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Abstract: With the rapid development of quantum theory and technology in recent years, 
especially the emergence of some quantum cloud computing platforms, more and more 
researchers are not satisfied with the theoretical derivation and simulation verification of 
quantum computation (especially quantum algorithms), experimental verification on real 
quantum devices has become a new trend. In this paper, three representative quantum 
algorithms, namely Deutsch-Jozsa, Grover, and Shor algorithms, are briefly depicted, and 
then their implementation circuits are presented, respectively. We program these circuits on 
python with QISKit to connect the remote real quantum devices (i.e., ibmqx4, ibmqx5) on 
IBM Q to verify these algorithms. The experimental results not only show the feasibility of 
these algorithms, but also serve to evaluate the functionality of these devices. 
 
Keywords: Quantum algorithms, implementation circuit, IBM Q, QISKit program. 

1 Introduction 
Quantum computation [Nielsen and Chuang (2002)] can be understood as the method of 
information processing using the physical properties of quantum states on a quantum 
computer. With quantum mechanics utilized in the information processing, many important 
research findings are proposed in recent decades, such as quantum key distribution (QKD) 
[Bennett and Brassard (1984); Artur (1991)], quantum secure sharing (QSS) [Liu, Chen, Xu 
et al. (2012); Chen, Tang, Xu et al. (2018); Liu, Xu, Zhang et al. (2019)], quantum key 
agreement (QKA) [Huang, Su, Liu et al. (2017); Liu, Xu, Yang et al. (2018)], quantum 
secure direct communication (QSDC) [Liu, Chen, Li et al. (2008); Liu, Chen, Ma et al. 
(2009); Xu, Chen and Li (2015)], quantum private comparison (QPC) [Liu, Liu, Wang et  
al. (2013); Liu, Liu, Liu et al. (2014); Liu, Liu, Chen at al. (2014); Liu, Liu, Wang (2014)], 
quantum sealed-bid auction (QSBA) [Liu, Wang, Yuan et al. (2016); Liu, Wang, Ji et al. 
(2014)], remote preparation of quantum states [Liu, Chen, Liu et al. (2015); Chen, Sun, Xu 
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et al. (2017); Qu, Wu, Wang et al. (2017)], quantum steganography [Qu, Cheng, Liu et al. 
(2019); Qu, Chen, Ji et al. (2018)], delegating quantum computation [Liu, Chen, Ji et al. 
(2017)], and quantum-based database query scheme [Liu, Gao, Chen et al. (2019); Liu, 
Xu, Wang et al. (2019)]. On the other hand, quantum parallelism greatly accelerates the 
computation of some special computational tasks. For example, Deutsch-Jozsa algorithm 
[Deutsch and Jozsa (1992)] can determine whether the function is constant or balanced 
with only one query; Grover algorithm [Grover (1996)] has a quadratic speedup to the 
problem of conducting a search through some unstructured search space; Shor algorithm 
[Shor (1999)] can factor the prime factor of large numbers in polynomial time (which 
makes quantum computer easy to crack the current RSA-based cryptosystems); and some 
quantum machine learning algorithms [Lloyd, Mohseni and Rebentrost (2013); Liu, Gao, 
Yu et al. (2018); Liu, Gao, Wang et al. (2019); Liu, Chen, Wang et al. (2020); Liu, Li, 
Zheng et al. (2019)] are also far superior to classical algorithm. 
However, the correctness or security verification of the above algorithms or protocols is 
mostly based on theoretical derivation [Childs, Kothari and Somma (2015), Pan, Yu, Yi 
et al. (2019)] or experiment simulations [Vandersypen, Steffen, Breyta et al. (2001)]. 
With the release of quantum cloud computing platform in recent few years, such as D-
Wave Leap [Dwave (2018)], IBM Q [IBMquantum (2017)], Alibaba’s superconducting 
quantum computer [Superconducting (2018)], and Tsinghua’s NMRCloud Q [Xin, Huang, 
Liu et al. (2018)], some researchers tried to verify quantum protocols or algorithms on the 
real quantum computers. In 2017, Gangopadhyay et al. [Gangopadhyay, Manabputra, 
Behera et al. (2017)] proposed two generalization algorithms based on Deutsch-Jozsa-
like algorithm and demonstrated experimental verification of the first algorithm by using 
IBM 5-qubit device (i.e., 5-qubit IBM Q). And then Srinivasan et al. [Srinivasan, Behera 
and Panigrahi (2017)] verified Gaussian elimination method for solving system of 
equations at IBM 5-qubit device. In 2018, Roy et al. [Roy, Behera, Pan et al. (2018)] 
demonstrated the violation of the entropic noncontextual inequality in a four-level 
quantum system, by using the 5-qubit IBM Q. As far as we know, most research results 
of experimental verification are based on IBM 5-qubit device. Besides, their circuit 
design is directly carried out on the web page, which is only suitable for small-scale 
quantum circuits (the length of quantum circuit, i.e., maximal number of cascaded 
quantum gates on a single quantum line, are limited to 80 on the web page). With the 
increase of the scale of the problem, the feasibility and expansibility of this web mode are 
relatively poor. 
At the end of 2017, IBM released an open-source quantum computation framework, 
QISKit [QISKit (2018)], which allows the users to implement remote quantum 
experimental verification of IBM Q through localized python programming. For this kind 
of localized programming mode based on QISKit, the length of quantum circuit is no 
longer limited to 80 and the design of quantum functional circuits can be packaged in the 
form of functions for reusing and expansion. In this paper, we use QISKit and Forest to 
directly program three representative quantum algorithms, namely Deutsch-Jozsa, Grover 
and Shor algorithms, and connect the remote real quantum devices (i.e., ibmqx4 and 
ibmqx5) to verify these algorithms in real quantum computer. 
The remaining part of the paper is organized as follows: In Section 2, preliminaries about 
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quantum computation, IBM Q and QISKit are briefly introduced. In Section 3, three 
representative algorithms, Deutsch-Jozsa, Grover and Shor algorithms, are depicted, and 
then their implementation circuits are presented. Subsequently, the experimental results 
of these algorithms are analyzed in detail in graphical form. Finally, Section 4 is 
dedicated for conclusion. 

2 Preliminaries  
2.1 Quantum computation 
The basic concept of the classical information world is bit. Similarly, quantum 
computation and quantum information are based on similar concepts: qubit. Classic bit 
have only one state: either 0 or 1. Corresponding in the qubit, we denote 0 and 1 as: 
0 and 1 .  is called the Dirac token. The qubit can fall outside 0 and 1 . Qubit can 

be a linear combination of these two states, often referred to as superposition state, 
0 1 .ϕ α β= +                                                                                                                 (1) 

Here, α and β represent the probability amplitude of 0 and 1 . 0 and 1 can be 
represented by vectors, which is shown in Eq. (2). 

1 0
0 , 1 .

0 1
   

= =   
   

                                                                                                              (2) 

Then, the superposition state is represented by a vector as follows: 
1 0

.
0 1

α
α β

β
     

= +     
     

                                                                                                            (3) 

In a geometric sense, the state of the qubit is required to be normalized to length 1, which 
means 2 2 1α β+ = . 

A quantum computer is built from a quantum circuit containing wires and elementary 
quantum gates to carry around and manipulate the quantum information. Quantum gates 
are divided into single qubit gates and multiple qubit gates. Quantum gate can all be 
represented in the form of a matrix U . The unitary limit ( †U U I= , where †U  is a 
conjugate transpose of U , obtained by U  transpose and complex conjugate of U ) is the 
only limitation on quantum gates [Nielsen and Chuang (2002)]. Each valid quantum gate 
can be represented as a unitary matrix. For visual display, in Tab. 1 below we list some 
line symbols and matrix representations used in this paper. 
In the actual quantum circuit, we use special line symbol to represent the quantum gate, and 
a line symbol represents a quantum gate that can manipulate the quantum state, such as, 

0 1
.

1 0
X  
≡  
 

                                                                                                                     (4) 

If X  is used to manipulate the quantum state = 0 + 1ψ α β , the result of the operation 
can be obtained by multiplying the vector, 
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.X
α β
β α
   

=   
   

                                                                                                                     (5) 

Table 1: Common quantum gates and line symbols 

Quantum gate Line symbol Matrix form 

Hadamard  
1 11
1 12
 
 − 

  

Pauli-X  
0 1
1 0
 
 
 

  

Pauli-Y  
0

0
i

i
− 

 
 

  

Pauli-Z  
1 0
0 1
 
 − 

  

controlled-NOT 
 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
 
 
 
 
 
  

controlled-Z 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 

− 
  

A projective measurement is described by an observable M , a Hermitian operator on the 
state space of the system being observed. The observable has a spectral decomposition, 

m
m

M mP= ∑ ,                                                                                                                      (6) 

where mP  is the projector onto the eigenspace of M  with eigenvalue m . The possible 
outcomes of the measurement correspond to the eigenvalues m , of the observable. Upon 
measuring the state ψ , the probability of getting result m  is given by 

( ) | .mp m Pψ ψ= 〈                                                                                                              (7) 

Given that outcome m  occurred, the state of the quantum system immediately after the 
measurement is 

( )
.mP

p m

ψ
                                                                                                                            (8) 
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2.2 IBM Q 
In 2016, IBM opened the IBM quantum experience prototype 5-qubit device to the public. 
A year later, they announced the launch of IBM Q [IBMquantum (2017)], the industry’s 
first initiative to build commercially available universal quantum computers for business 
and science. In the same year, they proposed two devices with 5 qubits named ibmqx2 
and ibmqx4. In 2018, a third public device with 16 qubits (ibmqx5) was added which can 
be accessed using QISKit. Recently, they have announced that they successfully built and 
tested a 20-qubit device for their client. Meanwhile, their simulator is up to 32 qubits. 
In IBM Q, all devices provide a lot of elementary gates, such as: X -gate, H -gate, cX -
gate (control-NOT gate), cZ -gate (control-Z gate), ccX -gate (control-control-NOT gate, 
namely Toffoli gate) and so on. The coupling map of ibmqx4 and ibmqx5 are shown in 
Fig. 1. Generally, two-qubit gates are possible between neighboring qubits that are 
connected by a super-conduction bus resonator. The IBM Q experience uses the cross-
resonance interaction as the basis for the cX -gate. This interaction is stronger when 
choosing the qubit with higher frequency to be the control qubit, and the lower frequency 
qubit to be the target, so the frequencies of the qubits determine the direction of the gate. 

 
Figure 1: The coupling map picture: (a) ibmqx4 (5 qubits), (b) ibmqx5 (16 qubits). The 
arrows point from the qubit with higher frequency to that with lower frequency 

2.3 QISKit 
QISKit (Quantum Information Software Kit) [QISKit (2018)] is a collection of software 
for working with short depth quantum circuits and building near term applications and 
experiments on quantum computers. In QISKit, a quantum program is an array of 
quantum circuits. The program work flow consists of three stages: building, compiling 
and running. 
(1) Building allows you to make different quantum circuits that represent the problem 
you are solving. 
(2) Compiling allows you to rewrite them to run on different backends (simulators or real 
chips of different quantum volumes, sizes, fidelity, etc.). 
(3) Running launches the jobs. 
After the jobs have been run, the data are collected. There are methods for putting this 
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data together, depending on the program. In other words, QISKit includes python-based 
tools for creating, manipulating, visualizing and studying quantum states, tools for 
characterizing qubits, scripts for batch processing, as well as a compiler to map the 
desired experiment onto real hardware. Different from the IBM Q web page experiment 
mode, this kind of programming call mode can overcome the cumbersomeness of 
drawing complex circuit diagrams on web pages, and has the advantage of easy 
expansion of composite quantum gates and easy preservation of experimental data. 

3 Quantum algorithms and experiment implementations based on IBM Q 
3.1 Deutsch-Jozsa algorithm 
3.1.1 Algorithm procedure 
The Deutsch-Jozsa problem [Deutsch and Jozsa (1992)] is defined as follows. Consider a 
function ( )f x  that takes as input n -bit strings x  and returns 0 or 1. The goal is to decide 
whether f  is a constant function that takes the same value { }0,1c∈  on all inputs x , or a 
balanced function that takes each value 0 and 1 on exactly half of the inputs. Classically, 
it requires 12 1n− +  function evaluations in the worst case. Using the Deutsch-Jozsa 
algorithm, the question can be answered with just one function evaluation. 
The specific steps of the algorithm are depicted in Fig. 2. 

   

Figure 2: Quantum circuit implementing the general Deutsch-Jozsa algorithm. The wire 
with a ‘/’ through it represents a set of n  qubits 

The input state is 0 = 0 1nϕ ⊗ . After the Hadamard transform on the query register and 
the Hadamard gate on the answer register we have 

{ }
1

0,1

0 1
= .

22n n
x

x
ϕ

∈

 − 
 
 

∑                                                                                                   (9) 

Next, the function f  is evaluated using ( ), ,fU x y x y f x→ ⊕ , giving 

( ) ( )

2

1 0 1
= .

22

f x

n
x

x
ϕ

−  − 
 
 

∑                                                                                            (10) 

Now interfere terms in the superposition using a Hadamard transform on the query register, 

( ) ( )

3

1 0 1
= .

2 2

x z f x

n
z x

z
ϕ

⋅ +−  − 
 
 

∑ ∑                                                                                 (11) 
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Note that the amplitude for the state 0 n⊗  is ( ) ( )1 / 2f x n

x
−∑ . In the case where f  is 

constant the amplitude for 0 n⊗  is +1  or -1 , depending on the constant value ( )f x  takes. 
Because 3ϕ  is of unit length it follows that all the other amplitudes must be 0, and an 
observation will yield 0s for all qubits in the query register. If f  is balanced then the 
positive and negative contributions to the amplitude for 0 n⊗  cancel, leaving an 
amplitude of zero, and a measurement must yield a result other than 0 on at least one 
qubit in the query register. Summarizing, if we measure all 0 s in the query register then 
the function f  is constant; otherwise the function f  is balanced. 

3.1.2 Experimental implementation and analysis 
Suppose 3n =  and ( ) 0 1 2f x x x x= ⊕ , the implementation circuit of the algorithm can be as 
shown in Fig. 3. 

   
Figure 3: Implementation circuit of Deutsch-Jozsa when f  is balance 

We use an ID gate such that doing nothing with x  and a cZ gate 1,2cZ  such that 

( ) 1 2

1,2 1 x xcZ x x= − . We take [ ] [ ]0 , 1q q  as the query register and [ ]2q  as the answer 
register. If [ ] [ ]0 =0, 1 =0q q , then the function is constant; otherwise the function is 
balanced. Besides, we program it on python with QISKit which will be connected to 
ibmqx4 and ibmqx5. Then, the real experimental verification is implemented which can 
remotely connect the real quantum devices and the code for this circuit is stored on the 
local computer that exactly can be used again.  
Finally, the quantum results of the implementation of Deutsch-Jozsa when f  is balance 
can be shown in Fig. 4. In Fig. 4, [ ]0q  is measured. We run the program once to execute 

the circuit 1024 ( 102 ) times and calculate the average which is recorded in the table. The 
horizontal axis in the table indicates the number of times the code is executed (in units of 

102 ), and the vertical axis represents the average of the experimental results (in units 
of %). Based on the results, the function is balanced because [ ]0q  and [ ]1q  are not all 0. 
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Figure 4: Experimental result of Deutsch-Jozsa when f  is balance 

Nothing to do with x  just keep it constant. Then we can think of ( )f x  as a constant 
function. The circuit design of the algorithm process can be seen in Fig. 5 when f  is constant.  

   
Figure 5: Implementation circuit of Deutsch-Jozsa when f  is constant 

Quantum results of the implementation of Deutsch-Jozsa when f  is constant can be 
shown in Fig. 6. The exact result to get 1  is 1. Due to noise interference, equipment 
performance and experimental results will be affected. Then, we can find that the results 
of ibmqx4 are stable around 0.86, while the results of ibmqx5 are stable around 0.95. 
Comparing the mean and variance of each group of data, we can find that ibmqx5 has 
higher stability and computing performance.  

 
Figure 6: Experimental result of Deutsch-Jozsa when f  is constant 
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3.2 Grover algorithm 
3.2.1 Algorithm procedure 
The problem with the Grover algorithm [Grover (1996)] can be described as follows. 
Search a target item from N  unclassified items. A classic computer is a query until you 

find the target. On average, if you look up 
2
N  times, the probability of finding it is one 

half. Based on parallel processing capability of quantum computing, we only need N  
times, and the probability of finding it is close to 1 (Grover algorithm). Grover algorithm 
provides only a quadratic speed up, however, even quadratic speedup is considerable 
when N  is large. Grover quantum search algorithm is based on the basic idea of the 
initial amplitude superposition of unitary transformation, the repeat application of Grover 
quantum iterative process is aim to suppress the probability amplitude of the non-target 
item and enlarge the probability amplitude of the target item to be searched. Finally, in 
the best case, the target item is searched by the probability of approaching 1. The detailed 
implementation steps of the Grover quantum search algorithm can be seen in Fig. 7. 

   

Figure 7: Quantum circuit representation of Grover algorithm 

Step 1. Initialize, use H gate to produce a state of equal amplitude, and then apply 
0 nnH ⊗  to get x . 

Step 2. Apply the oracle reflection wU  to the state, such that ( ) ( )1 f x
wU x x= − ( ( )f x  is 

shown in Deutsch-Jozsa algorithm above). This transformation means that the amplitude 
in front of the target state becomes negative, which in turn means that the average 
amplitude has been lowered. 
Step 3. Apply an additional reflection 2 |sU x x I= 〈 − . 

Step 4. Repeat Steps 2-3 N  times. 
The action of the reflection sU  in the amplitude bar diagram can be understood as a 
reflection about the average amplitude. Since the average amplitude has been lowered by 
the first reflection, this transformation boosts the negative amplitude of target state to 
roughly three times its original value, while it decreases the other amplitudes. 

3.2.2 Experimental implementation and analysis 
Taking 3-qubit quantum state as an example, we show the search technique of Grover 
algorithm. To better validate the experiment, the circuit design of the algorithm process 



 
 
 
1680                                                                       CMC, vol.65, no.2, pp.1671-1689, 2020 

can be as shown is shown in the Fig. 8. Besides, the equivalent circuit of Toffoli gate is 
shown in Fig. 9. 

 

Figure 8: Implementation circuit of Grover algorithm. cZ gate is equivalent to the 
combination of H gate and ccX gate 

 

Figure 9: A Toffoli gate implemented as the product of 1-qubit gates and cNOTs 

After applying H gate operation on each qubit, the equal amplitude of the quantum state 

is ( )1 000 + 001 + 010 + 011 + 100 + 101 + 110 + 111
2 2

, next, we apply ccZ gate as 

wU  to specify a target quantum state (the amplitude of the target quantum state is 
negative), and then we can agree that 111  is the target state. Finally, apply the sU  
mentioned above to enlarge the amplitude of the target quantum state 111 . Then, the real 
experimental verification is implemented which can remotely connect the devices and the 
code for this circuit is stored on the local computer that exactly can be used again.  
The results of running the circuit on python with QISKit can be shown in Fig. 10. The 
exact result to get 111  is 1. Due to noise interference, equipment performance and 
experimental results will be affected. Then, we can find that the results of ibmqx4 are 
stable around 0.53, while the results of ibmqx5 are stable around 0.69. Comparing the 
mean and variance of each group of data, we can find that ibmqx5 has higher stability 
and computing performance. 

 

 Figure 10: Experimental result of Grover algorithm 
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3.3 Shor algorithm 
3.3.1 Algorithm procedure 
Shor algorithm [Shor (1994)] is able to factor large numbers efficiently, which has the 
potential to undermine contemporary encryption. It consists of a quantum order finding 
algorithm (QOFA) which provids the order for code implementation to return the factors. 
Recently, Grosshans et al. [Grosshans, Lawson, Morain et al. (2015)] proposed a 
quantum factoring algorithm which optimized Shor algorithm at factoring safe 
semiprimes. A semiprime is a product of two primes, hence finding any nontrivial factor 
of a semiprime amounts to finding its complete prime factorization. An odd prime p  is 
called safe if ( )1 / 2p −  is also prime. A safe semiprime is a product of two safe primes. 
Suppose N  is a safe semiprime, then it can also be written as ( )( )1 2 1 22 1 2 1N p p q q= = + + , 
with 1 2q q≠  and 1 2, 2q q >  ( 1p and 2p  are distinct safe primes greater than 3). Then, the 
possible multiplicative orders for integers modulo safe semiprimes ( )( )1 22 1 2 1N q q= + +  
is shown in Tab. 2. 
In number theory, Euler’s totient function [Kaliski (2005)] ( )Nϕ  counts the number of 
integers x  in the range 1 x n≤ ≤  when the greatest common divisor ( , )gcd N x  is equal to 
1. According to Miller [Miller (1976)], N  can be efficiently factored after knowing both 
N  and ( )Nϕ . If 1 2N p p=  is a semiprime, then ( ) ( )1 21N N p pϕ = + − . Expand the product 
( )( )1 2X p X p− − , and we find that 1p  and 2p  are the solution of the equation 

( )( )2 1 0.X N N Nϕ− + − + =                                                                                              (12) 

Table 2: Possible multiplicative order r  for integer a  modulo safe semiprime N  

r Number of integers 
1 a N≤ ≤ of order r  Restrictions on a  

1 1 1a =  

2 3 
1a N= − and two 

other 1 2a N≥ + >  

1q  1 1q −  2a ≠  

2q  2 1q −  2a ≠  

12q  ( )13 1q −  2a ≠  

22q  ( )23 1q −  2a ≠  

1 2q q  ( )( )1 21 1q q− −   

1 22q q  ( )( )1 23 1 1q q− −   
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Referring to Tab. 2, there are 8 possibilities for the order of a  modulo N . Since the value 
of a  is obviously independent of the number being factored [Smolin, Smith and Vargo 
(2013)], we set 2a =  and suppose ( )2Nord  is the order of 2 modulo N , then the only 
remaining possibilities for ( )2Nord  are 1 2q q  and 1 22q q . Algorithm 1 shows the process of 
the quantum factoring algorithm which make some modifications in the classical part of 
Shor algorithm. Let ( )2Nd ord= . Set s d=  if d is even, and 2s d=  if d  is odd; then 

1 2 1 22, 2 , 2 , 2s q q or q q= . The case 2s =  is trivial to recognize, since 3N > . If s is one of the 
2 iq  then 1s +  is one of the ip  (and / ( 1)N s +  is the other). If s  is 1 22q q  then we recover 

1p  and 2p  by using ( ) 2N sϕ =  and applying the quadratic formula 

( )( ) ( )2
1 2 1 2 0.X p X p X p p X N− − = − + + =                                                                     (13) 

Let 1 2 2p p t+ = , then 2X t t N= ± − . Combining Eq. (12) with Eq. (13), and then we can 
get ( )1 2 2 1p p t N Nϕ+ = = + − , so ( )( ) ( )1 / 2 1 / 2t N N N sϕ= + − = + − . Therefore, the 

factors of N  are 2t t N± − , where ( )1  2t N s= + − . 

3.3.2 Experimental implementation and analysis 
QOFA is the main component of this algorithm which provides the order for code 
implementation. Tab. 3 lists the order r  of different safe semiprime N  when 2a = . 

Table 3: The order r  of 2 modulo N  

N  r  ( )/ 2gcd ,2 1rN −  ( )/ 2gcd ,2 +1rN  

15 4 3 5 

21 6 3 7 

33 10 3 11 

35 12 7 5 

Taking 21N =  as an example, the mathematical calculation process to compute the 
period of 2a =  modulo 21N =  is 

( )
( )
( )
( )
( )

1

2

3

4

5

6

2 mod 21 2,
2 mod 21 2 2 mod 21 4,

2 mod 21 2 4 mod 21 8,

2 mod 21 2 8 mod 21 16,

2 mod 21 2 16 mod 21 11,

2 mod 21 2 11 mod 21 1.

=

= × =

= × =

= × =

= × =

= × =

                                                                                      (14) 

Obviously, we can find that 6r = . Based on the constant-optimized quantum circuits for 
the modular multiplication and exponentiation [Igor and Saeedi (2012)], the circuit 
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design of the modular exponentiation with 21N =  is shown in the Figs. 11-16. 

 

Figure 11: Implementation circuit for computing 12 mod 21 2= , here, the basis vector of 1 
is [ ] [ ] [ ]2 1 0 001q q q =  

 

Figure 12: Implementation circuit for computing 22 mod 21 4= , here, the basis vector of 2 
is [ ] [ ] [ ]2 1 0 010q q q =  

 

Figure 13: Implementation circuit for computing 32 mod 21 8= , here, the basis vector of 3 
is [ ] [ ] [ ]2 1 0 011q q q =  
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Figure 14: Implementation circuit for computing 42 mod 21 16= , here, the basis vector of 
4 is [ ] [ ] [ ]2 1 0 100q q q =  

 
Figure 15: Implementation circuit for computing 52 mod 21 11= , here, the basis vector of 
5 is [ ] [ ] [ ]2 1 0 101q q q =  

 

Figure 16: Implementation circuit for computing 62 mod 21 1= , here, the basis vector of 6 
is [ ] [ ] [ ]2 1 0 110q q q =  

The result of running the circuit on python with QISKit can be shown in Fig. 17 which 
corresponds to Eq. (14). The exact result to get 1  is 1. Due to noise interference, 
equipment performance and experimental results will be affected. Then, we can find that 
the results of ibmqx5 are stable around 0.92 (ibmqx4 has only 5 qubits which cannot 
realize the circuit).  
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Figure 17: Experimental results of QOFA where 21, 2N a= =  

4 Conclusions 
In this paper, three representative algorithms (i.e., Deutsch-Jozsa, Grover and Shor 
algorithms) are studied and we design their implementation circuits based on the 
theoretical research and program the corresponding programs on python with QISKit 
which realize the remote connection to the real quantum devices (i.e., ibmqx4 and 
ibmqx5) on IBM Q. These experimental results show the feasibility of these algorithms 
and serve to assess the functionality and fidelity of these devices. From the results, we 
can find that the stability and computing performance of ibmqx5 are higher than ibmqx4. 
Different from the web page experiment mode, this kind of programming call mode, 
which uses the tool kit API to connect to the devices, can overcome the cumbersomeness 
of drawing complex circuit diagrams on web pages, and has the advantage of easy 
expansion of composite quantum gates and easy preservation of experimental data. 
Besides, we can customize the composite gates we want on python to achieve more 
functionality, not limited to the set of gates provided by these platforms. We will 
continue to study the quantum algorithms, and try to improve the quantum algorithms and 
design the corresponding circuits to verify the feasibility of the algorithms on the real 
quantum computer. 
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