

Computers, Materials & Continua CMC, vol.65, no.2, pp.1625-1647, 2020

CMC. doi:10.32604/cmc.2020.011535 www.techscience.com/journal/cmc

A Middleware for Polyglot Persistence and Data Portability of Big
Data PaaS Cloud Applications

Kiranbir Kaur1, *, Sandeep Sharma1 and Karanjeet Singh Kahlon2

Abstract: Vendor lock-in can occur at any layer of the cloud stack-Infrastructure, Platform,
and Software-as-a-service. This paper covers the vendor lock-in issue at Platform as a
Service (PaaS) level where applications can be created, deployed, and managed without
worrying about the underlying infrastructure. These applications and their persisted data on
one PaaS provider are not easy to port to another provider. To overcome this issue, we
propose a middleware to abstract and make the database services as cloud-agnostic. The
middleware supports several SQL and NoSQL data stores that can be hosted and ported
among disparate PaaS providers. It facilitates the developers with data portability and data
migration among relational and NoSQL-based cloud databases. NoSQL databases are
fundamental to endure Big Data applications as they support the handling of an enormous
volume of highly variable data while assuring fault tolerance, availability, and scalability.
The implementation of the middleware depicts that using it alleviates the efforts of
rewriting the application code while changing the backend database system. A working
protocol of a migration tool has been developed using this middleware to facilitate the
migration of the database (move existing data from a database on one cloud to a new
database even on a different cloud). Although the middleware adds some overhead
compared to the native code for the cloud services being used, the experimental evaluation
on Twitter (a Big Data application) data set, proves this overhead is negligible.

Keywords: Cloud computing, platform as a service, middleware, polyglot persistence,
SQL, NoSQL, data migration tool, Twitter data set.

1 Introduction
Big Data and Cloud computing go hand-in-hand and the cloud services exist because of
Big Data [InsideBigData (2019)]. Cloud computing has garnered a lot of attention as well
as fostered competition in the industry during the last decade. It consists of three service
models viz. Infrastructure as a Service (IaaS), Platform as a service (PaaS), and Software
as a Service (SaaS). PaaS has a booming market. The PaaS model offers application

1 Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, 143001,

India.
2 Department of Computer Science and Applications, Guru Nanak Dev University, Amritsar, 143001, India.
* Corresponding Author: Kiranbir Kaur. Email: kiran.dcse@gndu.ac.in.
Received: 14 May 2020; Accepted: 11 June 2020.

1626 CMC, vol.65, no.2, pp.1625-1647, 2020

developers with hardware and software tools commonly needed for application
development over the Internet. Moreover, it provides a plethora of technology resources
with minimal configuration work resulting in the speedy development of applications
[Yasrab and Gu (2016)]. Gartner [Gartner (2019)] says “As of 2019, the total PaaS
market contains more than 360 vendors.” and expects that “from 2018 to 2022, the
market will double in size and that PaaS will be the prevailing platform delivery model
moving forward.” However, on the flip side, it’s not easy for the PaaS users to migrate
the services and the generated data to another competing PaaS. The applications on PaaS
platforms store their data in various types of databases (such as relational and NoSQL)
according to the characteristics of the data. NoSQL technology is the powerhouse to
implement Big Data applications. Cloud computing provides the infrastructure to store
this Big Data. Generally, a cloud environment offers limited data stores for the data of the
deployed applications. But there may arise some situations where these specific data store
models could not cater to the application’s all requirements. We propose a middleware as
a solution in this paper which can alleviate the technical intricacies dealing with the
above scenarios. It supports multiple data stores and exposes a simple API to the user
while all the complexities of the data portability and conversion are managed by the
abstraction layer of the middleware.
Section 2 describes the background related to data portability and polyglot persistence.
Section 3 discusses the related work to data portability. Section 4 presents the technical
design of the proposed middleware. The evaluation and the experimental tests are
presented in Section 5 before the conclusion is drawn in Section 6.

2 Background
2.1 Definition of “data portability across clouds”
Before defining the term Data portability, a definition of Cloud portability is required. Petcu
[Petcu (2011)] stated that the portability of applications at the PaaS level along with a
successful data migration should require a minimum amount of application rewriting. For
cloud interoperability also, the application should be able to span multiple cloud providers,
facilitating data exchange as well as data portability. Chetal et al. [Chetal, Peterson, Wallace
et al. (2011)] also stated that data portability is a prerequisite for switching cloud providers.
These statements infer the importance of Data portability in the context of Cloud portability.
Data Portability is regarded as data reuse which entails a quick and easy transfer of data
among applications [Kostoska, Gusev and Ristov (2015)].
We define “Data Portability to include both the switching of the data store within the same
cloud platform (providers) or among different cloud platforms as well as the migration of
the data from the original data store to the destination data store.” Also, the terms “data
stores” and “databases (DBs)” have been used interchangeably in this paper.

2.2 Polyglot persistence-simultaneous use of relational and NoSQL DBs
Catering the needs of data storage of applications with relational requirements as well as
non-relational features implies the usage of both kinds of DBs (SQL and NoSQL). This
requires accessing and interacting with their disparate APIs. This scenario in which a cloud

A Middleware for Polyglot Persistence and Data Portability 1627

application uses multiple data stores of relational and NoSQL types, is called Polyglot
Persistence. This kind of persistence levies ponderous efforts by the application developer
as he/she needs to be acquainted with these APIs while developing code for the application.
However, Polyglot persistence, rather than only NoSQL DBs was perceived as the future of
the data storage in the enterprise by Fowler et al. [Fowler and Sadalage (2012)]. Based on
their data storing techniques NoSQL DBs can be categorized into 4 types:
• Key-Value stores-They store each item as a key-value pair. These are considered

the simplest type of NoSQL. Examples include Redis, Voldemort, Riak.
• Document oriented-They store and manage data in the form of documents.

Documents can store key-value pairs similar to the key-value stores. Examples are
MongoDB, Apache CouchDB, and Cosmos DB. These DBs support JSON, XML,
and YAML formats.

• Columnar-Similar to the relational DBs, Column-oriented DBs also support the
concept of rows and columns but does not mandate to define the columns. Also,
these allow storing data sets as columns in contrast to the relational DBs which
store data sets as rows of a table. Examples are Apache Cassandra, HBase, and
Apache Accumulo.

• Graph-When data to be stored can be represented as graphs or networks such as
social networks, the graph DBs can be used. The nodes of the graph represent
conceptual objects and are connected by the lines called edges. Examples are
Neo4j, OrientDB, and AllegroGraph.

3 Related work
After exploring the literature about the cloud portability, two prominent approaches come
up as the solutions to tackle the challenge of application portability and data portability
[Gonidis, Paraskakis and Kourtesis (2012)]:
Standardization. If all the cloud service providers embrace the standards, then the
developers would be able to create the applications agnostic of the particular cloud
environment or even the application developed for one environment would be effortlessly
ported over another environment. Several organizations have taken an endeavor to
institute users’ trust for various cloud computing services by proposing standards (OVF,
OCCI, UCI, CIMI, CDMI, TOSCA, CAMP etc.) associated with the operation of cloud
services. Standardization of services among different cloud providers is least likely to
happen; users must consider other approaches to facilitate interoperability and portability
of applications among disparate clouds. Moreover, the focus of the most active cloud
standards is on the IaaS instead of the PaaS level [Kaur, Sharma and Kahlon (2017)].
Intermediation. Besides standardization, another alternative to facilitate portability
issues is intermediation which detaches the application’s development from any
platform’s APIs and supported formats [Korte, Challita, Zalila et al. (2018); Gonidis,
Simons, Paraskakis et al. (2013)]. Intermediation solutions further encompass three types
after [Gonidis (2015)]:
• Library based (JClouds, LibClouds, Pkgclouds etc.) These offer an intermediate

API to the developers which is provider agnostic and thus abstracts the

1628 CMC, vol.65, no.2, pp.1625-1647, 2020

heterogeneous providers.
• Middleware solutions. These solutions obscure the differences in underlying

computer architectures and operating systems to abstract the disparities of inherent
resources on which the application is running. These also deal with the
application’s execution and communication with its components which could have
been hosted on heterogeneous environments.

• Model-Driven Engineering Based solutions. These follow the technique of “model
once, generate anywhere” [Rith, Lehmayr and Meyer-Wegener (2014)] and are based
on the core concepts of abstraction and automation. Here, the application is described
at a higher abstraction level which is different than what is exposed by the cloud
providers [Munisso and Chis (2017)]. Then automation allows changing the level of
abstraction automatically with the help of model transformation.

The researches done in Alomari et al. [Alomari, Barnawi and Sakr (2015); Shirazi, Kuan
and Dolatabadi (2012); Bastião Silva, Costa and Oliveira (2013); Hill and Humphrey
(2010); Beslic, Bendraou, Sopena et al. (2013); da Silva, Lucrédio, Moreira et al. (2015);
Strauch, Andrikopoulos, Bachmann et al. (2013); Sellami, Bhiri and Defude (2016); Bansel,
Gonzalez-Velez and Chis (2016)] deal with data storage in clouds. However, [Shirazi,
Kuan and Dolatabadi (2012)] did not handle the data portability challenge at the application
level as our proposed middleware handles. The work in [Bastião Silva, Costa and Oliveira
(2013)] catered the columnar data only whereas our middleware targets relational,
document-oriented, and Columnar DBs. CSAL (Cloud Storage Abstraction Layer) in Hill
et al. [Hill and Humphrey (2010)] preserved metadata concerning each container level
entity viz. blob containers, tables, and queues which results in the overhead for dealing with
metadata intensive operations. da Silva et al. [da Silva, Lucrédio, Moreira et al. (2015)]
targeted the Google App Engine and Microsoft Azure cloud storage but they have not
mentioned that their technique supports leveraging heterogeneous DBs platform services of
different clouds as our middleware handles. The work in Bansel et al. [Bansel, Gonzalez-
Velez and Chis (2016)] targeted just NoSQL DBs for data migration whereas our focus is
data portability as well as data migration among relational and NoSQL DBs of the
supported clouds. In both works [Beslic, Bendraou, Sopena et al. (2013); Strauch,
Andrikopoulos, Bachmann et al. (2013)], the migration of relational data to and from
NoSQL data is not targeted as our middleware targets. ODBAPI (OPEN-PaaS-DataBase
API) proposed in Sellami et al. [Sellami, Bhiri and Defude (2016)] provided REST API for
the migration which would incur more latency than our middleware. But in our proposed
middleware, the whole database-related services are bundled inside the user’s application
and hosted along with the user’s application. Our proposed middleware is inspired by the
CDPort framework in Alomari et al. [Alomari, Barnawi and Sakr (2015)] but we tried to
improve over it in terms of supported clouds, supported data storage services, and technical
flaws as CDPort framework is prone to SQL injection. After thoroughly examining the
source code [CDPort github (2014)] of CDPort, we found that the INSERT query in this
library is prone to SQL Injection since it is not using parameterized queries. The query is
being generated by merely concatenating the values in the query text which not
recommended in real-world applications. Other queries (SELECT, UPDATE, and
DELETE) implemented in this file are also not parameterized and are prone to SQL

A Middleware for Polyglot Persistence and Data Portability 1629

Injection. This library relies on the user to sanitize their data before sending to the query,
rather than handling it in the library by sanitizing the values in the library's SQL Service
and using parameterized queries.
The model-based approaches such as in Jia et al. [Jia, Zhao, Wang et al. (2016); Atzeni,
Bugiotti and Rossi (2012); Beslic, Bendraou, Sopena et al. (2013); da Silva, Lucrédio,
Moreira et al. (2015); Scavuzzo, Tamburri and Di Nitto (2016); Pulgatti (2017); Bansel,
Gonzalez-Velez and Chis (2016)] generate some models which further generate code
based on the models. These models and codes are used since the very beginning while
developing an application (which consumes platform basic services) [Munisso and Chis
(2017)]. This renders the applications based on these models to be portable among
heterogeneous cloud platform providers. On the other hand, in our approach, the user
provides the entity models. In the case of already developed applications, if the MVC
(Model View Controller) approach had been followed for data persistence, the
application can use the proposed middleware. But if they did not adapt their source code
according to the MVC approach, they need to adapt their source code according to the
MVC approach to use this middleware.
The abstraction based solutions such as in Roijackers et al. [Roijackers and Fletcher
(2013); Rith, Lehmayr and Meyer-Wegener (2014)] mostly implement only that
functionality that is available in every supported cloud platform whereas our solution also
supports the services which are not available in every supported cloud. User has the
option of using the unavailable service from a different supported cloud platform since
the middleware is interoperable among the clouds.

4 Proposed cloud data portability middleware
Presently, no standards are available for NoSQL query language. When implementing the
polyglot persistence involving SQL and NoSQL DBs, separating the data over secerned
DBs involve manual efforts to handle multiple data sources. Here, the problem arises
when the developer needs to access these different DB systems. The middleware, if used
while developing the application, provides an abstraction layer over these disparate kinds
of DBs to mitigate the implementation intricacies of each supported DB.
The following challenges are listed by Alomari et al. [Alomari, Barnawi and Sakr (2015);
Gonidis, Simons, Paraskakis et al. (2013)], while porting an application’s data among
various PaaS platforms:

• Different data models: Not only porting data from relational SQL to NoSQL data
stores poses issues, but even portability among different types of NoSQLs is also not
trivial (e.g., porting data from column-oriented store to document-oriented). As our
solution middleware uses POCO (Plain old CLR objects), all the operations of the
application are done on objects only. To persist the objects, the objects are passed to
the abstraction layer which determines the type of the object and the base class from
which it is inherited. If it is inherited from the SQL class, the query is converted into
SQL. Otherwise, if it is inherited from the NoSQL class, the query is converted into a
NoSQL query. For different relational data stores, the syntax of queries also varies.
For example, in SQL Server, the query is

1630 CMC, vol.65, no.2, pp.1625-1647, 2020

 SELECT * FROM table WHERE column1=@parameter1
 And the same query in MySQL is
 SELECT * FROM table WHERE column1=: parameter1
• Various data access and query interfaces: All the databases specify their APIs or data

access mechanisms which make the data access an issue for even in the scenario in
which data is ported among the same category of the data store (e.g., MongoDB to
CouchDB even though both are document-oriented DBs or SQL server to MySQL as
both come under relational category). So, if the user needs to switch the DB from
SQL Server and MySQL, the framework requires minimal changes in the
configuration file and no changes in the source code. If there is a requirement to
change the data store from SQL Server to MongoDB, the user needs to change the
data model associated with SQL to MongoDB in the source code and the associated
connection string in the configuration file. These are the minimal changes that are
required for SQL to NoSQL migration. Also, if the user needs to migrate the existing
data from SQL Server to MongoDB, he/she can use the migration tool [Migration
Tool (2020)].

• Incompatible data typing mechanisms: Each data store may support different data
types, for instance, one data store stores data as strings only while another supports
other data types as well. This poses a complex challenge which currently is out of the
scope of the proposed middleware. Nevertheless, the data stores supported by the
proposed middleware do not pose this issue.

Fig. 1 shows the architecture of the proposed middleware with the supported clouds and
databases.

Figure 1: The architecture of the proposed middleware

4.1 Scenarios for the implementation
Some of the possible scenarios considered (for simplicity, we show scenarios involving

A Middleware for Polyglot Persistence and Data Portability 1631

only two clouds, although we implemented total three clouds) in this paper for switching
the data store as well as migrating the data of the application are as follows:
i) Cross-Cloud Homogeneous relational DB Migration (relational data store of one cloud
to a similar relational data store of another cloud). The data model conversion in this
scenario is easy since both are SQL databases. e.g., Azure SQL database to Amazon RDS
(SQL Server) and vice versa.
ii) Cross-Cloud Homogeneous NoSQL DB migration (NoSQL data store of one cloud to
same category NoSQL data store of another cloud). The data model conversion is
complex in this scenario because even though for instance, Cosmos DB and Document
DB support Mongo API, they have different data models. e.g., Azure Cosmos DB to
Amazon DocumentDB and vice versa.
iii) Same Cloud Heterogeneous DB migration (Relational to/from NoSQL data store within
the same cloud). The complexity of conversion is high because data is being ported from
RDBMS to NoSQL document-oriented data storage service. Data type casting has to be
taken care of. e.g., Azure Cosmos DB to Azure SQL database and vice versa.
iv) Cross-Cloud Heterogeneous DB migration (Relational to/from NoSQL data store
within the different clouds). The complexity of conversion is high because data is being
ported from RDBMS to NoSQL document-oriented data storage service. Data type
casting has to be taken care of. Also, the cloud service compatibility is to be taken into
account. e.g., Azure SQL Database to Amazon DocumentDB and vice versa.
v) Cross-Cloud Heterogeneous NoSQL DB migration (One category of NoSQL data
store to/from another category of NoSQL data store of another cloud). The complexity of
conversion is high because data is to be ported from one NoSQL (Document oriented) to
another NoSQL (Columnar) data storage service. Data type casting has to be taken care
of. e.g., Amazon DocumentDB to Azure Cosmos DB (Cassandra) and vice versa.
Data migration needs to be done in all cases if the user has a requirement to have access
to the previous data residing in the source DB. Nonetheless, the above scenarios are
merely examples; the proposed middleware supports the combinations of data stores
services and clouds given in Tab. 1.

Table 1: Supported clouds and data stores

Supported Clouds

Supported Data stores

Azure Amazon Web

Services

Google Cloud

Platform

SQL Azure SQL Database Amazon RDS
(SQL SERVER)

Google Cloud SQL

MongoDB Azure Cosmos DB (With
MongoDB API)

Amazon
DocumentDB

Google MongoDB

Cassandra Azure Cosmos DB (With
Cassandra API)

- -

1632 CMC, vol.65, no.2, pp.1625-1647, 2020

4.2 Architecture of the proposed middleware
4.2.1 Switching the data stores
All the entities of the user data models are kept in the form of objects, so the objects’ type
decides the data stores where they persist. A user-defined model is a class that is inherited
from a specific parent class (i.e., middleware meta model class). So, instead of the unified
data model as in [Alomari, Barnawi and Sakr (2015)], we provide a different middleware
metamodel class for each of the data stores supported. e.g., TSqlModel for SQL type data
store, and TMongoModel for Mongo data store.
public class TSqlModel
 {
 [Key]
 public Guid Id { get; set; }
 }
Each of these middleware meta model classes has a key/property called ID which acts as
a primary key. The value of the Primary key for the database is generated by the
middleware only, although the user can also define a unique key. After defining the
properties of the user-defined model/class, the user-defined model is inherited from the
respective middleware meta model class and is passed to the abstraction layer provided
by the proposed middleware.
public class UserDefinedModel: TSqlModel
 {
 public string Prop1 { get; set; }
 public string Prop2 { get; set; }
 }
DatabaseContext class (Fig. 2) determines the data store where the object is persisted, by
detecting the middleware meta model class from which the passed model object is
inherited. The only change required for switching among the data stores is to replace the
middleware meta model class with the new data store model class. For instance, to
change the data store from SQL to MongoDB, ‘TSqlModel’ in the above code snippet
needs to be replaced with ‘TMongoModel’ as in the following code snippet:
public class UserDefinedModel: TMongoModel
 {
 public string Prop1 { get; set; }
 public string Prop2 { get; set; }
 }
Then the query is generated according to the user-defined model class that is passed to
the data store specific context class. This is done with the help of Reflection (a concept of
Object-Oriented programming) which extracts the properties and their values from the
passed object in the data store specific context class as follows:
if (type.IsClass)

A Middleware for Polyglot Persistence and Data Portability 1633

 {
 string query = $"INSERT INTO {type.Name}";
 query += " (";
 foreach (var propertyInfo in type.GetProperties())
 {
 query += propertyInfo.Name + ",";
 }
 query = query.TrimEnd(',');
 query += ") ";
 query += "VALUES";
 query += " (";
 foreach (var propertyInfo in type.GetProperties())
 {
 query += $"@{propertyInfo.Name},";
 }
 query = query.TrimEnd(',');
 query += ")";
 RunCommand(query, obj);
}

Figure 2: Class Diagram of the proposed middleware

1634 CMC, vol.65, no.2, pp.1625-1647, 2020

4.2.2 Migrating the data
Lewis [Lewis (2012)] defined data migration as “Data that resides in one cloud provider
can be moved to another cloud provider.” Data migration is a tedious task that involves
i) Extracting data from its original DB
ii) Transforming it to a format which is compatible with the target DB
iii) Uploading the formatted data into the target DB
For migration, we developed a graphical user interface tool (Fig. 3) using the middleware.
This tool allows the user to choose the source as well as destination DB types. The user has
to provide the source and destination DB connection string along with the database name.

Figure 3: Graphical User Interface for the proposed Data Migration Tool

The data transformation process of the proposed middleware and the algorithm to
perform the data migration is as follows:
// get source and destination data store credentials
source_db=connect(source_database_conn_string);
// connect to the source data store
destination_db=connect(destination_database_conn_string);
// retrieve the entities to migrate
entities=get_all_entities(source_db);
// convert the entities according to middleware data models
foreach(entity in entities)
{
tuples=get_tuples(entity);
// connect to destination data store
converted_tuples=convert_to_destination_tuples(tuples);
foreach(converted_tuple in converted_tuples)
{

A Middleware for Polyglot Persistence and Data Portability 1635

// store the entities in destination data store
save_in_destination_db(converted_tuple);
}
}
For this period, the application might be down for the migration. After the migration, all
the following operations will start being performed in the new data store.

4.2.3 Data models
As discussed above, the proposed middleware facilitates the portability of data (which
means changing the data store and migrating the data as well) between different data
stores (i.e., SQL and NoSQL) across different cloud data storage services. The
middleware accomplishes this by converting the data into POCO (Plain Old CLR Objects)
and then converting them into their SQL and NoSQL counterparts and vice versa. It
supports various data stores across different cloud platforms listed below:
 Amazon RDS: Amazon RDS is the relational database service provided by Amazon.

Marketed as scalable and easy to set up, Amazon RDS service provides support for
PostgreSQL, MySQL, MariaDB, Oracle Database and Microsoft SQL Server. Our
proposed middleware supports MySQL and Microsoft SQL Server. While Amazon
RDS supports SQL Server, it does not fully support all the features of SQL Server,
for e.g., several server-level roles and server-level permissions are not supported by
Microsoft SQL Server on Amazon [Amazon RDS (2020)].

 Azure SQL Database: Azure SQL Database is the scalable cloud database service
by Microsoft Azure that is based on SQL Server. It has machine learning-based
monitoring and tuning of SQL Server instance. Azure SQL Database provides high-
level security via various layers of network security, access management, threat
protection, and information protection [Azure SQL Database (2020)].

 Azure Cosmos DB: Azure Cosmos DB is a fully managed multi-model database
service that supports elasticity and unlimited scalability. It supports Cassandra,
MongoDB, and SQL [Azure Cosmos DB (2020)]. Although Cassandra and
MongoDB are provided as DB services, the API is provided in such a way that it
works as a cloud-native database. Our proposed middleware supports both
Cassandra and MongoDB API of Azure Cosmos DB.

 Amazon DocumentDB: Amazon DocumentDB is a fully-managed database service
that supports MongoDB workloads. In Amazon DocumentDB, the storage and compute
are decoupled. They can be scaled independently [Amazon DocumentDB (2020)].

 Google Cloud SQL: Google Cloud SQL is a SQL database service provided by the
Google Cloud Platform. It provides the MySQL, PostgresSQL, and SQL Server
database engines. It has built-in automation for high availability, backups, and
security updates [Google Cloud SQL (2020)].

 Google MongoDB: MongoDB is provided on Google Cloud Platform as MongoDB
as a Service. It is a partner solution that is a result of collaboration between the
MongoDB and Google. It is MongoDB Atlas which is hosted on MongoDB cloud

1636 CMC, vol.65, no.2, pp.1625-1647, 2020

servers and managed through Google Cloud Platform [Google MongoDB (2020)].
 Proposed Data Model: The proposed data model is different than that given by

[Alomari, Barnawi and Sakr (2015)]. Whenever a new data store is added, (the type
of the database being used viz. SQL or NoSQL), a new meta-model class for the
respective data store is created. Currently, we have three meta model classes:
TSqlModel, TColumnarModel, and TMongoModel in the middleware. For every
data store supported by the middleware, there will be a meta-model class. These
classes define, that when a user creates a user-defined entity, he/she has to inherit
that entity from these metamodel classes. This will make the proposed middleware’s
abstraction layer to detect the data store entity to which this user-defined entity
belongs. When an object is passed to the abstraction layer, it will look for the meta-
model class it belongs to, and from that it can determine the data store where this
object needs to be stored.

Tab. 2 presents a sample of data type conversions that are carried out automatically by
the proposed middleware.

Table 2: Sample of data types conversion

Middleware’s
Data Types

Azure SQL
Database

Azure

Cosmos DB
(MongoDB)

Azure
Cosmos DB
(Cassandra)

Amazon RDS Amazon
DocumentDB

Google SQL Google
MongoDB

Guid UniqueIdentifier ObjectId UUID UniqueIdentifier ObjectId UniqueIdentifier ObjectId

Int Int Integer Int Float Integer Int Int

Double Float Long Float Float Float Float Float

DateTime Datetime Date Datetime timestamp Datetime Datetime Date

String Varchar String Text Varchar String Varchar String

4.2.4 Middleware implementation
The middleware API hides the complex programming of the implementation of each data
store. It provides a single programming interface that automatically connects to all the
data stores configured in the configuration file of the application. The middleware makes
use of the built-in dependency injection feature of the .NET core framework to instantiate
the credentials and services of all the data stores being used in the application. The
middleware detects the data stores being used by going through the configuration file and
instantiates only those services for which the credentials are provided. Then the user can
instantiate the main API with the following code:
class SomeModel: TSqlModel
{
 public string SomeProperty {get; set; }

A Middleware for Polyglot Persistence and Data Portability 1637

}
class SomeController
{
 private DatabaseContext _dbContext;
 public SomeController(DatabaseContext dbContext)
 {
 _dbContext = dbContext;
 }
 public IActionResult SomeMethod()
 {
 SomeModel obj = new SomeModel() { SomeProperty = “Some Valid Property”};
 _dbContext.Add(obj);
 }
}
Here, SomeModel is a user-defined data model and TSqlModel is the middleware meta-
model. SomeModel is inherited by TSqlModel which signifies that it belongs to a SQL
data store. DatabaseContext is the class that provides the abstraction to the user from the
intricacies of the middleware. The Add() method of DatabaseContext class determines
the data store by checking its base class (middleware meta-model) and then internally
calls the SqlDatabaseContext which creates the INSERT query to save the object as a row
in the SQL data store.
Fig. 2 in Section 4.2.1 presents the class diagram of the middleware, with the services
and middleware data models. The middleware API offers the following CRUD and JOIN
operations that are needed to manipulate the data persisted in the supported data stores:
(i) Add: This method takes an object of user-defined models and stores it in the relevant
data store. If the object already exists, it updates the existing record.
(ii) Update: This method takes an object of user-defined models and updates it in the
relevant data store. If the object does not exist, it creates a new record in the data store.
(iii) Remove: It removes the record from the data store of the passed object if the ID
property of the object is found in the data store. If no record is found, nothing is deleted.
(iv) Get: Get method is used to get the ResultSet back to the user for the model’s class
type passed in the function.
(v) Join: Join is used to perform JOIN operations between the result sets of two different
user-defined entities. It works similar to the JOIN operations in SQL. The join method of
our middleware also works on NoSQL entities.
Normally, in case of inserting a record in SQL, the following query is executed:
INSERT INTO table (column1, column2) VALUES (‘value1’, ‘value2’)
And in case of inserting a record in MongoDB, following code is required,
var obj = new SomeClass() { someProperty=“Some Property” };

1638 CMC, vol.65, no.2, pp.1625-1647, 2020

var client = new MongoClient(“connection_string”);
var database = client.GetDatabase(“database_name”);
var collection = database.GetCollection(“collection_name”);
collection.InsertOne(obj);
However, the proposed middleware eases out this insertion statement execution by using
 _dbContext.Add(obj);
Using the above statement, if the user-defined data model is inherited from TSqlModel, it
will generate an INSERT query. If the user-defined data model is inherited from
TMongoModel, it will generate a BSON object, retrieve a collection based on the name of
the data model class and insert the object in the collection. The design patterns leveraged in
the middleware are repository pattern, adapter pattern and dependency injection.

5 Experimentation and evaluation
For the evaluation, we conducted an experiment where we created a sample web
application using .NET Core since the proposed middleware currently is coded in C#
using .NET core framework. The application is hosted using the App Services Linux
instance of SKU Free F1 (1 GB RAM, 60 minutes/day compute time). Azure SQL
Database used is of Basic Tier consisting of 5 DTUs and a size of 2 GB max. Azure
Cosmos DB is dynamically prices based on pay as you go method. Amazon RDS
instance is of SQL Server Express engine of db.t2.micro size which has 1 vCPU and 1
GB RAM. Amazon DocumentDB used is of db.r5.large type which has 2 vCPUs and 16
GB RAM with up to 3500 Mbps bandwidth. Google SQL is an instance of the SQL
Server Express engine which has 1 vCPU, 3.75 GB RAM, and 20 GB SSD storage.
Google MongoDB is an instance hosted on MongoDB cloud which has shared vCPU and
RAM with 512 MB storage.
Microsoft Azure, Google, and Amazon Web Services are the currently supported cloud
platform providers for the proposed middleware and Amazon RDS, Azure SQL Database,
Azure Cosmos DB (Mongo and Cassandra), Amazon DocumentDB, Google Cloud SQL,
and Google MongoDB are the supported data stores. For our experimentation, we have
used the same Twitter dataset by [Singh, Sawhney and Kahlon (2017)]. Tweets of this
Twitter data set were used for evaluating the benchmark results for the middleware. The
schema has Guid, string, int, date, and float datatypes.

5.1 Evaluating the performance of the proposed middleware
We evaluated the performance of the middleware for each data store on each cloud
service by performing CRUD and JOIN operations using one thousand tweets. These one
thousand tweets were selected randomly from one hundred thousand tweets that are
archived in the form of an excel file. A toy web application was hosted on Azure App
Service which is using Azure SQL Database. Fig. 4 shows the schema of the data set used
to benchmark our middleware.

A Middleware for Polyglot Persistence and Data Portability 1639

Figure 4: Schema of the data set

 (a) Amazon Document DB (b) Amazon RDS

 (c) Azure Cosmos DB (MongoDB) (d) Azure SQL Database

 (e) Google Cloud SQL (f) Google MongoDB

1640 CMC, vol.65, no.2, pp.1625-1647, 2020

 (g) Azure Cosmos DB (Cassandra)

Figure 5: Response Times for CRUD and JOIN operations in various supported clouds

We compared the time of executing the calls by the underlying data storage services
using our middleware’s abstracted API with the time of executing the same call using
the .Net framework API provided by each of the services. In particular, we used the
difference of Start time and End time of the System.DateTime objects to calculate the
time taken by the call. Since, it is the native date-time API of the .Net framework; it does
not add to any overhead and provides an accurate time. We repeated all execution use
cases five times each and then calculated the mean value to avoid the effect of any faulty
measurements that could be caused by any external factor such as network fluctuations.
We measured the performance of each of the main operations: Create, Read, Update, and
Delete. Also, we measured the performance of more complex calls involving JOIN
operation. The abstraction layer of the proposed middleware hides all the variations
between different data stores. The scenarios described in Section 4.1 were implemented
during the experimentation for benchmarking the response times for performing CRUD
and JOIN operations using the proposed middleware for different data stores against the
same for native API. Fig. 5(a) illustrates the comparison between Amazon Document DB
native API and our middleware API. It shows that the performance overhead is very
negligible for all the operations. Similarly, the graphs in Figs. 5(b)-5(g) show the
efficiency of the middleware against native API of Amazon RDS using SQL Server,
Azure Cosmos DB (MongoDB), Azure SQL Database, Google Cloud SQL, Google
MongoDB and Azure Cosmos DB (Cassandra) respectively. The graphs and readings
support our claim that using the proposed middleware will not pose much latency
differences in the user’s application. Extensive testing was done to validate the efficiency
and accuracy of the middleware.

5.2 Evaluating the performance of the data migration tool
For evaluating the effectiveness of the developed data migration tool, we ported the data
among the supported cloud-based data storage services. We tried all the scenarios
mentioned in Section 4.1 for moving the data. For migrating the data manually, the user
is required to be acquainted with the data model of the source and destination data
storage service. The user can leverage the available import or export tools provided by
the data storage service. But for porting the data across different data storage services

A Middleware for Polyglot Persistence and Data Portability 1641

having different data models, it is tedious to find the existing tools that support different
scenarios. Therefore we developed the transformation code that could perform the data
migration by retrieving the data from source data storage service, convert retrieved data
to the target service’s data model and eventually copy the converted data to the target
data storage service. On the other hand, to carry out data migration using our migration
tool, the user just needs to enter the connection information (type of data storage type,
connection string, instance name etc.) of source and target data storage service. The data
transformation is performed automatically by the developed migration tool.
Fig. 6 shows the exemplar identical results retrieved for performing the data migration
scenarios mentioned in Section 4.1.

(a) Azure Cosmos DB (Cassandra API)

(b) Amazon RDS

1642 CMC, vol.65, no.2, pp.1625-1647, 2020

(c) Azure Cosmos DB (MongoDB API)

(d) Azure SQL Database

A Middleware for Polyglot Persistence and Data Portability 1643

(e) Google MongoDB

(f) Google Cloud SQL

Figure 6: Ported data in the supported cloud data storage services

1644 CMC, vol.65, no.2, pp.1625-1647, 2020

The graph in Fig. 7 shows the efficiency of the migration tool. In the evaluation
scenarios, we used source databases consisting of one thousand rows (in case of SQL
data store) and one thousand documents (in case of NoSQL data store). The same Twitter
dataset was used for populating the source databases.

Figure 7: Time taken for migrating 1000 rows by different scenario

Our middleware’s functionality may seem to be similar to the functionality of ORMs
(Object Relational Mappers) and ONDMs (Object to NoSQL Data Mappers) as it also
handles the data in the form of objects of user-defined data models. To persist them into
relational DBs, we convert the objects into respective SQL queries which is similar to
ORMs and ONDMs. To the best of our knowledge, there is no active ONDM framework
available for C#.NET. But our middleware is polyglot and supports data interoperability
(SQL to NoSQL and vice versa), cloud interoperability (data migration among different
clouds) as well as data migration between different NoSQL categories. So, our solution is
essentially better than ORMs and ONDMS due to the enhanced features stated above.

6 Conclusion and future work
The inherent differences in heterogeneous persistence models in addition to the different
implementation APIs of these models render it time-consuming and requiring substantial
efforts to port the data or changing the data stores among cloud providers. This paper
highlights the need for polyglot persistence, research work done towards this issue and
proposes a middleware solution to alleviate it. The experimental results to assess the
latency overhead of using the proposed middleware against using just the native APIs are
also presented. It provides an abstraction layer to hide the intricacies while changing the
backend data store among the supported data stores. After evaluating the effectiveness,
accuracy, and performance of the middleware, we conclude:
 It makes the development of portable applications far easier if used instead of the

native APIs. Since, there is a minimal change required in code and most of the time
it is required to change the configuration file only, changing the backend will be
easier and feasible.

 It lessens the time and effort required for porting the data store backend of the

A Middleware for Polyglot Persistence and Data Portability 1645

application to another cloud.
 The data migration tool developed using this middleware eases out the process of

porting the data across different data models and different clouds viz. Microsoft
Azure, Amazon Web Services and Google Cloud.

For the future, we will focus on adding more data stores, more clouds, and porting the
proposed middleware in other languages like Java, PHP, etc. We will also be
comparing analytically the performance of this middleware with the other frameworks
like CloudMapper of [Munisso and Chis (2017)] and ODBAPI of [Sellami, Bhiri, and
Defude (2016)] as well as other ONDMs (Object to NoSQL data mappers) available in
the market.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Alomari, E.; Barnawi, A.; Sakr, S. (2015): CDPort: A Portability framework for
NoSQL datastores. Arabian Journal for Science and Engineering, vol. 40, no. 9, pp.
2531-2553.
Amazon DocumentDB (2020): https://cloud.google.com/sql/docs.
Amazon RDS (2020):
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html.
Atzeni, P.; Bugiotti, F.; Rossi, L. (2012), June: Uniform access to non-relational
database systems: The SOS platform. In International Conference on Advanced
Information Systems Engineering, pp. 160-174. Springer, Berlin, Heidelberg.
Azure SQL Database (2020): https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-technical-overview.
Bansel, A.; Gonzalez-Velez, H.; Chis, A. E. (2016): Cloud-Based NoSQL data
migration. Proceedings-24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Proceeding, pp. 224-231.
Bastiao Silva, L. A.; Costa, C.; Oliveira, J. L. (2013): A common API for delivering
services over multi-vendor cloud resources. Journal of Systems and Software, vol. 86, no.
9, pp. 2309-2317.
Beslic, A.; Bendraou, R.; Sopena, J.; Rigolet, J. Y. (2013): Towards a solution
avoiding vendor lock-in to enable migration between cloud platforms. CEUR Workshop
Proceedings, vol. 1118, pp. 5-14.
CDPort github (2014): https://github.com/CDPort/API/blob/master/API-Cloud-
Database/src/main/java/api/AmazonRDS.java.
Chetal, A.; Peterson, J.; Wallace, J.; Drgon, M. (2011): Interoperability and portability.
Cloud Security Alliance.

1646 CMC, vol.65, no.2, pp.1625-1647, 2020

da Silva, E. A. N.; Lucrédio, D.; Moreira, A.; Fortes, R. (2015): Supporting multiple
persistence models for PaaS applications using MDE: Issues on cloud portability.
CLOSER-Proceedings of 5th International Conference on Cloud Computing and Services
Science, pp. 331-342.
Fowler, M.; Sadalage, P. (2012): NoSQL database and Polyglot persistence. Personal
Website: https://martinfowler.com/articles/nosql-intro-original.pdf.
Gartner (2019): https://www.gartner.com/en/newsroom/press-releases/2019-04-29-
gartner-identifies-key-trends-in-paas-and-platform-ar.
Gonidis, F. (2015): A Framework Enabling the Cross-Platform Development of Service-
Based Cloud Applications (Ph.D. Thesis). University of Sheffield, South East European
Research Centre.
Gonidis, F.; Paraskakis, I.; Kourtesis, D. (2012) September: Addressing the challenge
of application portability in cloud platforms. 7th South-East European Doctoral Student
Conference, pp. 565-576.
Gonidis, F.; Simons, A. J.; Paraskakis, I.; Kourtesis, D. (2013) September: Cloud
application portability: an initial view. Proceedings of the 6th Balkan Conference in
Informatics, pp. 275-282.
Google Cloud SQL (2020): https://www.mongodb.com/cloud/atlas/mongodb-google-
cloud.
Hill, Z.; Humphrey, M. (2010): November: CSAL: A cloud storage abstraction layer to
enable portable cloud applications. IEEE Second International Conference on Cloud
Computing Technology and Science, pp. 504-511.
InsideBigData (2019): https://insidebigdata.com/2019/12/28/big-data-cloud-computing-
the-roles-relationships/.
Jia, T.; Zhao, X.; Wang, Z.; Gong, D.; Ding, G. (2016) June: Model transformation
and data migration from relational database to MongoDB. IEEE International Congress
on Big Data, pp. 60-67.
Kaur, K.; Sharma, D. S.; Kahlon, D. K. S. (2017): Interoperability and portability
approaches in inter-connected clouds: a review. ACM Computing Surveys, vol. 50, no. 4,
pp. 1-40.
Korte, F.; Challita, S.; Zalila, F.; Merle, P.; Grabowski, J. (2018) May: model-driven
configuration management of cloud applications with OCCI. CLOSER-Proceedings of
the 8th International Conference on Cloud Computing and Services Science-Janua, pp.
100-111.
Kostoska, M.; Gusev, M.; Ristov, S. (2015) September: an overview of cloud
portability. Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp.
248-254. Springer, Cham.
Lewis, G. A. (2013) January: Role of standards in cloud-computing interoperability. 46th
Hawaii International Conference on System Sciences, pp. 1652-1661.
Migration Tool (2020): https://polyglot-db-migration.azurewebsites.net/.

A Middleware for Polyglot Persistence and Data Portability 1647

Munisso, R.; Chis, A. E. (2017) March: cloudmapper: a model-based framework for
portability of cloud applications consuming PaaS services. 25th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 132-139.
Petcu, D. (2011) October: Portability and interoperability between clouds: challenges and
case study. European Conference on a Service-Based Internet, pp. 62-74. Springer,
Berlin, Heidelberg.
Pulgatti, L. D. (2017): Data Migration Between Different Data Models of NoSql
Databases (Masters Dissertation). Graduate Program in Informatics, Sector of Exact
Sciences, Universidade Federal do Paraná.
Rith, J.; Lehmayr, P. S.; Meyer-Wegener, K. (2014) March: Speaking in tongues: SQL
access to NoSQL systems. Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 855-857.
Roijackers, J.; Fletcher, G. H. (2013) July: On bridging relational and document-centric
data stores. British National Conference on Databases, Springer, Berlin, Heidelberg, pp.
135-148.
Scavuzzo, M.; Tamburri, D. A.; Di Nitto, E. (2016) May: providing big data
applications with fault-tolerant data migration across heterogeneous NoSQL databases.
IEEE/ACM 2nd International Workshop on Big Data Software Engineering, pp. 26-32.
Sellami, R.; Bhiri, S.; Defude, B. (2015): Supporting multi data stores applications in
cloud environments. IEEE Transactions on Services Computing, vol. 9, no. 1, pp.59-71.
Shirazi, M. N.; Kuan, H. C.; Dolatabadi, H. (2012) June: design patterns to enable data
portability between clouds’ databases. 12th International Conference on Computational
Science and Its Applications, pp. 117-120.
Singh, P.; Sawhney, R. S.; Kahlon, K. S. (2017) November: forecasting the 2016 US
presidential elections using sentiment analysis. Conference on e-Business, e-Services and
e-Society, pp. 412-423. Springer, Cham.
Strauch, S.; Andrikopoulos, V.; Bachmann, T.; Leymann, F. (2013) May: Migrating
application data to the cloud using cloud data patterns. Closer-Proceedings of the 3rd
International Conference on Cloud Computing and Services Science, pp. 36-46.
Yasrab, R.; Gu, N. (2016) July: multi-cloud PaaS Architecture (MCPA): a solution to
cloud lock-in. 3rd International Conference on Information Science and Control
Engineering, pp. 473-477.

	A Middleware for Polyglot Persistence and Data Portability of Big Data PaaS Cloud Applications
	Kiranbir Kaur0F , *, Sandeep Sharma1 and Karanjeet Singh Kahlon1F

	5 Experimentation and evaluation
	Funding Statement: The author(s) received no specific funding for this study.
	References

