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Abstract: With the development of Deep Convolutional Neural Networks (DCNNs), the 
extracted features for image recognition tasks have shifted from low-level features to the 
high-level semantic features of DCNNs. Previous studies have shown that the deeper the 
network is, the more abstract the features are. However, the recognition ability of deep 
features would be limited by insufficient training samples. To address this problem, this 
paper derives an improved Deep Fusion Convolutional Neural Network (DF-Net) which 
can make full use of the differences and complementarities during network learning and 
enhance feature expression under the condition of limited datasets. Specifically, DF-Net 
organizes two identical subnets to extract features from the input image in parallel, and 
then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the 
subnet’s features in multi-scale. Thus, the more complex mappings are created and the 
more abundant and accurate fusion features can be extracted to improve recognition 
accuracy. Furthermore, a corresponding training strategy is also proposed to speed up the 
convergence and reduce the computation overhead of network training. Finally, DF-Nets 
based on the well-known ResNet, DenseNet and MobileNetV2 are evaluated on 
CIFAR100, Stanford Dogs, and UECFOOD-100. Theoretical analysis and experimental 
results strongly demonstrate that DF-Net enhances the performance of DCNNs and 
increases the accuracy of image recognition. 
 
Keywords: Deep convolutional neural networks, deep features, image recognition, deep 
fusion, feature fusion. 

1 Introduction 
DCNNs [Ma, Li, Xia et al. (2020)] have made breakthrough progress in computer vision 
and have become the standard method of many visual object recognition algorithms in 
recent years. DCNN is a progressive structure, whose shallow neurons can sense 
semantic content such as structure, texture and location. On this foundation, the deep 
convolutional layers continue to learn more advanced and distinguishable features for 
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classification. The ability to automatically learn image features of DCNN has brought 
significant changes in the field of image recognition. 
The basic image recognition network LeNet-5 [LeCun, Boser, Denker et al. (1989)] was 
composed of three operations: convolution, pooling and non-linear mapping. This kind of 
combination structure is also the foundation of mainstream DCNNs. With the update of 
neural network algorithms and the advance of hardware, the width and depth of DCNNs 
have been continuously improved. 
In terms of network depth, He et al. [He, Zhang, Ren et al. (2016)] proposed a residual 
block structure that aimed at the training of networks. This research indicated that the 
residual networks were easier optimized and could obtain high accuracy by increasing 
network depth. Furthermore, expanding the network width has proved feasible. Inception 
module introduced by GoogLeNet [Szegedy, Liu, Jia et al. (2015)] implemented 
convolution and pooling operations simultaneously in a parallel manner to extract more 
potential information. The extension of different kernels means the fusion of different 
scale features, which effectively improves the expression of network. 
It is important to design and develop accurate algorithms and systems for more accuracy 
of image recognition. However, creating an innovative network is a difficult task which 
requires abundant knowledge of DCNN as well as the stronger support from hardware. In 
practical application, the network structure, dataset scale and hardware computing power 
should be fully considered so that a designed DCNN architecture meets the needs of 
network performance and computing overhead simultaneously. Therefore, this paper 
proposes a novel deep fusion by using the latest development of deep learning. First, the 
fusion module is used to integrate two identical subnets in the deep layer to sufficiently 
improve network performance. Secondly, the training strategy of only fine-tuning the 
deep convolution layer is formulated to reduce the computational overhead. 
Consequently, a more in-depth and broader network DF-Net is constructed to extract 
more abundant image features and optimize the recognition effect. 

2 Relative works 
Image recognition is a fundamental problem in computer vision. The key factor to 
recognition accuracy is the performance of the extracted image features. Prior research is 
largely based on hand-crafted features, such as Histogram of Oriented Gradient (HOG) 
[Sugiarto, Prakasa, Wardoyo et al. (2017)], Harris [Qin, Li, Xiang et al. (2019)], YCbCr 
[Tan, Qin, Xiang et al. (2019)] and Scale-Invariant Feature Transform (SIFT) 
[Bharathidevi, Chennamsetty and Prasad (2017)]. However, these hand-crafted features 
have a strong reliance on expertise and task specificity. Despite of the feature selection 
and feature fusion [Qin, Sun, Xiang et al. (2009)] brought optimization for hand-crafted 
features, these may result in the cumbersome of design and the unsatisfactory of 
performance in practical applications. 
Recently, DCNN has performed well in computer vision. DCNN learns simple features 
from big data, and then gradually learns the more abstract deep features for image 
recognition. For instance, in the field of the classification of food ingredients, Pan et al. 
[Pan, Pouyanfar, Chen et al. (2017)] extracted rich and productive features from food 
ingredient images using DCNN, which improved the average accuracy of image 
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classification. Qin et al. [Qin, Pan, Xiang et al. (2020)] took advantage of DCNNs to 
classify the biological images effectively. In the field of target recognition, Nasrabadi 
[Nasrabadi (2019)] designed a high-performance system based on DCNN to detect the 
targets in forward looking infrared (FLIR). The advantage of DCNN is that it can learn 
the optimal feature representation from the target dataset and better express the 
information of the original image. Luo et al. [Luo, Qin, Xiang et al. (2020)] and Liu et al. 
[Liu, Xiang, Qin et al. (2020)] both used DCNNs to extract the high-level semantic 
features; Zhang et al. [Zhang, Wu, Feng et al. (2019)] used the attentional features 
extracted from the DCNN to localize the target accurately. These studies illustrated the 
effectiveness of DCNNs in the field of visual object recognition tasks. 
As early as 1989, the classic DCNN LeNet-5 was proposed by LeCun et al. [LeCun, 
Boser, Denker et al. (1989)] for recognizing handwritten digits and machine-printed 
characters. LeNet-5 used a three-layer sequence combination: convolution, pooling and 
non-linear mapping, which formed the basis of current DCNNs. With the updating of 
algorithm and the improvement of deep structure, the accuracy of image recognition 
based on DCNNs has been continuously rising. AlexNet was the first DCNN applied to 
large-scale image classification by Krizhevsky et al. [Krizhevsky, Sutskever and Hinton 
(2012)]. The error rate won the first place in the 2012 ILSVRC (ImageNet Large Scale 
Visual Recognition Competition) and was far better than traditional methods. Its 
appearance proved the availability of DCNN in complex models and made DCNN 
popular in computer vision. Soon after a deeper convolutional network VGGNet was 
proposed by Simonyan et al. [Simonyan and Zisserman (2014)], which performed well in 
the 2014 ILSVRC classification task. The core idea of VGGNet is adopting the 
convolution combination of 3×3 instead of the large convolution and thus the depth of the 
network has been effectively increased. In conclusion, the performance of the basic 
network can be significantly improved by deepening the network. 
However, the deeper the network, the more difficult the training. With the increase of 
network parameters, the network training will be more prone to the over-fitting problem, 
which would cause a low error rate on training set but a high error rate on test set. 
Researchers have proposed several advanced DCNNs to learn and simulate the complex 
data. Szegedy et al. [Szegedy, Liu, Jia et al. (2015)] proposed a new deep learning 
network GoogLeNet, which was the winner of the 2014 ILSVRC classification task. 
GoogLeNet decomposed the longitudinal connection into several block subnetworks, 
which were the inception module. In each module, the highly correlated features are 
connected and then transferred to the subsequent layers. Besides, different sizes of 
receptive fields are obtained using convolution kernels of different sizes, and the final 
concatenate means the fusion of various scale features. Simultaneously, the 1×1 
convolution kernel was introduced for dimensionality reduction and eliminating the 
calculation bottleneck. 
He et al. [He, Zhang, Ren et al. (2016)] presented the Residual Neural Network (ResNet) 
and achieved state-of-the-art performance in 2015 ILSVRC. ResNet introduced a creative 
architecture with “skip connections” and BN operation, which could train the deep 
network efficiently and accurately. DenseNet [Huang, Liu, Van Der Maaten et al. (2017)] 
gained the best paper of CVPR 2017 (Computer Vision and Pattern Recognition 2017), 
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which directly connected each layer with the same feature-map size in a feed-forward 
fashion. For each layer, the input was composed of the feature maps of all previous layers, 
and the feature maps of the current layer also became the input of all subsequent layers in 
the meanwhile. This operation alleviated the issue of vanishing-gradient, strengthened 
feature propagation and greatly reduced the network number of parameters. 
It is quite formidable and complicated to design an innovative and excellent network. 
First, it is necessary to possess the relevant theoretical knowledge of DCNNs. In addition, 
it requires a lot of experimental accumulation and strong inspiration during the process of 
improving the basic model. Furthermore, creating a new model and training it on the 
large-scale datasets would consume a lot of time and computing resources, namely the 
powerful hardware support. Therefore, on the basis of the existing research, appropriately 
adjusting or improving the classical network is an effective measure for deep learning. 
Wang et al. [Wang, Qin, Xiang et al. (2019)] constructed a multi-classifier network based 
on DenseNet for CAPTCHA recognition. Amin-Naji et al. [Amin-Naji, Aghagolzadeh 
and Ezoji (2019)] constructed a new network with the support of the ensemble learning to 
decrease the overfitting on limited datasets. To learn more precise features, Hou et al. 
[Hou, Liu and Wang (2017)] provided a general framework DualNet to address image 
recognition by coordinating two parallel DCNNs. Zhang et al. [Zhang, Wang and Lu 
(2019)] proposed two novel lightweight networks that could obtain higher recognition 
precision of traffic sign images in a resource-limited setting. Xiang et al. [Xiang, Guo, Yu 
et al. (2020)] build a two-level cascaded DCNNs, which could automatically learn the 
steganographic features and improve the detection performance greatly. Pan et al. [Pan, 
Li, Pouyanfar et al. (2020)] proposed an up-to-date CBNet (Combinational Convolutional 
Neural Network) which combined two different DCNNs to extract complementary 
features for image classification. 
Different from previous studies, this study innovatively designs a fusion module inspired 
by the inception module. The fusion module is created to implement the combination of 
deep features from two parallel subnets. It can give full play to the value of the basic 
network and enhance the expression of features. The latest constructed DF-Net brings 
double expression space and more complex mappings, which makes learning and 
representation easier. Compared with the DualNet framework which adopted the addition 
and combination, this paper presents the fusion concept that can effectively improve the 
performance of image recognition by extracted high-level semantic features with the 
network. At the same time, a training strategy of only fine-tuning the deep convolutional 
layers of the network is formulated to ensure the computational efficiency and the speedy 
constringency of network. Experimental results show that the proposed DF-Net 
framework achieves higher recognition accuracy on CIFAR100 [Krizhevsky and Hinton 
(2009)], Stanford Dogs [Khosla, Jayadevaprakash, Yao et al. (2011)] and UECFOOD-
101[Matsuda, Hoashi and Yanai (2012)] datasets. 

3 Algorithm implementation 
3.1 The deep fusion convolutional neural network (DF-Net) 
So far DCNNs have made great progress in the field of image recognition, and the deep 
feature is the most competitive visual features. The key factor in the success of DCNNs is 
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the training samples which consist of numerous tagged data. Through the training on the 
samples of known correct answers, DCNNs can learn deep semantic information from a 
machine perspective. However, DCNNs will easily occur over-fitting when the training 
samples are limited. In other words, a model with excellent extensive ability is 
challenging to achieve directly from the limited training samples. Although the model 
can perfectly perform on training set during training, the performance of this model will 
be relatively weak for unknown data. One effective approach for this problem is to 
prepare more data, but the cost of collecting enough training samples in a reasonable 
amount of time is enormous. To solve the problem, this paper designs a novel DF-Net 
architecture (see Fig. 1), which fuses two parallel models in the deep layer. Our goal is to 
enable the new architecture to learn more complementary features under constrained 
training samples. As shown in Fig. 1, the proposed architecture includes Subnet 
Component (SC, left of Fig. 1) and Fusion Component (FC, right of Fig. 1), which 
together form the DF-Net for automatic image recognition.  

 
Figure 1: DF-Net architecture  

3.1.1 Subnets component 
Through the multiple convolution and pooling, DCNNs can map the raw data to a multi-
level representation and abstraction. However, the complexity of a single network is 
limited, which would restrict the ability of learning complex function mapping, 
particularly for small-scale datasets. It is acknowledged that if the features extracted from 
subnets are the same, the concatenated features are linear, similar to a single network. 
Therefore, it is impossible to enhance the complexity of the network by concatenating 
two groups of identical features. Overall, instead of extending dimension on a single 
network, this work deploys two independent networks to catch more potential 
information from input images simultaneously in SC.  

3.1.2 Fusion component 
In our architecture, the subnets’ features are extracted before the final global pooling 
layer of network. It means that features fusion implements in 3D feature space, not 1D 
feature space. In Fig. 1, after features extracted from SC, they will be further analyzed 
and processed in FC. Here double-stream features are bound to be different, which 
exactly is the premise of information complementarity. In order to make full use of the 
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complementarity, based on the most advanced achievements of DCNNs, an innovative 
fusion strategy consisting of 1×1 Convolution, Channel Shuffle [Zhang, Zhou, Lin et al. 
(2018)] and fusion module is proposed. By doing so, the network complexity is 
effectively improved, and thus the ability of learning and simulating more complex types 
of data is strengthened. Furthermore, the corresponding training strategy is proposed to 
speed up the convergence and reduce the computation overhead of network training. The 
fusion strategy and training strategy will be outlined in Sections 3.2 and 3.3. 

3.2 Fusion strategy 
The fusion strategy is an important strategy in which the proposed DF-Net architecture 
is utilized to improve the non-linear mapping relations of DCNNs and heighten the 
network expression. 
The subnets of DF-Nets can be employed for most of the well-known DCNNs, such as 
ResNet, GoogLeNet, DenseNet, etc. These DCNNs have one thing in common: They all 
obtain the final 1D features by using global average pooling instead of the fully 
connected layer. Therefore，a well-designed fusion module is constructed to fuse 3D 
features of two subnets. Although the 3D features learned more abundant information 
from subnets than 1D features, the learning process will produce excessive parameters, 
which is unfavorable for fusion module to calculate and realize the transformation of 
spatial information. In view of this, one essential method is that the 3D features are 
preprocessed to reduce the network parameters to make feature abstraction effective in 
fusion module.  

3.2.1 Feature pre-processing 
Once a network is adopted as the subnet of DF-Net, its corresponding pre-trained 
network will be applied and fine-tuned on the target dataset. During various training, two 
of the top fine-tuned models are deployed in SC to obtain the output of the final feature 
maps (3D feature space). The information gathered by double-stream features has a high 
complexity, which may lead to dimensionality disaster. In some networks (e.g., AlexNet, 
VGGNet), researchers employed the fully connected layer to reduce feature dimension. 
However, it is not suitable for our architecture because the fully connected layer is used 
for the 1D features, not the 3D features. For other networks (e.g., ResNet, GoogLeNet), 
the 1×1 convolution kernel provides help for dimensionality reduction. Inspired by the 
scheme, the 1×1 convolution layer is employed to subnets’ features to alleviate the 
dimensionality disaster. Specifically, the 1×1 convolution layer with a compression ratio 
of 50% is appended behind the subnets to avoid the dimensional explosion. As shown in 
FC, the feature maps of subnets are compressed from c-channel to (c/2)-channel by the 
1x1 convolution layer. Then the two compression features are concatenated so that the 
channels of the concatenated features are consistent with a single network. It is worth 
noting that RELU activation is not used after 1×1 convolution as suggested by Chollet 
[Chollet (2017)].  
Since the rudimentary way of combination makes the data distribution highly dispersed, 
it may cause one of the double-stream features to be eccentrically selected during training, 
which is not beneficial to the mutual learning and cooperation between subnets. 
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Therefore, the channel shuffle technology is adopted to achieve an even data distribution. 
The channel shuffle is similar to ShuffleNet [Zhang, Zhou, Lin et al. (2018)]. In our 
module, the number of groups is set as 2 (corresponding to two subnets). As shown in FC 
of Fig. 1, the final feature maps are gained with a staggered concatenation of two subnets. 
In summary, the feature pre-processing includes a 1×1 convolution layer for the feature 
reduction and a channel shuffle operation for information flow from two subnets. Feature 
pre-processing can substantially decrease the computation overhead of the fusion module 
and enhance the information exchange and complementarity between subnets. 

3.2.2 Fusion module 
In the inference of DF-Net, two subnets with the same architecture capture the visual 
information from the input images respectively, but their weights of neurons are not 
shared. In other words, these two subnets are independent of each other before channel 
concatenation, so the acquired features are complementary for the two subnets. In order 
to make full use of this complementarity, the approach is absorbed from Inception-
ResNet-v2 [Szegedy, Ioffe, Vanhoucke et al. (2017)], which offers effective insights to 
improve the network learning by non-linear mapping, the fusion of different scale 
features, skip connection, etc. Inception module is an excellent local topology that 
performs multiple convolutions and pooling operations for the input data in parallel, and 
concatenates all the output results together into a multi-channel feature map.  
As for Inception-ResNet-v2, the residual connection is introduced into the inception 
module to improve recognition performance as much as possible. Enlightened by the 
inception module, a novel inception module is created as the fusion module that the 
particular design is favorable to analyze the concatenated features. In theory, the fusion 
module can extract more informative features from subnets for image recognition. The 
structure of the fusion module is described in Fig. 2. 

 
Figure 2: The structure of the novel fusion module 

In Fig. 2, an additional branch (dotted box) is added to the original Inception-ResNet-C 
module. After feature pre-processing, the concatenated features are used as input of the 
fusion module. Through the calculation of three branches on the right, the different scale 
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features are generated and concatenated to form a 704-channel feature map. To keep the 
residual addition operating normal, the 704-channel feature map is followed by a 1×1 
convolution layer, which is used to match the channels of the initial input by 
dimensionality expansion. In the residual branch, the residuals are added to the final 
output and a scaling factor is set as 0.3.  
As for the case that the fusion module is applied to network fusion, the advantages 
include as followed: (1) The usage of small-scale kernel size can learn and perceive high-
level semantic features with more details; (2) The multi-branch design realizes the fusion 
of different scale features, which can enhance the adaptability to different scales and 
improve the expression ability of the network; (3) The additional branch composed of a 
3×3 average pooling and a 1×1 convolution is conducive to increasing the feature’s 
diversity. More importantly, the features extracted by average pooling operations inherit 
the ability of classification from subnets; (4) The residual connection maps the module 
input to the output, which may guide the convolution and pooling operations from other 
branches to ensure the classification performance. In conclusion, the fusion module 
provides powerful abstraction abilities for reintegrating the concatenated features, as well 
as the fusion features are more generalizable compared with other features. 

3.3 Training strategy 
Logically, the DF-Net is a quite large network, which comprises 4 modules, including the 
two subnets (remove the global average pooling and classifier), the feature pre-processing 
module, the fusion module and the newly appended classifier. Considering the training time 
and GPU memory, this paper drafts a staged training scheme to update global parameters. 

 
Figure 3: The training process of DF-Net 

The process of training is usually called fine-tuning that the pre-trained parameters are 
updated on the target dataset and adjusted to the target dataset. In this work, once a 
network is adopted as the subnet of DF-Net, this pre-trained network by ImageNet will be 
utilized and firstly fine-tuned on the target dataset. During various tests, two of the top 
fine-tuned models are deployed to the DF-Net as subnets, and the fine-tuned weights are 
reused to initialize DF-Net. Accordingly, just fine-tuning the fusion module and the 
newly appended classifier can achieve a prediction model. According to the training 
strategy, the computation overhead of network training can be reduced substantially. It 
also makes the DF-Net convergence faster during training. Moreover, since the fine-
tuned weights of the subnets are preserved, the classification performance of DF-Net is 
ensured effectively. 
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Fig. 3 shows the training process of DF-Net, which is orderly divided into two stages, i.e., 
Base-Net training and DF-Net training. Training with a large amount of tagged data is a 
key factor of deep learning. In practice, it is hard to achieve high performance on limited 
training samples even if how excellent the network is. Nevertheless, the fine-tuning 
technology can solve this problem well. At the first stage shown in Fig. 3(a), the Base-
Net (such as ResNet50) is fine-tuned on the target dataset with the pre-trained network on 
ImageNet. The main purpose of this stage is to adapt the parameters to the target dataset 
and improve the recognition performance of Base-Nets as much as possible. The next 
step is employing the fine-tuned Base-Nets as subnets of the DF-Net. Then, at the second 
stage (Fig. 3(b)), after freezing all the parameters of subnets, the fusion module and the 
newly appended classifier are only fine-tuned to make the parameters adapt to the subnets 
and the target dataset. Correspondingly, the number of total parameters and trainable 
parameters is contrasted between Base-Nets and DF-Nets in Tab. 1. 

Table 1: The comparison of network parameters between Base-Nets and DF-Nets (million) 

Network Total parameters Trainable parameters 

Base-MobileNetV2 2.26 2.22 

DF-MobileNetV2 8.18 3.66 

ResNet50 23.66 23.61 

DF-ResNet50 54.51 7.33 

DenseNet121 7.01 6.93 

DF-DenseNet121 16.78 2.70 

As shown in Tab. 1, although the number of total parameters of DF-ResNet50 and DF-
DenseNet121 is about 2-3 times more than the corresponding Base-Nets, the number of 
total trainable parameters is only equal to 30-40% of the Base-Net. That means the 
training of these DF-Nets needn’t additional hardware requirements. Besides, the number 
of trainable parameters of DF-Net constructed by the lightweight network MobileNetV2 
is equivalent to 165% of the Base-Net, even higher than the total parameters of the Base-
MobileNetV2. Essentially, the substantial growth of parameters implies that the DF-Net 
gains the larger capacity of expression space and the more complex mappings than Base-
Net. Subsequent experiments show that DF-Nets achieve a markable accuracy 
improvement for the lightweight network. 

4 Experimental analysis 
In this section, the proposed DF-Nets which are built based on ResNet50 (DF-ResNet50), 
DenseNet121 (DF-DenseNet121), MobileNetV2 (DF-MobileNetV2) are tested on 
multiple widely-used datasets, including CIFAR-100, Stanford Dogs and UEC FOOD-
100. Firstly, the model (e.g., ResNet50) trained on ImageNet is loaded and fine-tuned on 
the target dataset several times. Secondly, two models with the best performance are 
selected as the subnets of DF-Net (e.g., DF-ResNet50). Finally, the fusion module and 
classifier of the DF-Net are fine-tuned on target dataset so that the network parameters 
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adapt to subnets and datasets. Most importantly, to measure the effectiveness and stability 
of novel DF-Nets architecture, this work uses the average accuracy of the DF-Net 
compared with the highest accuracy of the corresponding subnets. 
Although these classic DCNNs are perfect, the fine-tuning process is very complicated 
and time-consuming. In order to train all the networks well, a serial of methods is utilized 
for the optimizer, learning rate, parameters, etc. Here the Stochastic Gradient Descent 
(SGD) is used for optimization. The mini-batch size is set to 16 to balance the memory 
utilization and capacity. All the networks are fine-tuned 30 epochs with an initial learning 
rate of 0.003. In addition, to achieve a better convergence, the learning rate is decayed 
with a rate of 0.94 per epoch. Keras is used and it is a popular deep learning tool which 
provides many advanced DCNNs with pre-trained weights and supports fast network 
design and experimentation. The hardware is the NVIDIA RTX2080Ti GPU with 11 GB 
of memory, 4352 CUDA cores and 544 Tensor cores. 

4.1 CIFAR-100 
In order to evaluate the effectiveness of the DF-Net framework, first experiment is 
operated on the publicly available and challenging CIFAR-100 dataset, which contains 
60,000 32×32 color images for 100 categories. Commonly, 50,000 images are used for 
training and 10,000 images for test. During the training, images are resized to 224×224 as 
the network input. Tab. 2 shows the comparison of accuracy on CIFAR-100, where the (∆) 
represents the improvement of the DF-Nets compared with the corresponding Base-Nets.  

Table 2: The accuracy achieved by Base-Nets and DF-Nets on CIFAR-100 (%) 

Model Base-Net DF-Net ∆ 

MobileNetV2 79.91 82.27 2.36 

ResNet50 83.31 84.57 1.26 

DenseNet121 84.86 85.81 0.95 

Tab. 2 compares the accuracy between DF-Nets and the corresponding Base-Nets on the 
CIFAR-100 dataset. Obviously, as can be seen from Tab. 2, DF-Nets have better 
accuracy than Base-Nets. It can be concluded that the DF-Net can effectively improve the 
complexity of network and learn a model with fine generalization. Specifically, the DF-
Net based on MobileNetV2 (DF-MobileNetV2) achieves the highest promotion, and the 
accuracy reaches 82.27%, which is 2.36% higher than its Base-Net. Referring to Tab. 1, 
the results show that the greater the parameters increase by the deep fusion, the more 
remarkable the performance improvement will be. 
As shown in Tab. 3, the DF-ResNet50 is compared to other state-of-the-art methods with 
ResNet architecture. From Tab. 3, the DualNet based on ResNet56 (DNR56) [Hou, Liu 
and Wang (2017)] obtains the accuracy of 75.57%, which is 2.76% higher than its basic 
network. With the improved residual network, RoR-3-WRN58-4 [Zhang, Sun, Han et al. 
(2017)] and WRN [Zagoruyko and Komodakis (2016)] get the accuracy of 80.27% and 
81.15% respectively. In this paper, the DF-ResNet50 achieves 84.57% accuracy, which 
improves the performance of Base-ResNet50 by more than 1.26%, and much higher 
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accuracy (almost 3.42%) than WRN. The growth rate of the DF-Net is slightly lower than 
Dual-Net’s. The reasons are that both the subnets are optimized perfectly, and the highest 
accuracy of subnets is set as baseline in our experiments. For the DF-Net, only the fusion 
module and the final classifier need be trained during the fine-tuning so that the DF-Net 
is approximately equal to subnet in time cost. The experimental results demonstrate the 
effectiveness of the proposed DF-Net framework which improves network performance 
and has a very high image recognition accuracy compared to other existing methods. 

Table 3: The comparison of performance with the existing methods on CIFAR-100 (%) 

Method Accuracy ∆  

ResNet56 72.81 
2.76 

DNR56 75.57 

RoR-3-WRN58-4 80.27 - 

WRN 81.15 - 

Base-ResNet50 (ours) 83.31 
1.26 

DF-ResNet50 (ours) 84.57 

4.2 Stanford Dogs 
In this section, the DF-Net is further analyzed on a Fine-Grained image Visual 
Classification (FGVC) Stanford Dogs dataset, which consists of 20580 images and 120 
categories of dogs. The experiment applies 100 images for each category for training and 
the rest of the dataset for test. The Stanford Dogs dataset has an extremely high similarity 
that can be used for the FGVC task. Besides, compared to the image size of CIFAR-100 
(32×32), the Stanford Dogs is proper to DCNNs’ training. 

Table 4: The accuracy achieved by Base-Nets and DF-Nets on Stanford Dogs (%) 

Model Base-Net DF-Net ∆ 

MobileNetV2 73.93 76.01 2.08 

ResNet50 76.12 77.63 1.51 

DenseNet121 78.21 79.34 1.13 

In practice, the complexity of a single network is limited, which would affect the ability of 
learning complex function mapping. However, the proposed DF-Net can extract more 
abundant and accurate fusion features from two parallel subnets for image recognition even 
with small-scale datasets. Tab. 4 shows the accuracy comparison between Base-Nets and 
DF-Nets on the Stanford Dogs dataset. All the DF-Nets beat the corresponding Base-Nets 
and gain better accuracy. The Base-DenseNet121 obtains the highest accuracy of 78.21% 
among all the Base-Nets, but DF-DenseNet121 gets an average accuracy of 79.34%, which 
achieves an improvement of 1.13%. Additionally, the DF-Nets increase the accuracy of 
2.08% and 1.51% comparing to Base-MobileNetV2 and Base-ResNet50, respectively.  
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In Tab. 5, the DF-ResNet50 is compared with other techniques which uses ResNet50 as 
basic network. The PC-ResNet50 [Dubey, Gupta, Guo et al. (2018)] obtains an accuracy 
of 73.35%, which is better accuracy of 3.43% than ResNet50. In this paper, the DF-
ResNet50 achieves 77.63% accuracy, which improves the almost 1.51% accuracy of 
Base-ResNet50, and its accuracy is 4.28% higher than PC-ResNet50. In summary, FGVC 
problems benefit from the DF-Net framework, and the DF-Net shows more prominent 
advantages for the lightweight network. 

Table 5: The comparison of performance with the existing methods on Stanford Dogs (%) 

Method Accuracy ∆  

ResNet50 68.92 
3.43 

PC-ResNet50 73.35 

Base-ResNet50 (ours) 76.12 
1.51 

DF-ResNet50 (ours) 77.63 

4.3 UECFOOD-100 
In this section, another dataset is used that is FGVC dataset (with bounding box), i.e., 
UECFOOD-100, which includes 100 food categories with 8643 images. Each image is 
annotated with a label and a bounding box that indicates the food location. In the 
experiments, the raw images are cropped from the given bounding boxes. The dataset is 
divided into 5 folds. The 3 folds are used for training and the rest for test. 

Table 6: The accuracy achieved by Base-Nets and DF-Nets on UECFOOD-100 (%) 

Model Base-Net DF-Net ∆ 

MobileNetV2 80.63 82.29 1.66 

ResNet50 82.87 84.00 1.13 

DenseNet121 84.20 85.35 1.15 

Unlike other datasets, this dataset is pre-processed before training. The input images are 
cropped with the provided object bounding boxes so that the dataset has more significant 
interclass similarity and intra-class variation than the original data. Even so, the proposed 
DF-Net still makes remarkable advancement. Here, the average accuracy of DF-Nets is 
above 1.1% than their subnets. Among all the DF-Nets, DF-DenseNet121 is best and 
beats other networks, and its classification accuracy reaches 85.35%. The experimental 
results strongly demonstrate that DF-Net achieves excellent performance for high-
granularity classification tasks.  
The performance comparison between DF-Nets and the existing techniques on UECFOOD-
100 is shown in Tab. 7. All the evaluated methods use the same dividing and bounding box 
during experiments. Liu et al. [Liu, Cao, Luo et al. (2017)] proposed a practical deep 
learning-based food recognition system and reported the accuracy of 77.5% on 
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UECFOOD-100. Yanai et al. [Yanai and Kawano (2015)] fine-tuned DCNN which was 
pre-trained with a large food-related dataset and achieved the classification accuracy of 
78.77%. Using DF-Net with DenseNet121 as the Base-Net, our framework obtains best 
accuracy on this food dataset, improving the accuracy over the published methods by 6.58% 
in Tab. 7. For computing time, DF-DenseNet121 takes 0.03 seconds per image for training 
using our proposed architecture. When the model is applied to image recognition, it only 
takes 0.01 seconds per image on average. As a comparison, the training time for Liu’s 
method is usually around 2~3 seconds. The experimental results indicate that the DF-Net 
architecture is a significant improvement both computing time and recognition accuracy 
comparing to other existing methods. 

Table 7: The comparison of performance with the existing methods on UECFOOD-100 (%) 

Method Accuracy 

Liu 77.5 

DCNN-FOOD (ft2) 78.77 

DF-MobileNetV2 (ours) 82.29 

DF-ResNet50 (ours) 84.00 

DF-DenseNet121 (ours) 85.35 

In summary, the above experimental results illustrate the superiority of the novel DF-Net 
architecture by exhibiting extensive improvement for image recognition compared to 
other published technologies. Most important, the DF-Net model improves the accuracy 
for image recognition without additional hardware overhead. 

5 Conclusion 
In this paper, an up-to-date automatic classification architecture Deep Fusion Convolutional 
Neural Networks (DF-Net) is proposed, where the model has a strong generalization ability 
for image recognition with the limited dataset and without additional hardware overhead. 
Specifically, DF-Net firstly organizes two identical subnets to catch more potential 
information from images in parallel. Then the extracted subnets’ features are pre-processed 
with a 1×1 convolution kernel to reduce the features redundancy, and a channel shuffle 
operation to adopt information flow each other. Next, the fusion module is introduced to the 
end of subnets to reintegrate the subnets’ features and generate more abundant and accurate 
fusion features for image recognition. Furthermore, the corresponding training strategy is 
proposed to speed up the convergence and reduce the computation overhead of network 
training. Finally, DF-Nets constructed based on well-known ResNet50, DenseNet121 and 
MobileNetV2 are evaluated on public datasets CIFAR100, Stanford Dogs, and 
UECFOOD-100 using accuracy measurement. Theoretical analysis and experimental 
results strongly demonstrate that DF-Nets achieve more advanced recognition performance 
than the existing research results. Additionally, the DF-Net framework is beneficial for the 
fine-grained visual classification tasks of small and medium datasets. Future studies will 
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acknowledge the importance of the above research and continue to explore more advanced 
fusion strategy to optimize the DF-Net. 
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