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Abstract: As an important branch of machine learning, clustering analysis is widely used 
in some fields, e.g., image pattern recognition, social network analysis, information 
security, and so on. In this paper, we consider the designing of clustering algorithm in 
quantum scenario, and propose a quantum hierarchical agglomerative clustering 
algorithm, which is based on one dimension discrete quantum walk with single-point 
phase defects. In the proposed algorithm, two nonclassical characters of this kind of 
quantum walk, localization and ballistic effects, are exploited. At first, each data point is 
viewed as a particle and performed this kind of quantum walk with a parameter, which is 
determined by its neighbors. After that, the particles are measured in a calculation basis. 
In terms of the measurement result, every attribute value of the corresponding data point 
is modified appropriately. In this way, each data point interacts with its neighbors and 
moves toward a certain center point. At last, this process is repeated several times until 
similar data points cluster together and form distinct classes. Simulation experiments on 
the synthetic and real world data demonstrate the effectiveness of the presented algorithm. 
Compared with some classical algorithms, the proposed algorithm achieves better 
clustering results. Moreover, combining quantum cluster assignment method, the 
presented algorithm can speed up the calculating velocity. 
 
Keywords: Quantum machine learning, discrete quantum walk, hierarchical 
agglomerative clustering. 

1 Introduction 
As one of the most important fields in modern physics, quantum mechanics has not only 
changed the way we understand the physical world, but also provided a new method of 
solving some problems in the field of information technology [Liu, Xu, Yang et al. 
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(2019); Jiang, Wang, Liang et al. (2020); Lin, Guo, Huang et al. (2016)]. After the 
pioneering works of Shor and Grover, various properties of quantum mechanics were 
utilized to design many subtle quantum algorithms [Montanaro (2016)], which can be 
exponentially faster than their classical counterparts. Machine learning enables computers 
to learn a certain hidden pattern from one data set and has a large variety of applications, 
such as image analysis, information retrieval, and bioinformatics, etc. However, if the 
number of the data set and/or the dimension of the data points are large, it is frequently 
required to cost a lot of times and huge computational resources. Especially, in the age of 
big data, this problem becomes more and more serious. Since quantum speed-up may be 
a good solution to this problem, quantum machine learning has recently been proposed 
and drawn a lot of attention [Biamonte, Wittek, Pancotti et al. (2017); Harrow, Hassidim 
and Lloyd (2009)]. 
In 2013, Lloyd et al. [Lloyd, Mohseni and Rebentrost (2013)] proposed two quantum 
machine learning algorithms. One is a supervised cluster assignment algorithm, the other 
is cluster finding algorithm that is used to obtain suitable seeds for quantum k-means 
algorithm. These two algorithms both offer an exponential speed-up over the 
corresponding classical counter-parts. Later on, Cai et al. [Cai, Wu, Su et al. (2015)] 
implemented them on a small-scale photonic quantum computer in experimental aspect. 
Besides that, some subtle quantum algorithms for machine learning have been put 
forward, e.g., quantum support vector machine [Rebentrost, Mohseni and Lloyd (2014); 
Li, Liu, Xu et al. (2015)],  quantum decision tree [Lu and Braunstein (2014)], quantum 
nearest-neighbor algorithms [Wiebe, Kapoor and Svore (2015)], quantum principal 
component analysis [Lloyd, Mohseni and Rebentrost (2014); Yu, Gao, Lin et al. (2019)], 
quantum deep learning [Wiebe, Kapoor and Svore (2014)], quantum association rules 
mining [Yu, Gao, Wang et al. (2016)], quantum clustering [Aı̈meur, Brassard and Gambs 
(2013); Li, He and Jiang (2011)], and so on. 
Clustering analysis is an essential tool for knowledge discovery and becomes a major 
branch of machine learning [Chen, Xiong, Xu, et al. (2019); Zhou, Tan, Yu, et al. (2019); 
Xiang, Shen, Qin, et al. (2019)]. During the past decades, some subtle clustering 
algorithms were proposed from different points of view. In this paper, we consider 
hierarchical agglomerative clustering (called HAC), which is one main kind of clustering 
algorithm, in quantum scenario. Two features of quantum walks, localization and ballistic 
effect, are utilized to designed a quantum hierarchical agglomerative clustering algorithm. 
In this algorithm, each data point is represented by a particle that is firstly performed a 
one-dimensional discrete quantum walk with single-point phase defects. Here, the phase 
defect, which can govern the localization effect, is deter-mined by the local density of the 
corresponding data point. Then, one makes a measurement on this particle in a 
computational basis, and obtains a random outcome. Based on the outcome, every 
attribute of this data point is made an appropriate modification. After executing this 
process several times, the data points are clustered together and divided into several 
classes. Numerical simulations show the effectiveness and efficiency of the proposed 
quantum HAC algorithm. 
The remainder of this paper is organized as follow. In Section 2, we briefly review the 
essential preliminaries, i.e., classical hierarchical agglomerative clustering algorithm and 
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discrete quantum walk with single-point phase defects. Then, a quantum hierarchical 
agglomerative clustering algorithm with HWSPPD is described in Section 3. Its 
numerical simulations and experimental evaluation are presented in Section 4. Finally, a 
short conclusion is provided in Section 5. 

2 Preliminaries 
2.1 Hierarchical agglomerative clustering 
As compared to some supervised machine learning algorithms, clustering is unsupervised, 
which means that the training data points are unlabeled. In general, the goal of clustering 
analysis is to classify the data points into categories on the basis of their similarity, 
namely, to group these data points such that the intra-cluster similarity is maximized and 
the inter-cluster similarity is minimized. A general mathematical representation of the 
cluster analysis is depicted as follows. Given a set of data points 𝐷𝐷 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚}. 
After executing the clustering algorithm, these elements are classified into l subsets, 
denoted by {𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝑙𝑙}. And these subsets satisfy the following constraints, 
𝑀𝑀1 ∪𝑀𝑀2 ∪⋯∪𝑀𝑀𝑙𝑙 = 𝐷𝐷,  𝑀𝑀𝑗𝑗 ∩𝑀𝑀𝑘𝑘 = ∅ (𝑗𝑗 ≠ 𝑘𝑘),                                                             (1) 
where ∅ represents an empty set. 
Hierarchical clustering is a traditional clustering algorithm that seeks to build a hierarchy of 
clusters. Generally, it is divided into two types: agglomerative and divisive. In a standard 
hierarchical agglomerative clustering (HAC), each data point is thought as a cluster initially. 
Afterward, the distances of arbitrary two clusters are calculated, and two closest clusters are 
merged as one. This process is executed repeatedly until all data points cluster to one class or 
a certain terminate condition is satisfied. Finally, a hierarchy of clusters is built. Since any 
valid measure of distance can be used in HAC, it has been extensively used in data mining 
and statistics. However, this clustering algorithm should cost a lot of times. Suppose that a 
data set has 𝑚𝑚 data points and the dimension of each point is 𝑛𝑛. By simple calculation, we 
know its complexity is 𝑂𝑂(𝑚𝑚3𝑛𝑛). This implies that HAC is too slow for large data sets. 
Therefore, the most restraint of HAC is its high computational complexity. In this paper, we 
try to overcome this obstacle by proposing a quantum counterpart, in which some quantum 
technologies are utilized to speed-up the calculation. 

2.2 Discrete quantum walk with single-point phase defects 
As a quantum mechanical analog of classical random walk, quantum walk [Venegas-
Andraca (2012)] has attracted a great deal of interesting recently. It has exhibited some 
distinct features, which can be used to design some new algorithms for quantum 
computers, e.g. quantum search algorithms. In a standard model, a discrete quantum walk 
on an infinite line can be depicted by a Hilbert space 𝐻𝐻, which consists of two spaces, 
i.e., 𝐻𝐻 = 𝐻𝐻𝑝𝑝 ⊗𝐻𝐻𝑐𝑐. One is a two-dimensional coin space 𝐻𝐻𝑐𝑐, the computational basis of 
which is {|0⟩, |1⟩} corresponding to two possible directions of movement, rightward and 
leftward. The other space 𝐻𝐻𝑝𝑝  is a position space that is spanned by the orthogonal 
position vectors {|𝑗𝑗⟩ | 𝑗𝑗 ∈ 𝐙𝐙}, where 𝐙𝐙 denotes the set of integers. So, an orthonormal 
basis of the whole quantum system 𝐻𝐻 is {|𝑗𝑗, 𝑐𝑐⟩ = |𝑗𝑗⟩ ⊗ |𝑐𝑐⟩ | 𝑗𝑗 ∈ 𝐙𝐙, 𝑐𝑐 = 0,1}. 
The movement of the walker at each step is determined by the result of a coin flip, which 
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is implemented by a unitary operation 𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆(2). Afterward, a conditional position shift 
operation 𝑆𝑆𝑐𝑐  is performed. So, the whole one-step evolution can be depicted as, 𝑆𝑆 =
(∑ 𝑆𝑆𝑐𝑐𝑐𝑐=0,1 ⊗ |𝑐𝑐⟩⟨𝑐𝑐|)(𝐼𝐼 ⊗ 𝐶𝐶). In this paper, we will adopt a common quantum walk, 
Hadamard walk. In this walk, 𝐶𝐶 is a Hadamard operator and has the following form, 

𝐶𝐶 = 1
√2
�1 1

1 −1�.                                                                                                              (2) 

And the conditional position shift operation is 𝑆𝑆𝑐𝑐|𝑗𝑗⟩ = |𝑗𝑗 + (−1)𝑐𝑐⟩. Given the walker 
starts from the origin, so the whole system is in a initial state, |𝜓𝜓(0)⟩ = |0⟩ ⊗ (𝛼𝛼00|0⟩+
𝛽𝛽00|1⟩), where |𝛼𝛼00|2 + |𝛽𝛽00|2 = 1. After 𝜂𝜂 steps evolution, the form of the final state is, 
|𝜓𝜓(𝜂𝜂)⟩ = 𝑆𝑆𝜂𝜂|𝜓𝜓(0)⟩ = ∑ (+𝜂𝜂

𝑗𝑗=−𝜂𝜂 𝛼𝛼𝜂𝜂
𝑗𝑗|𝑗𝑗, 0⟩ + 𝛽𝛽𝜂𝜂

𝑗𝑗|𝑗𝑗, 1⟩). Thus, the probability of finding the 
walker at the position 𝑗𝑗  at time 𝜂𝜂  is 𝑝𝑝𝜂𝜂

𝑗𝑗 = |𝛼𝛼𝜂𝜂
𝑗𝑗|2 + |𝛽𝛽𝜂𝜂

𝑗𝑗|2, satisfying ∑ 𝑝𝑝𝜂𝜂
𝑗𝑗+𝜂𝜂

𝑗𝑗=−𝜂𝜂 = 1 . For 

example, when the particles are in the initial state |𝜓𝜓(0)⟩ = |𝜑𝜑⟩ = |0⟩ ⊗ ( 1
√2

|0⟩ +
−𝑖𝑖
√2

|1⟩), the position probability distribution after 𝜂𝜂 = 100 steps is depicted in Fig. 1(a). 

 
Figure 1: (a) Probability distribution after 100 steps of a Hadamard walk with the initial 
state |𝜑𝜑⟩; (b) Probability distribution after 100 steps of a HWSPPD with 𝜃𝜃 = 𝜋𝜋/4 and 
|𝜓𝜓(0)⟩ = |𝜑𝜑⟩ 

From this figure, it is shown that the movement of the quantum walker is ballistic. The 
phenomenon cannot exist in classical random walk, the distribution of which is a 
Gaussian centered at the origin. 
Besides the ballistic diffusion, quantum walk has another nonclassical feature, 
localization, which has been found in some quantum walks [Schreiber, Cassemiro, 
Potocek et al. (2011)]. In 2012, Wojcik et al. [Wójcik, Łuczak, Kurzyński et al. (2012)] 
showed that localization effect can be obtained by changing a phase at a single point for 
discrete quantum walks without localization effect. In a discrete quantum walk with 
single-point phase defects, the phase of the particle is modified when it passes through a 
designed position e.g., 𝑗𝑗 = 0, each time. Later, this issue has been studied deeply and 
made a great progress in both theory and experimental aspects [Zhang, Xue and Twamley 
(2014); Xue, Qin and Tang (2015)]. Considering Hadamard walk depicted above, a 
single-point phase shift 𝜃𝜃 ∈ (0,2𝜋𝜋] is applied at the original point. That is, the operator 𝑆𝑆𝑐𝑐 
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is replaced by 𝑆𝑆𝑐𝑐𝜃𝜃, 

𝑆𝑆𝑐𝑐𝜃𝜃 = exp�𝑖𝑖𝜃𝜃𝛿𝛿𝑗𝑗,0�𝑗𝑗 + (−1)𝑐𝑐⟩� , where 𝛿𝛿𝑗𝑗,0 = � 1, if 𝑗𝑗 = 0
0, otherwise.                                          (3) 

In this way, a new quantum walk model is obtained (called HWSPPD). The localization 
effect of this quantum walk can be observed in Fig. 1(b). 

3 Quantum HAC algorithm with HWSPPD 
At first, a simple quantum hierarchical agglomerative clustering algorithm (Algorithm 1) 
is given, which can be derived directly from the conclusion of Ref. [Lloyd, Mohseni and 
Rebentrost (2013)]. In Lloyd et al. [Lloyd, Mohseni and Rebentrost (2013)], Lloyd et al. 
designed a quantum cluster assignment (called QCA) algorithm that accomplishes 
assigning a new data point to one of two sets by calculating the Euclidean distances 
between a new data point and two sets. Moreover, since this calculation only costs time 
𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝑛𝑛)) on a quantum computer, this quantum algorithm provides an exponential 
speed-up over classical algorithms that should take time 𝑂𝑂(𝑚𝑚𝑛𝑛). Drawing ideas from 
QCA algorithm, the calculating process of the Euclidean distance between two clusters 
can been obtained. 
In this process, two clusters, {𝑢𝑢𝑖𝑖 | 𝑖𝑖 = 1,2,⋯ ,𝑝𝑝} and {𝑣𝑣𝑗𝑗 | 𝑗𝑗 = 1,2,⋯ , 𝑞𝑞} are given. First, 
qRAM is utilized to construct the state |𝜙𝜙⟩12 = 1

√2
(|0⟩|𝑢𝑢⟩ + ( 1

√𝑞𝑞
)∑ |𝑞𝑞

𝑗𝑗=1 𝑗𝑗⟩|𝑣𝑣𝑗𝑗⟩)12, where 

|𝑢𝑢⟩ = 1

√𝑝𝑝
∑ |𝑝𝑝
𝑖𝑖=1 𝑢𝑢𝑖𝑖⟩ . Then, a projective measurement is performed on the first particle. 

Finally, according to the probability of the case, in which the measurement result is 
|𝑢𝑢||0⟩ − ( 1

√𝑞𝑞
)∑ |𝑞𝑞

𝑗𝑗=1 𝑣𝑣𝑗𝑗||𝑗𝑗⟩, the distance between these two clusters can be calculated with 
time 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝑛𝑛)) . Hence, the complexity of Algorithm 1 will be reduced to 
𝑂𝑂(𝑚𝑚2𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝑛𝑛)). Additionally, we assume the termination condition is that the minimum 
of the distances is larger than a threshold 𝜖𝜖. The detailed algorithm is described as follows. 

Algorithm 1 M=QHAC(D, 𝜖𝜖) 
Input: 𝐷𝐷 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚}, 𝜖𝜖 
Output: M 
     for k=1; 𝑘𝑘 ≤ 𝑚𝑚; k++ do 
          𝑀𝑀[𝑘𝑘] ← 𝑘𝑘 
     end for; 
     𝑐𝑐𝑙𝑙𝑢𝑢𝑛𝑛𝑐𝑐 ← 𝑚𝑚; 
     𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← True; 
     while 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 do 
          Compute the distance between any two clusters by QCA; 
          if the minimum of the distances < 𝜖𝜖 then 
               Combine the corresponding cluster 𝑗𝑗 and cluster 𝑘𝑘, 𝑀𝑀[𝑗𝑗] ← 𝑀𝑀[𝑘𝑘]; 
               𝑐𝑐𝑙𝑙𝑢𝑢𝑛𝑛𝑐𝑐 ← 𝑐𝑐𝑙𝑙𝑢𝑢𝑛𝑛𝑐𝑐 − 1 
          else 
               𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← False; 
           end if; 
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           if count=1then 
                𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← False; 
           end if; 
     end while; 
     return M; 

General speaking, in a data set, one data point is more related to nearby points than to 
points farther away. So, these date points are divided into three kinds: the center points, 
the border points, and the outlier points (or the noisy points). For example, in a two-
dimensional data set DS1 shown in Fig. 2, there are two clusters, {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋9} and 
{𝑋𝑋10,𝑋𝑋11,⋯ ,𝑋𝑋18}, and two outlier points, 𝑋𝑋19 and 𝑋𝑋20. Consider three data points, 𝑋𝑋15, 
𝑋𝑋18, and 𝑋𝑋19, where 𝑋𝑋15 is the center point, who has many neighbors and is surrounded 
by them. In contrast, 𝑋𝑋19 is the outlier point, who has few neighbors and is isolated from 
the other points. For the point 𝑋𝑋18, its neighborhood contains some points, and these 
neighbors are located towards the center points, thus 𝑋𝑋18 is named as the border point. 

 
Figure 2: Point distribution 

The second quantum hierarchical agglomerative clustering algorithm has its basis in this 
observation. In the algorithm, each data point is considered as a walker particle. 
According to the difference among these three kinds of data points, the corresponding 
particle performs a HWSPPD with different values of 𝜃𝜃. It is determined by the density 
of its neighbors. Concretely, for the particles represented the center points or the outlier, 
the location effect of quantum walk is adopted to cause these particles move slowly or 
keep them motionless. While, for the border points, the ballistic effect is chosen to make 
the corresponding particles move towards the center points quickly. In this way, two 
nonclassical features of quantum walks are utilized to achieve clustering task. 
Before presenting our clustering algorithm, we need to define some notions that are used in 
our algorithm. Suppose that there exists an unlabel data set with 𝑚𝑚 data points denoted by 
𝐷𝐷 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚}, and each data point 𝑋𝑋𝑗𝑗 has 𝑛𝑛 attributes, 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗1,𝑥𝑥𝑗𝑗2,⋯ , 𝑥𝑥𝑗𝑗𝑛𝑛). So, the 
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Euclidean distance between two data points, 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2,⋯ , 𝑥𝑥𝑗𝑗𝑛𝑛) and 𝑋𝑋𝑘𝑘 = (𝑥𝑥𝑘𝑘1, 𝑥𝑥𝑘𝑘2,⋯ , 𝑥𝑥𝑘𝑘𝑛𝑛), 

is defined as 𝑑𝑑(𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘) = �∑ (𝑛𝑛
𝑙𝑙=1 𝑥𝑥𝑗𝑗𝑙𝑙 − 𝑥𝑥𝑘𝑘𝑙𝑙 )2 . Based on this distance definition, the 

neighborhood of every data point can be directly obtained. Concretely, the 𝜖𝜖 −neighborhood 
of a data point 𝑋𝑋𝑗𝑗 can be written as, 𝛯𝛯𝑗𝑗 = {𝑋𝑋𝑘𝑘 ∈ 𝐷𝐷 | 𝑑𝑑(𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘) ≤ 𝜖𝜖}. Then, a new quantity 𝜉𝜉𝑗𝑗 
is defined to represent the number of point 𝑋𝑋𝑗𝑗’s neighbors, i.e., 𝜉𝜉𝑗𝑗 = |𝛯𝛯𝑗𝑗|. This quantity was 
used and named as local density in Ref. [Rodriguez and Laio (2014)]. 
In the second algorithm, each data point is considered as a particle. For convenience, we 
can assume that the corresponding particle of a data point 𝑋𝑋𝑗𝑗  is 𝑃𝑃𝑗𝑗 . This particle is 
prepared in the initial state |𝜓𝜓(0)⟩. At each step, particle 𝑃𝑃𝑗𝑗 performs a HWSPPD with a 
parameter 𝜃𝜃  firstly. Generally speaking, one data point just interacts with its 
neighborhood points. Thus, in our algorithm, the parameter 𝜃𝜃𝑗𝑗  is determined by the 
neighborhood of the data point 𝑋𝑋𝑗𝑗. Concretely, 𝜃𝜃𝑗𝑗 is calculated as follows. 

𝜃𝜃𝑗𝑗 = Λ−𝜆𝜆𝑗𝑗
Λ

× 0.7𝜋𝜋,                                                                                                              (4) 

where,  

Λ = max𝑘𝑘=1,2,⋯,𝑚𝑚 (λ𝑘𝑘), λ𝑗𝑗 = �
0, if 𝜉𝜉𝑗𝑗 = 0 

�max𝑋𝑋𝑘𝑘∈Ξ𝑗𝑗(𝜉𝜉𝑘𝑘) − 𝜉𝜉𝑗𝑗� , otherwise
.                                  (5) 

After the walker 𝑃𝑃𝑗𝑗  makes a HWSPPD with 𝜃𝜃 = 𝜃𝜃𝑗𝑗 , this particle is measured in the 
computational basis. Finally, according to the measurement result 𝑟𝑟𝑗𝑗, the attributes of 𝑋𝑋𝑗𝑗 
are changed. The detailed modification is described as, 𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑥𝑥𝑗𝑗𝑙𝑙 + |𝑟𝑟𝑗𝑗| × 𝜏𝜏𝑗𝑗𝑙𝑙, where 𝜏𝜏𝑗𝑗𝑙𝑙 =
1

2𝑛𝑛+1
× (

∑ 𝑥𝑥𝑘𝑘
𝑙𝑙

𝑋𝑋𝑘𝑘∈𝛯𝛯𝑗𝑗

𝜉𝜉𝑗𝑗
− 𝑥𝑥𝑗𝑗𝑙𝑙), and 𝜏𝜏𝑗𝑗 = (𝜏𝜏𝑗𝑗1, 𝜏𝜏𝑗𝑗2,⋯ , 𝜏𝜏𝑗𝑗𝑛𝑛) represents the step length of point 𝑋𝑋𝑗𝑗. 

Here, the setups of these two quantities, 𝜃𝜃𝑗𝑗 and 𝜏𝜏𝑗𝑗𝑙𝑙, are based on a general assumption. 
Namely, the cluster centers with higher local density are surrounded by neighbors with 
lower density. If the data point 𝑋𝑋𝑗𝑗 is the center point, there generally exists another data 
point 𝑋𝑋𝑘𝑘  in its neighborhood 𝛯𝛯𝑗𝑗  that is very close to the center point. Moreover, it is 
common that the local density of the data point 𝑋𝑋𝑘𝑘 is equal or only slightly less than that 
of the center point i.e., 𝜉𝜉𝑘𝑘 ≃ 𝜉𝜉𝑗𝑗 . Thus, the quantity 𝜆𝜆𝑗𝑗=|𝜉𝜉𝑘𝑘 − 𝜉𝜉𝑗𝑗| approaches to 0, then 
𝜃𝜃𝑗𝑗 ≃ 0.7𝜋𝜋. In this case, the localization effect takes action when particle 𝑃𝑃𝑗𝑗 performs a 
HWSPPD with 𝜃𝜃 ≃ 0.7𝜋𝜋. On the other hand, the neighbors of point 𝑋𝑋𝑗𝑗 are located around 

it symmetrically, i.e.,  
∑ 𝑥𝑥𝑘𝑘

𝑙𝑙
𝑋𝑋𝑘𝑘∈𝛯𝛯𝑗𝑗

𝜉𝜉𝑗𝑗
≃ 𝑥𝑥𝑗𝑗𝑙𝑙 . It implies that the value of 𝜏𝜏𝑗𝑗𝑙𝑙  is also close to 0. 

Thus, the center point 𝑋𝑋𝑗𝑗 is kept unchanged with high probability. The similar scenario 
occurs when point 𝑋𝑋𝑗𝑗 is the outlier point. The reason is that this point has few neighbors, 
i.e., 𝜉𝜉𝑗𝑗 ≃ 0 and 𝜏𝜏𝑙𝑙

𝑗𝑗 ≃ 0. Therefore, the outlier point is also steady in our algorithm. 
However, it is going to be different when 𝑋𝑋𝑗𝑗 is the border point. Generally, there may 
exist a data point 𝑋𝑋𝑘𝑘 ∈ 𝛯𝛯𝑗𝑗, who is the center point or near the center point. So, 𝜆𝜆𝑗𝑗 ≠ 0, 
and the ballistic phenomenon will be found during the quantum walk of the 
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corresponding particle. Moreover, since the neighbors of the border point 𝑋𝑋𝑗𝑗 are located 
towards the center point, the corresponding 𝜏𝜏𝑗𝑗𝑙𝑙 of point 𝑋𝑋𝑗𝑗 is larger than that of the center 
point. Under this condition, the border point 𝑋𝑋𝑗𝑗  will move towards the center point. 
Further, considering two border points 𝑋𝑋𝑗𝑗1 and 𝑋𝑋𝑗𝑗2, where point 𝑋𝑋𝑗𝑗1 is more close to the 
center point 𝑋𝑋𝑘𝑘 than point 𝑋𝑋𝑗𝑗2. This implies that the distance between points 𝑋𝑋𝑗𝑗2 and 𝑋𝑋𝑘𝑘 is 
larger than that of 𝑋𝑋𝑗𝑗1 and 𝑋𝑋𝑘𝑘. In this case, the value of 𝜆𝜆𝑗𝑗1 is less than that of 𝜆𝜆𝑗𝑗2, because 
it is common that point 𝑋𝑋𝑗𝑗1 has more neighbors than point 𝑋𝑋𝑗𝑗2, i.e., 𝜉𝜉𝑗𝑗1 ≥ 𝜉𝜉𝑗𝑗2 . Therefore, 
we can obtain 𝜃𝜃𝑗𝑗1 ≥ 𝜃𝜃𝑗𝑗2. Furthermore, it is evident that |𝜏𝜏𝑗𝑗1

𝑙𝑙 | ≤ |𝜏𝜏𝑗𝑗2
𝑙𝑙 |. Hence, as compared 

with point 𝑋𝑋𝑗𝑗1, point 𝑋𝑋𝑗𝑗2 moves more quick towards the center. 
In the above manner, all points expect the outlier point get together after executing this 
process several times. According to this basic idea and Algorithm 1, we can obtain the 
second quantum HAC algorithm (Algorithm 2), which is described as follows. 

Algorithm 2 M=QHACQW(D, 𝜖𝜖) 
Input:  𝐷𝐷 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚} , 𝜖𝜖 , 𝑚𝑚 × 𝐾𝐾  particles 𝑃𝑃𝑗𝑗  (𝑗𝑗 = 1,2,⋯ ,𝑚𝑚 ) are 

prepared in the initial state |𝜑𝜑⟩ 
Output: M 
     𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← True; 
     while 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 do 
          𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← False; 
          for all 𝑋𝑋𝑗𝑗 ∈ 𝐷𝐷 do 
               Compute its neighbor set 𝛯𝛯𝑗𝑗; 
             Obtain the local probability 𝜉𝜉𝑗𝑗; 
             Compute the parameter 𝜃𝜃𝑗𝑗; 
             if 𝜃𝜃𝑗𝑗 < 0.7𝜋𝜋 then 
                  𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← True; 
               end if; 
         end for; 
         if 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = False then 
               𝐷𝐷∗ ← 𝐷𝐷; 
               𝑀𝑀 = 𝑄𝑄𝐻𝐻𝑄𝑄𝐶𝐶(𝐷𝐷∗, 𝜖𝜖); 
               return M; 
         end if; 
         for j=1; 𝑗𝑗 ≤ 𝑚𝑚; j++ do 
              if 𝜃𝜃𝑗𝑗 = 0.7𝜋𝜋 then 
                  continue; 
              end if; 
              Particle 𝑃𝑃𝑗𝑗 performs a HWSPPD with 𝜃𝜃 = 𝜃𝜃𝑗𝑗; 
            Measure particle 𝑃𝑃𝑗𝑗 and obtain the result 𝑟𝑟𝑗𝑗; 
            Obtain new value of data point 𝑋𝑋𝑗𝑗; 
         end for; 
     end while; 
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Now, let us consider the data point set in Fig. 2. After the iterative process is executed 
one round, the border points, e.g. points 𝑋𝑋16 and 𝑋𝑋18, move toward the center point 𝑋𝑋15, 
whereas 𝑋𝑋15 does not move much and the outlier point 𝑋𝑋19 is steady [as shown in Fig. 
3(a)]. Moreover, point 𝑋𝑋18 moves more quick than point 𝑋𝑋16. After four iterations, from 
Fig. 3(d), it is shown that all data points cluster together except two outlier points X19 and 
X20. Consequently, Algorithm 2 achieves the clustering task successfully. 

 
Figure 3: The cluster result of the data set DS1 with different iteration round t 

4 Numerical simulations and experimental evaluation 
In this section, we implement the presented algorithms by numerical simulation on a 
classical computer. From the clustering results on synthetic and real-world data, the 
performance of Algorithm 2 is evaluated. Because it facilitates the representation and 
manipulation of matrices, MATLAB is frequently used to simulate quantum states and 
operations. Therefore, the presented algorithms are programmed by MATLAB, and 
executed on a personal computer with Intel(R) Core (TM) i5-4590 CPU 3.30 GHz and 
8.0 GB RAM. 
Let us start with conducting experiments on two synthetic data sets DS2 and DS3, which 
are displayed in Fig. 4(a) and Fig. 4(b). The first data set consists of four arbitrarily 
shaped clusters, each of which has 100 data points. The second one is comprised of four 
clusters with different densities. When 𝜖𝜖 is 0.14 (0.16), all data points in the set DS2 
(DS3) are clustered into four classes by executing Algorithm 2. The corresponding 
clustering results are shown in Figs. 4(c) and 4(d). This implies that the presented 
algorithm successfully detects all types of clusters without any errors. 
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Figure 4: Clustering results of two synthetic data sets 

In the following, we consider the other case, in which four real-world data publicly 
available at the UCI machine learning repository (http://archive.ics.uci.edu/ml), i.e., 
Wisconsin, Iris, Ecoli, and Wine, are clustered via Algorithm 2. To evaluate it better, the 
simulation experiment results of this algorithm are compared with that of two classical 
clustering algorithms, X-Means and MeanShift. 
Furthermore, to provide an objective description of effectiveness, we use the normalized 
mutual information (NMI) as a measure for clustering quality. It is defined as, 
NMI(𝑀𝑀,𝑀𝑀′) = 𝐼𝐼(𝑀𝑀,𝑀𝑀′)

�𝐻𝐻(𝑀𝑀)𝐻𝐻(𝑀𝑀′)
, where 𝑀𝑀  and 𝑀𝑀′  are two clustering results of a data set. 

𝐻𝐻(𝑀𝑀) is the entropy associated with the clustering 𝑀𝑀 = {𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝑙𝑙}, i.e., 𝐻𝐻(𝑀𝑀) =
−∑ 𝑝𝑝𝑟𝑟𝑙𝑙𝑏𝑏𝑗𝑗log(𝑝𝑝𝑟𝑟𝑙𝑙𝑏𝑏𝑗𝑗)𝑙𝑙

𝑗𝑗=1  where 𝑝𝑝𝑟𝑟𝑙𝑙𝑏𝑏𝑗𝑗 = |𝑀𝑀𝑗𝑗|
𝑚𝑚

. 𝐼𝐼(𝑀𝑀,𝑀𝑀′)  is the mutual information 
between these two clusters. The value range of NMI(𝑀𝑀,𝑀𝑀′) is between 0 and 1. The 
higher the value, the better the clustering effect. 
Derived from the study on breast cancer, the Wisconsin data set comprises of two classes. 
One is benign with 444 instances, the other is malignant with 239 instances. Each 
instance has 9 attributes. By Algorithm 2, this data set is clustered into two classes 
successfully. One cluster with 457 instances represents the class benign, among which 19 
instances have been wrongly labeled. The other with 226 instances is malignant and has 6 
wrong results. In total, there are only 25 instances wrongly clustered. It is better than the 
performance of the other two algorithms, which is shown in Tab. 1. 
Besides, we have considered the other three real-world data sets, Iris (with 150 instances 
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and 4 attributes), Ecoli (with 178 instances and 13 attributes) and Wine (with 336 
instances and 7 attributes). The corresponding comparison results of three algorithms are 
listed in Tab. 2. Here, we execute the algorithms 50 times and obtain the corresponding 
average values. The comparison results verify the effectiveness of Algorithm 2. 

Table 1: Comparison on real-world data sets with various clustering algorithms 

NMI Algorithm 2 X-means MeanShift 
Wisconsin 0.755 0.561 0.700 

Iris 0.761 0.734 0.734 
Ecoli 0.706 0.512 0.546 
Wine 0.732 0.248 0.405 

5 Conclusion 
In summary, based on one-dimension discrete quantum walk with single-point phase 
defects, a new quantum hierarchical agglomerative clustering algorithm is introduced. 
Each data point is regarded as a particle that performs a HWSPPD with a parameter θ. 
Here, this parameter that can control the localization effect of this walk is determined by 
the local density of this data point. Then, this particle is measured. According to the 
measurement result, the corresponding data point makes an appropriate modification. In 
this way, each data point interacts with its neighbors. As time evolves, similar data points 
cluster together and form distinct classes. To illustrate the effectiveness of this algorithm, 
extensive simulation experiments on the synthetic and real world data are performed. 
Furthermore, in the presented algorithm, quantum cluster assignment method is utilized 
to speed up the calculating velocity. Hence, our approach is efficient. 
In addition, there are two key technology problems in the implementation of the 
presented algorithm. One is the achievement of the quantum cluster assignment method. 
The experiment of this method has been accomplished by Cai et al. [Cai, Wu, Su et al. 
(2015)] on a small-scale photonic quantum computer. The other one is that of quantum 
walk with single-point phase defects. The corresponding experiment has also been 
achieved by Xue et al. [Xue, Qin and Tang (2015)] with optical interferometers. 
Therefore, the presented algorithm is experimentally feasible with current technology. 
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