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Abstract: Predicting human mobility has great significance in Location based
Social Network applications, while it is challenging due to the impact of historical
mobility patterns and current trajectories. Among these challenges, historical pat-
terns tend to be crucial in the prediction task. However, it is difficult to capture
complex patterns from long historical trajectories. Motivated by recent success
of Convolutional Neural Network (CNN)-based methods, we propose a Union
ConvGRU (UCG) Net, which can capture long short-term patterns of historical
trajectories and sequential impact of current trajectories. Specifically, we first
incorporate historical trajectories into hidden states by a shared-weight layer,
and then utilize a 1D CNN to capture short-term pattern of hidden states. Next,
an average pooling method is involved to generate separated hidden states of his-
torical trajectories, on which we use a Fully Connected (FC) layer to capture long-
term pattern subsequently. Finally, we use a Recurrent Neural Net-work (RNN) to
predict future trajectories by integrating current trajectories and long short-term
patterns. Experiments demonstrate that UCG Net performs best in comparison
with neural network-based methods.
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1 Introduction

With the rapid development of social networks and location-based services, Location-Based Social
Networks (LBSNs) such as Foursquare and Twitter are increasingly popular in our daily life. Many users
write some short essays and share their footprints (we refer to such footprints as check-in points) on
them, which enables some research efforts [1–4] in collecting users’ trajectories and learning their
mobility patterns. A critical task in understanding such patterns is the next location prediction, which has
been extensively studied [5–7] in recent years. Moreover, this prediction task has great social significance
in many applications, including route planning for taxi drives [8] and dispersing the crowd for public
traffic [9]. Grapping human movements in advance will help such applications solve the above problems.

Currently, many methods have been extensively proposed for next location prediction, such as Matrix
Factorization (MF) [10], Markov Chain (MC) [11] and MC-based methods (e.g., Factorizing Personalized
Markov Chains (FPMC) [12] and Hidden Markov Models (HMMs) [13]). These works incorporate
human visit preferences and investigate sequential transitions, which cannot obtain the ideal result due to
few observations of historical visits. After that, many research efforts [14–16] focused on deep learning
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neural network-based models. For example, RNN-based methods are commonly used methods. Based on
historical trajectories, these works can capture the sequential regularities of users’ mobility preferences.
Specifically, they train a RNN module to extract mobility features (such as spatial and temporal features)
and predict the next location.

Although the above methods have inspiring results on human mobility prediction, several key problems
still exist: (1) Sparsity of data. On the one hand, some users generate only a few check-ins. On the other hand,
observable features of users’ historical visits are sparse. (2) Complex mobility patterns of historical
trajectories. Some users’ trajectories collected from LBSNs are usually very long, while existing works
tend to be difficult to exploit whole trajectories effectively. (3) Heterogeneity of data. Each user’s
mobility pattern affects the future check-ins individually, whereas it is difficult to capture multi users’
pattern at the same time. In summary, above problems make the prediction difficult.

To address the above problems, we propose a UCG Net to predict the next locations of users. We collect
context-aware check-in points of each user and generate the whole trajectory for each one firstly, and then
incorporate the whole trajectory into dense representation by the embedding technology, which solve the
sparsity of data. Next, we divide the whole trajectory into historical trajectory and current trajectory.
Subsequently, we introduce a historical trajectory learning module to capture long short-term pattern of
the historical trajectory. Specifically, a CNN architecture is used to capture short-term pattern of
trajectories’ hidden states; an average pooling method and an FC layer are used to capture long-term
pattern of separated hidden states; and then we concatenate two patterns into a vector where reflects long
short-term pattern of the historical trajectory. Subsequently, we also introduce a current trajectory learning
module where captures the sequential transitions of the current trajectory with the above long short-term
pattern. Finally, an FC layer and Softmax layer are involved to predict user’s next location. In summary,
our main contributions are:

1. We propose a UCG Net to model trajectory and predict human mobility, which consists historical and
current trajectory learning modules. Historical trajectory learning module uses CNN-based architecture
to proceed historical trajectory sequences and capture long short-term patterns; Current trajectory
learning module uses the RNN model to capture sequential transitions of current trajectory.

2. We use a 1� D CNN to capture the short-term pattern of historical trajectory, and then use a FC layer to
capture the long-term pattern of sub-trajectories generated by the Average-Pooling method. Generated
long short-term patterns are used as RNN’s context, which makes UCG Net consider dual impact of
historical and current trajectory.

3. We conduct experiments on real-world datasets consisting of different check-in behavior in two cities,
demonstrating that our model improves the prediction performance compared with existing strong
deep neural network-based models.

The rest of this paper is organized as follows. We first review the related works in Section 2, then
formulate our problem and discuss the motivation of our work in Section 3. Following that, we detail the
architecture of UCG Net in Section 4. After that, we introduce the experimental configuration and discuss
the experimental results in Sections 5 and 6, respectively. Finally, we conclude our paper in Section 7.

2 Related Work

Human mobility prediction has drawn great attentions for decades, existing research efforts can be
categorized into conventional and neural network-based methods. Conventional methods pay more
attention on mobility pattern recognition and users’ preferences exploration. For example, the popular Matrix
Factorization (MF) [10] and MF-based methods [17,18] in POI recommendation learn users’ preferences by
generating a matrix with user location history. T-pattern [19] and Gapped Spatiotemporal-Periodic (GSTP)
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[20] recognize the mobility patterns by mining spatiotemporal trajectory. These methods fail to capture the
sequential information of trajectory. Therefore, they are not suitable to predict users’ next visits. Afterwards,
many research efforts are dedicated to solve this problem with Markov Chain (MC)-based methods [11–
13,21]. Actually, MC-based methods can attribute to conventional methods through building different
models. They learn sequential transition regularities via building a transition matrix with historical
observations. For example, Mathew et al. [21] cluster locations from trajectories and train a Hidden
Markov Model to capture unobserved characteristics. These methods are not efficient due to ignoring
time dependence. Compared with above conventional methods, our model is able to capture the time
dependence and complex transitions.

Recently, neural network-based methods [14–16,22–28] are widely used to predict human mobility.
Especially RNNs such as Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) are
common methods. For example, Liu et al. [14] propose a Spatial Temporal RNN (ST-RNN) where
models spatial and temporal contexts to predict next locations. Due to the lack of semantic information,
Yao et al. [15] propose a semantic-aware recurrent model (SERM) where considers both sequential and
semantic influence to predict future trajectory. However, these two methods cannot deeply capture the
sequential information of historical trajectory. Therefore, Feng et al. [16] propose a DeepMove model to
capture the multi-level periodicity of historical trajectory with an attentional mechanism based on a
seq2seq model. Since it is complicated to train, Gao et al. [25] use a generative probabilistic model
together with neural network and propose a VANext to improve this model more recently. They are the
first to incorporate CNN to capture long term dependency among human trajectories, and improve the
learning efficiency due to parallelization with GPU. Furthermore, they use a variational attention
mechanism to learn the attention on the historical trajectories. Undoubtedly, these two attentional
mechanism-based methods are efficient by matching current trajectory with long historical trajectory.
These two methods mainly compute the contribution of each historical visit, and therefore lose the global
sequential impact of historical trajectory. Compared with these neural network-based methods, our model
predicts human mobility from global aspect and can learn long short-term mobility pattern of the
historical trajectory.

CNNs are not popular for modeling sequence task, but they have received more and more attention on
this problem. For example, Kim et al. [29] use a CNN architecture to capture local correlation of sentences
and apply it on a text classification problem effectively. Recently, a CNN-based model [30] is proposed to
improve machine translation performance. Two of these methods have achieved good performance in the
Natural Language Process (NLP) problem. Similarly, some research efforts [31,32] use the CNN
architecture to capture mobility patterns of human trajectory. Except for above VANext model, Wang
et al. [31] propose a CNN-based Geo-Conv layer and learn feature maps of mobility trajectory. Compared
with RNN-based models, CNNs is capable of capturing hierarchical representation of the underlying
context with lower time complexity. This paper uses a CNN architecture to capture complex relation
information-long-short term pattern of users’ historical trajectory.

3 Preliminaries

In this section, we first present several basic definitions, and then formally formulate the mobility
prediction problem. Finally, we discuss the motivation and overview our solution.

3.1 Problem Formulation
Context-aware spatiotemporal point p is a tuple of location identification l, timestamp t and activity

identification a, i.e., p ¼ , l; a; t >. Given a user u, p indicates u visited l for activity a at time t. Then,
let Tu ¼ fpu1; pu2; pu3;…; pung denote a time-order trajectory generated by u, where n is the length of Tu.
For convenience, we will omit the superscript u. Next, a trajectory T can be segmented as
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T ¼ ðT1; T2;…; TmÞ, meaning that there are m sub-trajectories ordered along the temporal dimension.
Specifically, we predefine a threshold d and generate these sub-trajectories, which means that the time
span of each Ti is no more than d.

Let Th ¼ ðT1;T 2;…;TmÞ denote the historical trajectory (concatenating all sub-trajectories) of the user
u, and let Tc ¼ ðpnþ1; pnþ2;…; pnþn�1Þ denote the current trajectory. With these notations, our problem can
then be formulated as: our goal is to predict u’s next point pnþn, given the Th and the Tc. Note that we also
quantify the time interval of each p into a fixed value as in previous work [16], and a is only the supplement
of location information. Thus, we actually predict the next l in pnþn.

3.2 Motivation and Overview
We briefly describe our problem of as a time-series problem. RNN is available to solve our problem

since it is a powerful time-series modeling pool of capturing long-range dependencies of sequential
information. However, the use of a single RNN is inefficient to predict human mobility using a single
RNN. There are two reasons supporting our view.

First, the length of each user’s historical trajectory tends to be long. Unfortunately, RNN can’t proceed
with long sequence directly. Even though using LSTM, it also has poor performance due to the vanishing
gradient. As in previous work [16], it has been verified. Secondly, the sparsity of data cannot be ignored,
mainly reflected in two aspects. For one thing, collected data tend to have less features (e.g., coordinate
and time), which makes the RNN difficult to train; for another, the time interval of each record is usually
unfixed, causing wrong sequential information of each user. In other words, it induces the problem of
fragmentated trajectory.

Based on above observations, this paper proposes a novel neural network-based method to predict
human mobility. Specifically, we first segment entire trajectory of each user and limit the length of sub-
trajectory. Next, we use an embedding layer to represent sparse features (e.g., l, a and t) and solve the
problem of sparsity. We then concatenate such sub-trajectories to generate the historical trajectory.
Subsequently, a CNN architecture is used to capture long short-term mobility pattern of the historical
trajectory. The CNN architecture can easily represent the local relationships and long-range relationships
with pooling-based methods [33]. Finally, we predict future trajectory with the RNN by generated pattern
and the current trajectory.

4 Methodology

In this section, we first introduce our basic framework of prediction model. Subsequently, we
detail some important modules of UCG Net. Finally, we interpret our model again and introduce the
parameter learning of one. For convenience, the key mathematical notations used in the methodology are
shown in Tab. 1.

4.1 Basic Framework
Fig. 1 shows the framework of UCG Net. It mainly consists of four components: trajectory embedding,

current trajectory learning module, historical trajectory learning module and classifier.

1. Trajectory Embedding: Before the training process, we first incorporate the features from both Th and Tc,
which can not only present the semantic relationships among different trajectories but also benefit the
follow-up computation.

2. Historical Trajectory Learning Module: This module is involved to capture the mobility pattern of Th. We
first use a Multi-Layer Perceptron (MLP) to incorporate the hidden states of Th, and encode them with a
convolutional layer, which can capture the short-term pattern of trajectory. Then, we utilize a FC layer to
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capture long-term pattern of separated hidden states. Finally, we generate long short-term patterns with
Max Pooling layer and concatenate them as the inputs of current trajectory learning Module.

3. Current Trajectory Learning Module: In this module, we involve a RNN architecture to capture the
sequential transitions of Tc. It receives the long short-term patterns and Tc as inputs, and represent the
future trajectory with the outputs of it.

4. Classifier: This module is the final component which incorporates the outputs of current trajectory
learning module into a feature representation, Softmax layer is used to generate location probability
and get predicted future trajectory.

Table 1: Key mathematical notation

Variable Interpretation

p Context-aware spatiotemporal trajectory point

l; a; t The factors of p mean location identification, activity identification and time, respectively.

Th; Tc The historical trajectory and current trajectory of user u.

d; n Predefined threshold of time span and the length of each sub-trajectory.

m; n The numbers of sub-trajectories and the length of the historical trajectory.

c; hs The former is the representation of embedded p, the latter is the hidden state of GRU
architecture in time s.

Hhis;Hcur The size of hidden layer in historical and current trajectory learning modules.

vshort; vlong The representation vectors of short-term pattern and long-term pattern.

c; cconv; cavg The first is the hidden states of the historical trajectory, follow-up two variables are
convolutional c and representation result by using the average pooling method, respectively.

W�;U�; b� The estimated parameter matrices and bias term.

Figure 1: Main Components of UCG Net
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4.2 Trajectory Embedding
As we mentioned, the sparsity of data’s features is the key problem in prediction tasks. Therefore, we

collect some related factors (such as location, activity, timestamp) to denote each record p. As in previous
work [15,31], the embedding layer [34] can capture the information of the dynamic factors in each p.
Compared with the one-hot encoding, the embedding layer effectively reduces the input dimension and is
easily computed. Moreover, the embedding method helps find and share similar patterns among different
trajectories. Therefore, we use the embedding layer to incorporate such factors of each p. As shown in
Fig. 2, we learn the embeddings for each factor, then we concatenate them into a vector represented by c.
The embedding methods of each factor are as follows:

Timestamp Embedding. The original time information of each p cannot feed to the neural network
directly. We reference the previous work and map one week into 48 slots (24 slots for weekdays and 24
slots for weekends). Then, each hour of timestamp is considered as an embedding unit. For any t in each
p, the embedding method maps t to a real space (we refer to such space as embedding space) Rdt by
multiplying a parameter matrix Wt 2 R48�dt.

Location and Activity Embedding. The original location and activity information of each p both
cannot feed to the neural network similarly. Their identification l and a are both categorical values, we
use the embedding layer to represent them respectively. For any l, each categorical value is mapped into
the embedding space Rdl by multiplying a parameter matrix Wl 2 RL�dl . Similarly, each a is mapped
into the embedding space Rda by multiplying a parameter matrix Wa 2 RA�da . L and A represent
the vocabulary size of the categorical value l and a respectively, dl and da are dimensions of their
embedding space.

As we mentioned above, we concatenate each embedding of such factors. Therefore, final output vector
of the embedding layer cðpiÞ 2 Rd where d ¼ dl þ da þ dt.

4.3 Historical Trajectory Learning Module
This module presents the historical trajectory learning method. As mentioned above, Th has great impact

on human mobility and helps predict future trajectory.

Figure 2: Trajectory embedding module
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In this module, the inputs are embedded Th 2 Rn�d. We first use a shared weight layer (e.g., the MLP) to
incorporate each point representation vector into a hidden state.

ci ¼ ReLUðWHcðpiÞ þ bHÞ; i 2 ½1; 2;…; n� (1)

where ReLU is the activation function, the parameter matrixWH 2 RHhis�d.Hhis is the numbers of neurons in
this layer. Then, we obtain all hidden states of Th. They can be expressed as c ¼ ðc1; c2;…:; cnÞ, and
c 2 Rn�Hhis

. Based above operation, we can obtain weighted Th.

Short-term pattern: As mentioned above, we get the hidden states c of Th before the convolution
operation. Note that c can be seen as a Hhis-channel input with the length n. Then, we use single layer
1� D convolution to capture the patterns of c. The convolution filter is parameterized with matrix
Wc 2 Rk�Hhis

. k is the kernel size of the filter. The filter applies a convolution operation on the c, along
with a one-dimension sliding window. Therefore, we can obtain convolutional feature map cconvi for each
ci. Its calculation formula can be denoted as,

cconvi ¼ Wc � ci:iþk�1 þ bc (2)

where � denotes the convolution operation, ci:iþk�1 is the subsequence in the c from index i to iþ k � 1.
Actually, k is set as 2. We are more interested in first-order transitions of Th. Therefore, we set k to 2 and
obtain short-term convolutional states of c. Furthermore, the out channels of 1� D convolution are same
as input channels, i.e., Hhis. Thus, we obtain all convolution states cconv ¼ ðcconv1 ; cconv2 ;…; cconvn�1 Þ with a
shape ½ðn� 1Þ � Hhis�.

As the Fig. 3 shows, we use a max-pooling method to capture the short-term pattern of convolutional
states cconv. We are interested in using the max value of these convolutional states to represent the short-
term pattern, the max value can effectively express the contribution of each ciconv. Specifically, we
represent the short-term pattern with a vector vshort, where each dimension is the max value of each out
channel over the cconv. Thus, vshort 2 RHhis

.

Figure 3: Component of capturing short-term pattern
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Long-term pattern: It is incomplete to only capture the short-term pattern, which cannot represent
entire mobility pattern of Th. Not only that, it will influence the effect of prediction model.

Fig. 4 shows the method of capturing the long-term pattern. We first obtain the hidden states c of Th by
the MLP. Actually, Th is a trajectory sequence of length n with m sub-trajectories. Thus, c contain m hidden
states of these sub-trajectories. Subsequently, we use an average pooling method and obtain the
representation of the sub-trajectories cavg 2 Rm�Hhis

. Note that we fix the length n of each sub-trajectory.
Moreover, we set the kernel size of the average pooling method to n, the stride of sliding window is same
as n. Hence, cavg ¼ ðcavg1 ; cavg2 ;…; cavgm Þ. Next, a FC layer is used to capture the correlation between these
sub-trajectories. This FC layer is parameterized with a matrix WF 2 RHhis�Hhis

. Finally, the shared max
pooling method is similarly used to represent the long-term pattern vlong 2 RHhis

. To avoid repetition, it is
not described here.

Based above two pattern learning methods, we obtain the long-term and short-term pattern. Then, we
concatenate two mobility pattern and generate the historical long short-term pattern vector v 2 R2�Hhis

.
Finally, v is used in the current learning module and set as the initial value of h in Eq. (3).

4.4 Current Trajectory Learning Module and Classifier
This module introduces a GRU architecture and use it to capture sequential information of the Tc. To

improve the readability of paper, we detail the classifier at the end of this module.

Figure 4: Component of capturing long-term pattern
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As mentioned above, the length of Tc is far less than the historical trajectories’ length n. Moreover, RNN
has powerful capabilities of capturing sequential pattern with short inputs due to its chain structure. Actually,
users’ mobility tends to have a strong correlation of previous footprint, which is similar to the high-order
Markov Process. In other words, it is important to capture the sequential transitions of Tc. Therefore, we
involve an RNN architecture to capture the sequential pattern of Tc. Here, we use the variant GRU of
RNN proposed by [35]. The calculation formula of this unit is as follows:

hs ¼ ð1� zsÞhs�1 þ zs~hs (3)

zs ¼ rðWzcðpsÞ þ Uzhs�1 þ bzÞ (4)

~hs ¼ tanhðW~hcðpsÞ þ U~hðrs � hs�1Þ þ b~hÞ (5)

rs ¼ rðWrcðpsÞ þ Urhs�1 þ brÞ (6)

where Eq. (3) is the final output of this unit, zs is the update gate in time τ and decides how much the unit
updates by the sigmoid activation function in Eq. (4). In Eq. (5), the candidate state ~hs memorizes the current
state in time τ selectivity, computed similarly to traditional RNN unit. rs denotes the reset gate and decides
how much the unit forgets previous information. W and U are both parameter matrices, b is the bias term.
Benefited from unique gating mechanism, Eq. (3) can keep the historical information and updates current
information at each time step. Thus, the GRU architecture can capture the sequential information for
time-series data.

In this module, we set two GRU architecture. We first feed the embedded current trajectory
cðTcÞ 2 Rðn�1Þ�d and pattern vector v 2 R2�Hhis

into the GRU architecture. Then, we capture the
sequential information by h’s iteration over temporal dimension in Eq. (3). The hidden state h contains
previous information and is continuously conducted as a new input on the follow iteration. The initial
value of h will be introduced in the next section. Finally, the outputs of this architecture are the
representation of future trajectory oTc 2 Rðn�1Þ�Hcur

and then fed into the classifier to generate
predicted trajectory.

Note that oTc 2 Rðn�1Þ�Hcur
can be expressed as oTc ¼ ðonþ2; onþ3;…; onþnÞ, and Hcur is the hidden size

of GRU kernel. To predict the next location of Tc, we add a FC layer and incorporate oTc into the high-level
representation matrix f of future trajectory. The f can be denoted as:

f ¼ WfoTc þ bf (7)

where f 2 Rðn�1Þ�L is parameterized with a matrix Wf 2 RL�Hcur
. Then, the Softmax layer is constructed to

generate the probability scores of future trajectories.

4.5 Model Interpretation and Parameter Learning
To understand our model more clearly, we interpret our model here. Although we cannot capture the

sequential information of Th, we replace the RNN with the 1� D convolution. The convolutional states
cconv contain the transition information of each trajectory point-pair. Actually, each state of cconv is the
representation of transition between two points. Then, we obtain the representation vectors of each sub-
trajectory by the average pooling layer. These vectors contain the information for each stage of entire Th.
Then the FC layer can help us capture the correlation of these vectors. Next, we generate the long short-
term pattern of Th through using a shared max pooling method. Subsequently, obtained long short-term
pattern is the initial input for the current learning module. Finally, we predict users’ next location by
learning the mobility pattern of Th and sequential transitions of Tc.
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Based on the prediction model described above, we generate a probability distribution of the predicted
trajectory over all the location with the GRU kernel. We can easily generate the probability distribution by the
Softmax layer added in the final module. To train the model, we use negative log-like as the loss function for
our model. In our training set, it contains multi-user trajectories. Therefore, we choose average loss of all
users as our objective function. Given a training set, the objective function can be defined as:

‘ ¼ � 1

juj
1

jZuj
X

juj

X

jZuj

Xn�1

j¼1

log yj½ljþ1� þ �

2
jj�jj2 (8)

where Zu denotes the samples of training sets for u, n is the length of each sample. yj and ljþ1 are the predicted
probability vector and the categorical value of target location at the jth step. � contains all the parameters to
be learned, including W�,U�,b�. To avoid overfitting, we add an L2 regularization term and predefine the
value of �. Moreover, we use Adam [36] and the Back-Propagation Through Time algorithm to optimize
the objective function.

5 Experimental Configuration

5.1 Data Information
We conduct our experiment on publicly available datasets of Foursquare collected from different cities,

New York (NYC) and Tokyo (TKY). Foursquare data [37] includes long-term (about 10 months) check-in
data from 12 April 2012 to 16 February 2013. NYC and TKYare the most prosperous areas in the world, and
the most populous cities in USA and Japan respectively. Therefore, it is valuable to study human mobility
using the check-ins datasets of two cities. Furthermore, two datasets have different check-in patterns
influenced by cultural differences between the East and the West, which can verify the robustness of our
model. The overall statistics of two datasets are shown in Tab. 2. Note that we take the categories of
POIs (e.g., restaurant, gym and etc.) as activity keywords. For each dataset, we set the time span d of
each sub-trajectory as three days, and then set the time interval of each p is not less than ten minutes.
Next, we set the length n of each sub-trajectory as 10 and remove users who have sub-trajectories fewer
than 5. Finally, we take 80% datasets of each user as the training set, and the 20% datasets as the testing
set for the parameters study.

5.2 Evaluation Metrics
To make fair comparisons, we use the standard evaluation performance metrics, such as Top@k.

Recall@k, Precision@k and F1-score@k. Specifically, we present each user with k of locations sorted by
the predicted score using the classifier, i.e., Sku . Given a top-k predicted location list Sku and target location
list l�u of test set, each evaluation metric can be defined as:

Top@k ¼ 1

juj
X

juj

Xjl�u j

j

jl�u;j \ Sku;jj
jl�uj

(9)

where j denotes each sample in test sets. Then Recall@k and Precision@k are defined as:

Table 2: Statistics of two datasets

City #Users #Check-ins #Categories of POIs

NYC 1083 227420 376

TKY 2293 573703 338
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Recall@k ¼ 1

juj
X

juj

Xjl�u j

j

jSku;j \ Svisitedu;j j
jSvisitedu;j j (10)

Precision@k ¼ 1

juj
X

juj

Xjl�u j

j

jSku;j \ Svisitedu;j j
k

(11)

where Svisitedu;j is the locations list of u has visited in the test set. Note that above metrics are computed by
averaging of all the values of all the users. Finally, the F1-score is the harmonic mean of Recall and Precision:

F1‐score ¼ 2� Precision� Recall

Precisionþ Recall
(12)

5.3 Comparative Methods
We compare our model with the following five baseline approaches:

1. Markov Chain (MC): We use the outperforming first-order MC method.

2. RNN: We choose the GRU cell as its basic architecture. Actually, the performance of LSTM is close to
the GRU.

3. ST-RNN [14]: ST-RNN is a RNN model taking spatial-temporal context as inputs for location prediction.

4. SERM [15]: SERM is a LSTMmodel that incorporates spatiotemporal context and activity keywords and
predicts user’s next visit.

5. DeepMove [16]: DeepMove is a strong neural network-based method based attentional mechanism,
which capture historical periodic from historical trajectory and complex sequential transitions from
recent trajectory.

5.4 Parameter Settings
In our experiment, the weights of our model are initialized with Xavier initialization. The initial learning

rate is set to 1e-3, the embedding spaces dt and da are set to 20 and 50 respectively. As the vocabulary sizes of
t and a are much smaller, their embedding spaces are set to a practically small value. The embedding of space
dl is set to the optimal hidden size. Note that we set both hidden size of historical trajectory module Hhis and
hidden size of current trajectory module Hcur as a same value for convenient calculation. The setting of
hidden size is discussed in the next section. For two datasets, the detail settings of our experiment are
shown in Tab. 3.

Table 3: Parameters settings on two datasets

Parameter Dataset

NYC TKY

Hhis;Hcur 400 900

Learning rate 1e-3 1e-4

L2 regularization � 1e-6 1e-7

Gradient clip 6 10

Dropout 0.7 0.5
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Our model is implemented with Pytorch 0.4.1, an open source Deep Learning Python Library developed
by Facebook. We train and evaluate our model on the server with a Nvidia GeForce GTX 1080Ti GPU.

6 Experimental Results and Discussion

In this section, we compare our model with several strong methods. We first discuss the Top@k results
of two datasets, and then discuss the results of others evaluation metrics on two datasets. Moreover, we
introduce the choice of experimental parameters.

6.1 Performance Comparison
Actually, Top@k is the most important metric among all evaluation metrics. We can directly observe the

next location of users by Top@k results, we therefore first discuss this metric. Note that we set k as 1 and 5
because of a greater value is usually be ignored in the reality. For the NYC dataset, we can observe that our
model achieves the best results among all the baseline methods from the Tab. 4. Markov method builds the
transition matrix according to the last location of each user, so that it is not surprising that Markov gets the
worst performance. Then, the RNN model has better performance compared with the Markov model due to
its strong sequence modeling ability. ST-RNN and SERM both exhibit higher results than the RNN model
due to contextual features (e.g., spatial and temporal context). However, they cannot handle the complex
transition regularities well with long trajectory, which leads to that the results are not significant
compared with the RNN model. DeepMove has the best result among all the baseline methods due to its
ability to exploit historical trajectories with attentional mechanisms. Compared with DeepMove, our
model shows an increase of 11% and 20% in the Top@1 and Top@5 results, respectively. For the TKY
dataset, we can observe similarly results compared with the NYC dataset. Since we have discussed the
results as above description, so that we don’t explore them here. Similarly, our model shows an increase
of 10% and 19% in the Top@1 and Top@5 results, respectively. Moreover, we can observe that TKY
dataset has more users compared with NYC dataset, which makes model train more difficult, so that all
the Top@k results on TKY dataset perform worse than the results on NYC dataset.

As a classifier, we compare the classification performance with all the baseline methods. Therefore, we
choose recall, precision and F1-score as others metrics. As shown in Tabs. 5 and 6, we can observe that our
model gets the best performance compared with all the baseline methods. For the Recall@k results, our
model shows an increase of 12% and 16% in Recall@1 and Recall@5 on NYC dataset, respectively.
Besides, our model shows an increase of 11% and 6% in Recall@1 and Recall@5 on TKY dataset,
respectively. Recall@k results on two datasets demonstrate that our model has better performance to
classify true locations. For the Precision@k results, our model shows an increase of 12% and 31% in

Table 4: Top@k results on two datasets

Method NYC TKY

Top@1 Top@5 Top@1 Top@5

Markov 0.132 0.269 0.125 0.244

RNN 0.151 0.318 0.134 0.273

STRNN 0.162 0.345 0.142 0.303

SERM 0.170 0.396 0.144 0.298

DeepMove 0.195 0.378 0.168 0.346

Our model 0.218 0.456 0.186 0.384
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Precision@1 and Precison@5 on NYC dataset, respectively. Besides, our model shows an increase of 11%
and 2% in Precison@1 and Precision@5 on TKY dataset, respectively. Precision@k results on two datasets
demonstrate that our model predicts more true locations. For the harmonic F1-score results, our model shows
an increase of 11% and 22% in F1-score@1 and F1-score@5 on NYC dataset, respectively. Similarly, our
model shows an increase of 10% and 6% in F1-score@1 and F1-score@5 on the TKY dataset,
respectively. Above results demonstrate that our model has satisfactory classification performance. In
addition, F1-score@k results on two datasets are similar to Top@k results. Except for more users of TKY
dataset, the reason lies in the fact that average check-ins of two datasets are relatively same. Therefore, it
is reasonable for the worse performance of our model on TKY dataset than NYC dataset.

In summary, our model obtains the best performance among all the strong neural network-based
methods. The improvements on such evaluation metrics can be ascribed to the following reasons. Firstly,
we incorporate more contextual features of whole trajectories, which makes our model learn more
knowledge. Secondly, we involve CNN-based methods to capture long short-term pattern effectively.
Different from DeepMove used attentional mechanism, our model mainly captures mobility pattern of
sequential sub-trajectory rather than contribution of separated trajectory points. Thirdly, we use the RNN
architecture to capture the sequential transitions of current trajectories together with mobility pattern of
historical trajectories. As described above, our model can capture complex mobility pattern of whole
trajectories effectively.

Table 5: Performance of recall, precision and F1-score comparison on NYC

Method NYC

Recall@1 Recall@5 Precision@1 Precision@5 F1@1 F1@5

Markov 0.132 0.233 0.132 0.282 0.132 0.255

RNN 0.151 0.276 0.151 0.322 0.151 0.297

STRNN 0.162 0.297 0.162 0.362 0.162 0.326

SERM 0.170 0.318 0.170 0.425 0.170 0.364

DeepMove 0.195 0.299 0.195 0.348 0.195 0.322

Our model 0.218 0.348 0.218 0.455 0.218 0.395

Table 6: Performance of recall, precision and F1-score comparison on TKY

Method TKY

Recall@1 Recall@5 Precision@1 Precision@5 F1@1 F1@5

Markov 0.125 0.185 0.125 0.270 0.125 0.221

RNN 0.134 0.201 0.134 0.322 0.134 0.248

STRNN 0.142 0.236 0.142 0.349 0.142 0.282

SERM 0.144 0.228 0.144 0.341 0.144 0.273

DeepMove 0.168 0.254 0.168 0.395 0.168 0.309

Our model 0.186 0.274 0.186 0.401 0.186 0.326
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6.2 Validation of Capturing Long Short-Term Patterns
Here, we validate the ability of capturing long short-term patterns of our model. To validate the ability of

our model, we set three different variants, including RNN, UCG-Short and UCG. UCG-Short is our model
without capturing long-term. we choose the same parameters of UCG for UCG-Short. In this experiment, we
compare the Top@k results of three models to verify the long short-term ability. Top@k results can show the
prediction performance intuitively, the experimental results are shown in Fig. 5.

From the results on two datasets, we observe that UCG Net has the best performance. By the comparison
of RNN and UCG-Short, the results demonstrate that our model has the ability of capturing short-term
patterns. By the comparison of UCG-Short and UCG, the results demonstrate that our model has the
ability of capturing long-term patterns. Actually, our model has the best performance due to that our
model can capture the long-term patterns.

6.3 Parameter Sensitivity
In this experiment, we investigate the impact of embedding size and the dimension of hidden layer on

two datasets. Here, the embedding sizes of activity and time are relatively small, which the impact of their
sizes is not significant. Therefore, we mainly discuss the choice of location’s embedding size. Fig. 6 shows
the influence of embedding size on two datasets, and Tab. 7 depicts the changes of F1-score@k. We can
observe that the change of both two metrics is not significant, which denotes the robustness of our model.
Here, we can obtain the optimal value when choose 400 and 900 as the embedding size. Therefore, we
choose them as the optimal embedding size of two datasets.

By setting the embedding size as optimal value, we further discuss the impact of dimension of hidden
layer on two datasets. Fig. 7 shows the influence of hidden layer’ dimension, and Tab. 8 depicts the changes
of F1-score@k results. We can observe that the performance of our model is getting better with the increasing

Figure 5: The results of RNN, UCG-short and UCG on two datasets. (a) NYC and (b) TKY

Table 7: Impact of embedding size on the performance of F1-score@k

Metric NYC TKY

100 300 400 600 300 600 900 1100

F1@1 0.214 0.214 0.218 0.216 0.185 0.184 0.186 0.181

F1@5 0.378 0.391 0.395 0.396 0.328 0.319 0.326 0.311
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of hidden size, which denotes that the hidden size influences our model significantly. However, the
performances on two datasets are both worse when the hidden size is too large, which means that
overfitting problem may occur. Based above observation, we choose 400 and 900 as the hidden size of
our model on NYC and TKY datasets, respectively.

7 Conclusions

In this paper, we propose a neural network-based method to capture the mobility pattern of human
trajectory. We incorporate user’s each trajectory point into a context-aware representation with multiple
factors, i.e., location, activity and temporal information. Then, the embedding layer help capture semantic
information among these trajectories. Furthermore, our model can capture long short-term pattern using
CNN-based method. Specifically, we capture short-term pattern via 1� D convolution and long-term
pattern through the average pooling method. The experiment on two real world datasets prove the

Figure 6: The impact of embedding size on two datasets. (a) NYC and (b) TKY

Table 8: Impact of hidden size on the performance of F1-score@k

Metric NYC TKY

100 300 400 600 300 600 900 1100

F1@1 0.201 0.210 0.218 0.209 0.172 0.176 0.186 0.179

F1@5 0.356 0.377 0.395 0.371 0.290 0.305 0.326 0.308

Figure 7: The impact of hidden size on two datasets. (a) NYC and (b) TKY
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effectiveness of our model. In the future, we will conduct our model deeply. In fact, the architecture of our
model is relatively simple, which limits the high-level representation learning process. Therefore, deeply
architecture may help capture human mobility pattern more precise.
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