before the 
data being ready for analysis. In sum, this geospatial information is extremely useful for 
social distancing measures in application development [Shibasaki (2017)]. 
The preprocessing step is responsible for cleansing data from non-important attributes, 
deleting redundant or fixed position points, and reformatting data into a suitable format 
that includes a set of attributes which presented in Tab. 1. 
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Table 1: CDR Data attributes [Shibasaki (2017)] 
Attribute Type Notes 
Mobile phone number String Maybe irreversibly encrypted using a one to one 

hash function 
Timestamp Date Time The heartbeat of communication between the base 

station and the device in the format of YYYY-
MM-DD 

Device longitude Double The geographical location of a base station 
Device latitude Double 
Base station radio frequency Float Frequency of radio signal between a base station 

and device 
Base station longitude Double The geographical location of the device 
Base station latitude Double 
Signal strength Float The strength of the signal between the base station 

and device 

Step 2: Measure euclidian distance 
After the preprocessing step, the longitude and latitude of the cell phone become 
available.  So, the daily updated citizen’s phone location dataset is ready to be 
compared with the daily updated health records. The distance between every two 
locations can be measured using the Euclidean distance Haversine formula (see Eq. (1)) 
[Monawar, Mahmud and Hira (2017)]. This formula is used to calculate the great-circle 
distance between two points (the shortest distance over the earth’s surface). 

𝑑𝑑 = 2𝑅𝑅 ∗ sin−1 ��𝑠𝑠𝑠𝑠𝑠𝑠2 �
𝜃𝜃2 − 𝜃𝜃1

2
� + cos𝜃𝜃1 ∗ cos𝜃𝜃2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠2 �

λ2 − λ1
2

��                     (1) 

where: θ1, 𝜃𝜃2: Latitude of point 1 and latitude of point 2 (in radians), λ1, λ2: Longitude of 
point 1 and longitude of point 2 (in radians), R: Earth radius where mean radius=6,371 km. 
Because there is a large amount of data to be processed daily, the citizen’s locations 
dataset will be split across cluster nodes to run in parallel. The distribution of blocks 
between CPU and GPU machines will be relative to the computation power of each 
processing node. therefore, the task partitioner can determine the amount of time required 
to calculate the distance between 1000 points on both CPU and GPU, and then decide the 
ratio of data dividing alpha (α) between all devices using static partitioning schema 
[Grewe, Wang and O’Boyle (2013)] and the haversine formula CUDA implementation 
for GPU [Harris (2015)]. 
Based on the measured distances, the system can build/update the suspected cases dataset 
that will guide health decision-makers to decide the priority cases examination. 

Step 3: K-means clustering 
The positive cases dataset is incrementally updated with the positive cases everyday. So, 
identifying the central areas of infection will be more beneficial to focus the 
governmental lockdown and isolation procedures on these areas besides saving health 
care and hygiene resources. Similarly, defining the central areas of suspicion will help 
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early identification for the expected positive cases, as well as, apply more accurate 
isolation restrictions. Hence, the parallel K-Means clustering technique based on 
geospatial data is used to identify the central areas of infection/suspicion in real-time 
[Mills, Sripathi, Kumar et al. (2018)].  

Step 4: Decision tree classification 
The mobile application user can ask to assess the health risk status using the integrated 
web service. Hence, the system will extract the last 14 day movements of this user, and 
according to the distances thresholds from the confirmed or suspected cases, it can be 
classified into safe or at risk with the measured level (i.e., minor, moderate, significant). 
Hence, the parallel decision tree classification technique based on distance measure 
results has been used to classify every person regularly and push warning notification to 
those persons and the government agencies about whose at a significant risk levels in 
real-time [Wu, Wang, Yan et al. (2019)]. 

3 Dashboard and geotagging component 
Visualizing and reporting the results of tracked citizens’ geospatial data in combination 
with the infected cases is the most important and crucial component for system 
stakeholders. Subsequently, they can evaluate the overall situation of their citizens and 
decide the suitable precautions to be applied on time. 
The live dashboard will pull data from the analyzed datasets to show the confirmed, 
suspected, and recovered cases of coronavirus along with the deaths numbers. Similarly, 
the central regions of infection or suspicion with their cases counts will be tagged on the 
country map. The interactive series of infection and suspicion counts for last month will 
be available as well. Also, a person's movements tracking map will be available to 
investigate each suspected case location and determine the in-contact cases. 
Geotagging is a process where geographical data such as pictures and videos can be tagged 
with latitude and longitude points of that place to help end-users to reach or evaluate this 
place easily. So, geotagged maps of positive and suspected cases will be available for 
decision-makers, similarly, a geotagged map for certain citizen movements. 
Normally, statistical reports about cases counts and their distributions with their places and 
time will be available. Also, future forecasting tasks can be applied to predict the disease 
cases increase rate and identify the new places of infection for a short period like a week. 

4 Case study experiments 
4.1 Used datasets 
Because of the lack of CDR Datasets, COVID-19 positive cases Spatio-temporal data, and 
the general security approvals constraints to accessing such datasets in almost all 
countries, two random datasets have been generated to simulate the positive cases and 
citizens’ CDR information. During the generation of these datasets, the distribution of 
Egyptian population density in Egyptian cities are considered using longitude and latitude 
points of Egypt coordinates [World Population Review (2020)]. The datasets simulate the 
movement’s points in March 2020 at different times throughout the day. The positive 
cases dataset contains 2000 records (geolocation points) with just 200 unique mobile 
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numbers (person) where dates starting from 01 March 2020 and ending on 15 March 2020. 
Similarly, the Citizens movements’ dataset contains 2 Million records with just 20 K 
unique mobile number where dates start from 01 March 2020 until 30 March 2020. 

4.2 Environment setup 
The case study has been implemented using a virtual environment consisting of three 
virtual machines with Ubuntu LTS 16.04 operating system. Each machine has 5 GB of 
RAM, 50 GB of HDD, and two processing cores with a speed of 2.7 GHz for each.  
One of these machines has NVIDIA Quadro K3000M GPU with 2 GB of RAM. All 
machines act as worker nodes except one of them, which act as a master node. 

4.3 Experimental results 
K-means algorithm requires the number of the cluster as input. So, HDSCAN has used to 
determine the number of clusters based on Euclidean distance between two points as a 
threshold [Santos, Syed, Naldi et al. (2019)]. The positive cases and its clusters are shown 
in Figs. 6 and 7.  

 
Figure 6: COVID-19 Positive cases points 
for 15 day 

Figure 7: COVID-19 positive cases K-
Means clusters 
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Figure 8: suspected cases clusters using 
K-Means 

 
Figure 9: Citizen location tracking with 
infection clusters geotagging 

After calculating the Euclidian distances between citizens and positive cases locations, 
suspected cases dataset has been generated with 106K locations and just 1770 suspected 
unique mobile numbers. The geotagging of suspected cases clusters according to its risk 
levels are shown in Fig. 8 while the red clusters are the significant risk regions with the 
number of suspected cases>150, the orange clusters are the moderate risk regions with 
the number of suspected cases>50, and the green clusters are the minor risk clusters with 
the number of suspected cases<=50. 
These distance thresholds are proposed because there is no official medical bound for the 
distance till now. Also, the person in contact with infected staff/material within any area 
may be at risk of infection. Therefore, these distance thresholds can be customized 
according to the world health organization recommendations.  
The citizen tracking with the geotagging map is presented in Fig. 9. This map is a 
responsive service that every user can use to evaluate the location risk severity. Also, 
health authorities can use this map to track the suspected cases status and identify their 
relationship with the confirmed cases. Besides, the mobile application integration to such 
web service can help citizens by sending them notifications about their risk assessment 
and warning them from approaching infected/suspected regions. 
The effect of using a GPU node in this case study is noticable. GPU is more oriented to 
compute-intensive tasks rather than data-intensive tasks because the cost of data transfer 
between GPU memory and the host memory is expensive and time-consuming [Zhu, Hou, 
Wang et al. (2019)]. Hence, data cleansing and preprocessing are executed by CPU nodes 
only. On the other hand, the level of data partitioning for compute-intensive tasks is 

These clusters have generated just for simulation. These points have generated just for simulation. 
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determined according to the static data partitioning technique based on the algorithm time 
and space complexity [Grewe, Wang and O’Boyle (2013)]. Fig. 10 shows the task divide 
ratio between CPU and GPU nodes for compute-intensive tasks. According to Fig. 10, we 
can conclude that K-Means task has the largest percentage share on GPU with about 78% 
followed by haversine with 62% and decision tree with 48%.   

 
Figure 10: Tasks partitioning percentage between CPU and GPU nodes 

 
Figure 11: Tasks execution time on different system configrations 
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Figure 12: Tasks speedup with different system configurations 

The percentage of data partitioning between CPU and GPU nodes in Figs. 11, 12 
indicates that GPU can save the execution time and achieve a noticeable speedup 
compared to CPU. The execution time and the achieved speedup has tested for every 
algorithm on four different system configurations, one CPU node, one GPU node, three 
CPU nodes, and 2 CPU nodes with a GPU node. According to the results in Fig. 11, 12, 
the heterogeneous system containing two CPUs and one GPU achieves the lowest 
execution time with all algorithms, On the other hand, the highest speedup, where K-
Means algorithm achieved +7x speedup followed by Haversine algorithm and Decision 
Tree algorithm with +5x and 4x respectively has obtained on the three CPU nodes or one 
GPU node system configuration. Hence, the static data partitioning technique between 
CPU and GPU in big data systems is applicable and can achieve remarkable performance. 
To conclude, the speedup depends on the number of computing devices that work 
concurrently in addition to the task degree of parallelism. Hence, any increase in the 
number of GPU devices or their processing power capabilities would accelerate the 
speedup steadily. 

5 Conclusion & future work 
In this paper, a novel approach for controlling the spread of COVID-19 and tracking the 
infected cases has been studied. A big data framework has been proposed to help 
governments and health authorities in identifying the in-contact persons with a positive-
case, determining the regions of virus outbreak, and build a representation tree data 
structure for all cases. The tree data structure represents the relationship between the 
confirmed cases and supports making critical decisions by governments, health 
authorities, and individuals on time. The proposed framework has implemented as a case 
study that consists of three components; datasets generation, big data processing 
framework, and data visualization and geotagging service for results demonstration. 
Therefore, a simulated CDR Data of citizen’s movements and COVID-19 confirmed 
cases have been aggregated to generate a suspected cases dataset and identify the 
probable regions of infection or suspicion. The mobile phone GPS location is determined 
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by the mobile network base-station communication signals that is used in combination 
with the confirmed cases locations to determine the in-contact persons within specified 
area during the virus incubation period. Normally, the processing of such huge data is 
passed through four steps; data cleansing and preprocessing, calculating the Euclidian 
distances between a citizen and the confirmed cases GPS points, identifying the central 
points of infected regions (clusters) using parallel k-means clustering algorithm, and 
finally classifying person risk into three levels using the decision tree classification 
algorithm. Such complex computations require high performance distributed big data 
environment to perform these computations in real-time. Spark GPU-enabled cluster has 
been used in addition to computation partitioning between CPU and GPU nodes to 
achieve full utilization of the available resources and gain remarkable speedup. 
The experimental results show that the concurrent processing of the datasets on GPU-
enables spark cluster obtained a noticeable performance gain in comparison to CPU only 
cluster up to 7x.   
Finally, building a parallel time-series data regression model such as LSTM will be 
studied as a future work to predict the future number of confirmed/suspected cases and 
the new regions of infection for short term periods. 
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