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Abstract: Differential quadrature method is employed by numerous researchers due to its
numerical accuracy and computational efficiency, and is mentioned as potential alternative
of conventional numerical methods. In this paper, a differential quadrature based numerical
scheme is developed for solving volterra partial integro-differential equation of second
order having a weakly singular kernel. The scheme uses cubic trigonometric B-spline
functions to determine the weighting coefficients in the differential quadrature approximation
of the second order spatial derivative. The advantage of this approximation is that it reduces
the problem to a first order time dependent integro-differential equation (IDE). The proposed
scheme is obtained in the form of an algebraic system by reducing the time dependent IDE
through unconditionally stable Euler backward method as time integrator. The scheme is
validated using a homogeneous and two nonhomogeneous test problems. Conditioning of
the system matrix and numerical convergence of the method are analyzed for spatial and
temporal domain discretization parameters. Comparison of results of the present approach
with Sinc collocation method and quasi-wavelet method are also made.

Keywords: Partial integro-differential equation, differential quadrature, cubic trigonometric
B-spline functions, weakly singular kernel.

1 Introduction

Partial integro-differential equations (PIDEs) are widely used to model several physical
systems in science and engineering such as heat conduction [Gurtin and Pipkin (1968);
Miller (1978)], reactor dynamics [Pao (1979)], flow in fractured biomaterials [Zadeh
(2011)], electricity swaptions [Hepperger (2012)], population dynamics [Fakhar-Izadi and
Dehghan (2013)], financial option pricing [Lee (2014)], viscoelasticity [Larsson, Racheva
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and Saedpanah (2015)] and diffusion [Ali, Rahman, Jan et al. (2016); Fahim, Araghi,
Rashidinia et al. (2017)].

General solution in analytical form is usually possible under restrictive conditions. Such
restrictive conditions often leading to over simplifications and compromising on the
physical relevancy of the model. Thus, several alternative techniques have been appeared
in the literature to obtain the solution of PIDEs, which include Galerkin methods
[Fakhar-Izadi and Dehghan (2013); Larsson, Racheva and Saedpanah (2015)], radial
basis function collocation method [Ali, Rahman, Jan et al. (2016)], Sinc-collocation
method [Fahim, Araghi, Rashidinia et al. (2017)], finite element method [Chen, Thomee
and Wahlbin (1992)], finite difference methods [Dehghan (2006); Tang (1993)], spectral
method [Fakhar-Izadi and Dehghan (2011)], quasi-wavelet method [Long, Xu and Zeng
(2012)], Haar wavelet method [Siraj-ul-Islam, Aziz and Fayyaz (2013)], and B-spline
collocation methods [Zhang, Han and Yang (2013); Ahmad, Ali, Shah et al. (2015)].

The following second order PIDE is considered here [Fahim, Araghi, Rashidinia et al.
(2017); Long, Xu and Zeng (2012)]:

@uðx; tÞ
@t

¼
Z t

0
Kðr; tÞ @

2uðx; rÞ
@x2

drþf ðx; tÞ; x 2 I¼½a; b�; t > 0; (1)

with initial condition

uðx; 0Þ¼wðxÞ; x 2 I ; (2)

and boundary conditions

uða; tÞ¼w1ðtÞ; uðb; tÞ¼w2ðtÞ; t>0; (3)

where K(r, t)=(t−r)−ν, 0<ν<1, is the weakly singular kernel. The termR t
0 Kðr; tÞ

@2uðx; rÞ
@x2

dr is called memory term which represents memory of the system in

model. Different numerical techniques were proposed to obtain the solution of the PIDE
(1). Fahim et al. [Fahim, Araghi, Rashidinia et al. (2017)] employed Sinc function to the
spatial derivative and product trapezoidal rule to the time derivative to solve the PIDE
(1). Dehghan [Dehghan (2006)] used finite difference schemes alongwith product
trapezoidal numerical integration for its solution. Long et al. [Long, Xu and Zeng (2012)]
obtained a technique based on quasi-wavelet for the solution of the PIDE (1).
Shakeel et al. [Ahmad, Ali, Shah et al. (2015)] solved (1) through a quintic B-spline
collocation method. Recently, Ali et al. [Ali, Khan, Haq et al. (2019)] constructed a
collocation method based on cubic trigonometric B-spline functions to obtain the solution
of the problem (1).

In 1964, Schoenberg [Schoenberg (1964)] presented piecewise trigonometric spline
functions and established the existence of locally supported trigonometric splines, termed
as trigonometric B-splines. Later on other researchers (see [Koch, Lyche, Neamtu et al.
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(1995); Walz (1997)]) developed further important properties of these functions such as C2

continuity, nonnegativity, partition of unity, smoothness, curve shape design and its
analysis, and recurrence relation. In 2010, Abd Hamid et al. [Abd Hamid, Majid and
Ismail (2010)] pioneered the application of cubic trigonometric B-spline (CTBS)
functions for the solution of Two-point boundary value problem. Due to their special
features and better accuracy, CTBS based methods are extended for the solution of
several partial differential equations including hyperbolic problems [Abbas, Majid, Ismail
et al. (2014a)], Nonclassical diffusion problems [Abbas, Majid, Ismail et al. (2014b)],
Burgers’ equations [Raslan, El-Danaf and Ali (2016)], Hyperbolic telegraph equation
[Nazir, Abbas and Yaseen (2017)], Hunter Saxton equation [Hashmi, Awais, Waheed
et al. (2017)], Fisher’s equations [Hepson and Dag (2017); Tamsir, Dhiman and
Srivastava (2018)], time fractional diffusion-wave equation [Yaseen, Abbas, Nazir et al.
(2017)], Non-conservative linear transport problem [Korkmaz and Akmaz (2018)], and
coupled Burgers’ equations [Dag, Hepson and Kacmaz (2017); Singh and Kumar (2018)].

In 1971, Bellman et al. [Bellman and Casti (1971)] introduced the DQ method for
approximation of derivative of a sufficiently smooth function. This method is considered
as strong alternative of finite difference and finite element methods since it produces
accurate numerical results with little computational effort as compared to these methods
because it uses relatively smaller set of nodal points [Quan and Chang (1989); Bert and
Malik (1996)]. Various theoretical results and applications of this method can be found in
the references [Shu (2000); Wang (2015)]. The method is utilized for the solution of
various problems including Fisher’s reaction-diffusion equations [Tamsir, Dhiman and
Srivastava (2018)], Non-conservative linear transport problems [Korkmaz and Akmaz
(2018)], coupled viscous Burger’s equations [Singh and Kumar (2018)], Kawahara
equation [Bashan (2019a)], Semi-linear Fisher-Kolmogorov equations [Mittal and Dahiya
(2016)], cmKdV equation [Başhan, Yağmurlu, Uçar et al. (2018)], Boundary layer
problems [Shen (2010)], shock wave simulations [Korkmaz and Dag (2011b)], and
Burgers’ equation [Arora and Singh (2013)].

Recently, Korkmaz et al. [Korkmaz and Akmaz (2018)] introduced the CTBS-DQ method
for the solution of non-conservative linear transport problems based on second order
advection-diffusion equation. Singh et al. [Singh and Kumar (2018)] extended the
method for the solution of one and two dimensional coupled viscous Burgers’ equations.
Tasmir et al. [Tamsir, Dhiman and Srivastava (2018)] used the CTBS-DQ method for
second order nonlinear Fisher’s reaction-diffusion equations.

The aim of this work is to initiate the CTBS-DQ approach for the solution of PDIEs (1)-(3).
Besides other challenges in solving PDEs, PIDEs of the form (1) have additional two major
issues, the singular kernel and the memory term. These issues also require numerical
treatment, which further affect stability and accuracy of a numerical method.

Rest of the paper is outlined as follows: Section 2 describes development of the proposed
technique by coupling CTBS functions with differential quadrature method. Section 3
implements the CTBS-DQ method using test problems. This section also provides detail
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error analysis, conditioning, eigenvalues, comparison with some existing methods, and
computational efficiency in order to establish the current approach. Section 4 concludes
the findings and outcomes of the paper.

2 The CTBS-DQ method

To develop the proposed method, consider the problem (1)-(3). We divide the spatial domain

I into N−1 subintervals In=[xn−1, xn], n=2, 3, …, N, of equal length h¼ b�a

N�1
by the

collocation points xn, n ∈ Ω={1, 2,…, N} with a=x1 and b=xN. Taking x=xi, i ∈ Ω, in Eq. (1),

@uðxi; tÞ
@t

¼
Z t

0
Kðr; tÞ @

2uðxi; rÞ
@x2

drþf ðxi; tÞ: (4)

Next we use the differential quadrature to approximate
@2uðxi; rÞ

@x2
using CTBS functions as

follows.

The DQmethod approximates kth order derivative of the function u(x,r) from its values at xi,
i ∈ Ω, as

@kuðxi; rÞ
@xk

¼
XN
j¼1

aðkÞij uðxj; rÞ; (5)

where a kð Þ
ij , k=1, 2, …, are kth order weighting coefficients which are determined by test

functions. Different basis functions were considered as test functions for determination of
the weighting coefficients such as cubic trigonometric B-spline functions [Korkmaz and
Akmaz (2018); Singh and Kumar (2018)], Lagrange polynomials [Quan and Chang
(1989)], quintic B-spline functions [Mittal and Dahiya (2016)], sinc functions [Korkmaz
and Dag (2011b)], cubic B-spline functions [Arora and Singh (2013); Bashan (2019b)],
radial basis functions [Lin, Zhao, Watson et al. (2020); Shu, Ding and Yeo (2003)],
Fourier expansion [Shu and Chew (1997)], and polynomial basis [Korkmaz and Dag
(2011a)]. Accuracy of DQ solution depends on the accuracy of weighting coefficients
and as well as on the selection of nodal points xi. Moreover, the DQ solution declines
with increasing the number of nodes which is a limitation of this method. Various
researchers have provided different techniques such as using explicit formulae for
computation of weighting coefficients of higher order derivatives and non-uniform nodes
to circumvent this problem, which leads to improvement in accuracy of the DQ solution
[Bert and Malik (1996)]. Shu [Shu (2000)] established two approaches (i) a recurrence
formula (ii) matrix multiplication, for finding the weighting coefficients of derivatives of
higher order. Recently, Lin et al. [Lin, Zhao, Watson et al. (2020)] presented an improved
radial basis functions based DQ method using ghost points for the solution of 2D and 3D
elliptic boundary value problems.
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CTBS function denoted by Bi(x) are given by Abd Hamid et al. [Abd Hamid, Majid and
Ismail (2010)] and Abbas et al. [Abbas, Majid, Ismail et al. (2014a)]:

BiðxÞ¼ 1

x

f3
i�2; x 2 Ii�1;

fi�2½fi�2riþriþ1fi�1�þriþ1f2
i�1; x 2 Ii;

fi�2r
2
iþ1þriþ2ðxÞ½fi�1riþ1þriþ2fi�; x 2 Iiþ1;

r3iþ2; x 2 Iiþ2;
0; otherwise;

0
BBBB@

where fi¼ sin
x�xi
2

� �
;ri¼ sin

xi�x

2

� �
; and w¼ sin

h

2

� �
sinðhÞ sin 3h

2

� �
.

Lemma [Abd Hamid, Majid and Ismail (2010); Abbas, Majid, Ismail et al. (2014a)]: The
value of Bi(x), B′i(x) and B′′i(x) at the node xj are obtained as:

BiðxjÞ¼
b2; if i�j¼0;
b1; if i�j¼1 or�1;
0; elsewhere;

0
@

B0
iðxjÞ¼

b4; if i�j¼1;
b3; if i�j¼�1;
0; elsewhere;

0
@

and

B00
i ðxjÞ¼

b6; if i�j¼0;
b5; if i�j¼1 or�1;
0; elsewhere;

0
@ ;

where

b1¼
sin2 h

2

� �
sinðhÞ sin 3h

2

� � ; b2¼
2

1þ2 cosðhÞ ; b3¼�
3

4 sin 3h
2

� � ; b4¼
3

4 sin 3h
2

� �

b5¼
3ð1þ3 cosðhÞÞ

16 2 cos h
2

� �þcos 3h
2

� �� �
sin2 h

2

� �, and b6¼�
3 cot2 h

2

� �
2þ4 cosðhÞ

The following modified CTBS functions are used as test functions [Arora and Joshi (2018)]:

T1ðxÞ¼ðB1þ2B0ÞðxÞ;
T2ðxÞ¼ðB2�B0ÞðxÞ;
TlðxÞ¼BlðxÞ; for l¼3; 4;…;N�2;

TN�1ðxÞ¼ðBN�1�BNþ1ÞðxÞ;
TN ðxÞ¼ðBNþ2BNþ1ÞðxÞ;

which form a basis in region [a, b].
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Thus, for each basis function Tm(xi), Eq. (5) gives
@kTmðxiÞ

@xk
¼
XN
j¼1

aðkÞij TmðxjÞ; for m, i ∈ Ω, and k=2,

leading to the following matrix form:

C~aðkÞi ¼DðkÞ
i ; (6)

where~aðkÞi ¼½aðkÞij �Nj¼1 andD
ðkÞ
i ¼ @kTmðxiÞ

@xk

� 	N
m¼1

are N × 1 matrices while C¼½cij�Ni;j¼1 is an N ×
N matrix such that

cij ¼
2b1þb2; if i¼j¼1 orN ;

b2; if i¼j and 1,i; j,N ;
b1; if ðj¼i�1 and 2,i�NÞ or ði¼j�1 and 1� j,N�1Þ;
0; elsewhere:

0
BB@

The weighting coefficients aij
(k), i, j ∈ Ω are obtained by solving the system (6) through the

well known efficient tridiagonal solver “Thomas algorithm”. Thus using Eq. (5) in Eq. (4)
and taking K(r,t)=(t−r)−ν, k=2, we get the following IDE,

@uðxi; tÞ
@t

¼
Z t

0
ðt�rÞ�m

XN
j¼1

að2Þij uðxj; rÞdrþf ðxi; tÞ; i 2 �: (7)

Let tl=lΔt, l=0, 1, 2,…, L, where Δt is time step. Taking t=tl+1 in Eq. (7), and approximating
the time derivative in Eq. (7) by Euler backward formula, we get

uðxi; tlþ1Þ�uðxi; tlÞ
Dt

¼
Z tlþ1

0
ðtlþ1�rÞ�m

XN
j¼1

að2Þij uðxj; rÞdrþf ðxi; tlþ1Þ; i 2 �: (8)

The numerical treatment of the memory term in Eq. (8) containing the weakly singular
kernel is performed as [Ali, Khan, Haq et al. (2019)]:Z tlþ1

0
ðtlþ1�rÞ�m

XN
j¼1

að2Þij uðxj; rÞdr¼
Z tlþ1

0
r�m
XN
j¼1

að2Þij uðxj; tlþ1�rÞdr ;

¼
Xl
k¼0

Z tkþ1

tk
r�m
XN
j¼1

að2Þij uðxj; tlþ1�rÞdr ;

�
Xl
k¼0

XN
j¼1

að2Þij uðxj; tl�kþ1Þ
Z tkþ1

tk
r�mdr ;
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� ðDtÞ1�m
1�m

Xl
k¼0

XN
j¼1

að2Þij uðxj; tl�kþ1Þððkþ1Þ1�m�k1�mÞ ; (9)

Putting Eq. (9) in Eq. (8), and denoting u(xi,t
l+1) by ulþ1i , we get

ulþ1i �uli
Dt

¼
Xl
k¼0

bk
XN
j¼1

að2Þij ul�kþ1j þf lþ1i ; (10)

where bk¼ðDtÞ1�m
1�m

ððkþ1Þ1�m�k1�mÞ such that bk ! 0 as k ! 1 and f lþ1i ¼f ðxi; tlþ1Þ; i 2 �:

Re-arranging the terms in Eq. (10), we have

ulþ1i �b0Dt
XN
j¼1

að2Þij ulþ1j ¼uliþDt
Xl
k¼1

bk
XN
j¼1

að2Þij ul�kþ1j þf lþ1i

 !
; i 2 �: (11)

Eq. (11) leads to the following matrix form:

Pulþ1¼QulþF; l�2; (12)

where

P¼

1�b0Dta
ð2Þ
11 �b0Dtað2Þ12 �b0Dtað2Þ13 . . . �b0Dtað2Þ1N

�b0Dtað2Þ21 1�b0Dta
ð2Þ
22 �b0Dtað2Þ23 . . . �b0Dtað2Þ2N

� � � � � � �
� � � � � � �
� � � � � � �

�b0Dtað2ÞN1 �b0Dtað2ÞN2 �b0Dtað2ÞN3 � � � 1�b0Dta
ð2Þ
NN

2
66666664

3
77777775
;

Q¼

1þb1Dta
ð2Þ
11 b1Dta

ð2Þ
12 b1Dta

ð2Þ
13 . . . b1Dta

ð2Þ
1N

b1Dta
ð2Þ
21 1þb1Dta

ð2Þ
22 b1Dta

ð2Þ
23 . . . b1Dta

ð2Þ
2N

� � � . . . �
� � � . . . �
� � � � � � �

b1Dta
ð2Þ
N1 b1Dta

ð2Þ
N2 b1Dta

ð2Þ
N3 . . . 1þb1Dta

ð2Þ
NN

2
66666664

3
77777775
;

ul¼½ul1; ul2;…; ulN �T , and F¼½s1; s2;…; sN �T ; si¼Dt
Pl

k¼2 bk
PN

j¼1 a
ð2Þ
ij ul�kþ1j þf lþ1i

� �
; i 2 �.

Eq. (12) can be rewritten as

ulþ1¼MulþG; (13)

where M=P−1Q and G=P−1F.
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3 Test problems

In this section three examples are taken from the literature [Fahim, Araghi, Rashidinia et al.
(2017); Long, Xu and Zeng (2012)] with m¼ 1

2 and the spatial domain I=[0, 1] to validate and
compare results of the present technique (13) with the results of Sinc-collocation method-
Linsolve Package (SMLP) [Fahim, Araghi, Rashidinia et al. (2017)], Sinc-collocation
method-Tikhonov Regularization (SMTR) [Fahim, Araghi, Rashidinia et al. (2017)] and
quasi-wavelet (QW) method [Long, Xu and Zeng (2012)]. The method is examined via
E∞, E2 error norms [Ali, Khan, Haq et al. (2019)].

3.1 Problem 1
We take Eqs. (1)-(3) and choose f(x,t)=0 with the analytical solution [Fahim, Araghi,
Rashidinia et al. (2017)]:

uðx; tÞ¼
X1
k¼0

ð�1Þkm 3

2
kþ1

� ��1
ðp5=2t3=2Þk sinðpxÞ: (14)

The functions ψ, ψ1, ψ2 are obtained from Eq. (14). Simulation is done with different values
of the parameter N, time step Δt, time level L, and the results of CTBS-DQ are provided in
Tabs. 1-5 along with the results of the methods SMLP, SMTR [Fahim, Araghi, Rashidinia
et al. (2017)]. From Tabs. 1 and 2, it can be seen that CTBS-DQ method produces better
accuracy than SMLP [Fahim, Araghi, Rashidinia et al. (2017)] for Δt=10−4, whereas it
gives comparable accuracy to SMTR [Fahim, Araghi, Rashidinia et al. (2017)].
Furthermore, it can be noted from Tab. 1 that condition number of the system matrix P
(Cond(P)) in Eq. (12) is much smaller than the sinc-collocation method [Fahim, Araghi,
Rashidinia et al. (2017)] for all values of N=9, 17, 33, 65, 100, 500. In Tab. 3, the error
norms are obtained for L=50, 150, 250, 350, 450, 1000 using Δt=10−4, 10−5. In Tab. 4,
Spatial rate of convergence, condition number of weighting coefficient matrix A, ρ(A)
and ρ(M) spectral radii of matrices A and M respectively, are recorded for N=10, 20, 50,
100, 500. Both Cond(A) and ρ(A) increase as N increases but ρ(M) of the amplification
matrix M remains 1, which shows stable computation. In Tab. 5, time rate of
convergence, condition numbers of the system matrix P and amplification matrix M and
ρ(M) spectral radius of matrix M are given for Δt=10−2, 10−3, 10−4, 10−5, 10−6. It can be
observed from the Tab. 5 that both Cond(P) and Cond(M) approach to 1 as Δt decreases,
while ρ(M) remains 1. Fig. 1 represents solution obtained by CTBS-DQ at t=0.1. Fig. 2
displays errors in approximation obtained by the present methods. Fig. 3 shows the
CTBS-DQ solutions at different time levels upto t=0.1. Fig. 4 represents convergence of
CTBS-DQ solution and condition number of the matrix M vs. spatial nodes N.
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Table 1: Results of CTBS-DQ using Δt=10−4 at t=0.01 alongwith results of the methods
[Fahim, Araghi, Rashidinia et al. (2017)]

CTBS-DQ [Fahim, Araghi, Rashidinia et al. (2017)]

N E∞ E2 Cond(P) E∞(SMLP) E∞(SMTR) Cond(P)

9 2.20×10−4 1.56×10−4 1.00×10 0 1.10×10−2 8.27×10−3 4.61×10 2

17 1.24×10−4 8.79×10−5 1.01×100 2.85×10−3 7.94×10−4 6.71×103

33 1.00×10−4 7.10×10−5 1.02×100 4.68×10−4 9.32×10−5 3.88×104

65 9.44×10−5 6.68×10−5 1.10×100 9.75×10−5 4.71×10−5 1.10×105

100 9.32×10−5 6.60×10−5 1.35×100 … … …

500 9.25×10−5 6.54×10−5 2.77×103 … … …

Table 2: Pointwise absolute error at t=1 using N=10

Dt¼10�2 Dt¼10�3 Dt¼10�4

x CTBS-DQ SMLP CTBS-DQ SMLP CTBS-DQ SMLP

0.1 3:3	10�3 1:9	10�3 3:6	10�4 4:1	10�4 4:2	10�5 2:6	10�4

0.2 6:3	10�3 3:4	10�3 6:8	10�4 6:1	10�4 8:0	10�5 3:1	10�4

0.3 8:7	10�3 4:4	10�3 9:4	10�4 5:3	10�4 1:1	10�4 1:3	10�4

0.4 1:0	10�2 5:1	10�3 1:1	10�3 4:9	10�4 1:3	10�4 1:1	10�4

0.5 1:1	10�2 5:3	10�3 1:2	10�3 4:9	10�4 1:4	10�4 1:7	10�4

0.6 1:0	10�2 5:1	10�3 1:1	10�3 4:9	10�4 1:3	10�4 1:1	10�4

0.7 8:7	10�3 4:4	10�3 9:4	10�4 5:3	10�4 1:1	10�4 1:3	10�4

0.8 6:3	10�3 3:4	10�3 6:8	10�4 6:1	10�4 8:0	10�5 3:1	10�4

0.9 3:3	10�3 1:9	10�3 3:6	10�4 4:1	10�4 4:2	10�5 2:6	10�4

Table 3: Error norms obtained by CTBS-DQ using N=20

Dt¼10�4 Dt¼10�5

L E1 E2 E1 E2 CPU Time (s)

50 7:25	10�5 5:13	10�5 2:31	10�6 1:63	10�6 0:0294

150 1:49	10�4 1:05	10�4 4:88	10�6 3:45	10�6 0:0327

250 2:16	10�4 1:53	10�4 7:34	10�6 5:19	10�6 0:0496

350 2:81	10�4 1:99	10�4 9:90	10�6 7:00	10�6 0:0644

450 3:42	10�4 2:42	10�4 1:26	10�5 8:90	10�6 0:0879

1000 6:15	10�4 4:35	10�4 2:98	10�5 2:10	10�5 0:3079
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Table 4: Convergence of CTBS-DQ solution in space using Dt¼10�4 at t¼0:01

N E1 E2 Order (E1) Cond(A) qðAÞ qðMÞ
10 9:06	10�5 6:04	10�5 — 5:58	106 1:12	103 1:0000

20 2:97	10�5 2:10	10�5 1:6075 1:30	108 4:71	103 1:0000

50 1:27	10�5 9:01	10�6 0:9243 8:06	109 2:99	104 1:0000

100 1:03	10�5 7:30	10�6 0:3043 1:82	1011 1:20	105 1:0000

500 9:54	10�6 6:75	10�6 0:0485 2:54	1014 3:00	106 1:0000

Table 5: Convergence of CTBS-DQ solution in time using N=20 at t¼0:01

Dt E1 E2 Order (E1) Cond(P) Cond(M) qðMÞ
10�2 6:28	10�3 4:44	10�3 ��� 1:16	101 6:53	102 1:0000

10�3 8:65	10�4 6:11	10�4 0:8609 1:30	100 1:44	100 1:0000

10�4 1:13	10�4 7:98	10�5 0:8845 1:01	100 1:01	100 1:0000

10�5 2:97	10�5 2:10	10�5 0:5794 1:00	100 1:00	100 1:0000

10�6 2:12	10�5 1:50	10�5 0:1470 1:00	100 1:00	100 1:0000

Figure 1: Numerical solutions obtained by CTBS-DQ using N=20, Δt=10−4 at t=0.1
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3.2 Problem 2
We consider Eqs. (1)-(3) with

f ðx; tÞ¼ 2t1=2ffiffiffi
p

p ðp2 sinpx�sin 2pxÞ�2p2t2 sin 2px;

ψ(x)=sin(πx), ψ1(t)=0, ψ2(t)=0, and in this case the exact solution is given by Fahim et al.
[Fahim, Araghi, Rashidinia et al. (2017); Long, Xu and Zeng (2012)]

Figure 2: Error in numerical solutions obtained by CTBS-DQ using N=20, Δt=10−4 at t=0.1

Figure 3: CBTS-DQ solutions at different time levels in [0, 0.1] using N=20, Δt=10−4 at t=0.1
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uðx; tÞ¼ sinðpxÞ�4t3=2

3
ffiffiffi
p

p sin 2px: (15)

The error norms for N=10, 65, Δt=10−5, 10−6 and at time level L=50, 150, 250, 350, 450 are
computed through the CTBS-DQ (13) which are provided in Tab. 6 alongwith the results of
QW [Long, Xu and Zeng (2012)] and SMLP [Fahim, Araghi, Rashidinia et al. (2017)].
From Tab. 6, it can be noted that the results produced by the CTBS-DQ are more
accurate than QW [Long, Xu and Zeng (2012)] whereas CTBS-DQ gives comparable
accuracy for less number of spatial nodes than SMLP [Fahim, Araghi, Rashidinia et al.
(2017)]. Fig. 5 depicts solution obtained by the present method at t=0.01. Fig. 6 shows
the CTBS-DQ solutions at various time levels up to t=0.01.

3.3 Problem 3
In this test problem we take Eqs. (1)-(3) with the singular kernel Kðr; tÞ¼ðpðt�rÞÞ�

1

2, f(x,t)
=sin(πx), ψ(x)=sin(πx), ψ1(t)=0, ψ2(t)=0 and the following analytical solution [Fahim,
Araghi, Rashidinia et al. (2017)]

Figure 4: (a) Convergence of CTBS-DQ solution vs. number of spatial nodes N (b)
Condition number of amplification matrix M vs. N, for Δt=10−4 at t=0.1
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uðx; tÞ¼
X1
k¼0

ð�1Þk ðp2t3=2Þk

m 1þ3

2
k

� �þt
X1
k¼0

ð�1Þk ðp2s3=2Þk

m 2þ3

2
k

� �
0
BB@

1
CCA sinpx:

Table 6: Error norms at t=0.01

CTBS-DQ CTBS-DQ QW SMLP

N=10 N=65 N=10 N=65

Dt L E1 E2 E1 E2 E1 E1
10�5 50 6:60	10�5 4:66	10�5 6:50	10�5 4:60	10�5 4:93	10�4 5:16	10�5

150 3:40	10�4 2:40	10�4 3:35	10�4 2:37	10�4 2:52	10�3 2:90	10�4

250 7:29	10�4 5:15	10�4 7:19	10�4 5:08	10�4 5:36	10�3 6:42	10�4

350 1:21	10�3 8:53	10�4 1:19	10�3 8:41	10�4 8:76	10�3 1:08	10�3

450 1:76	10�3 1:24	10�3 1:73	10�3 1:22	10�3 1:26	10�2 1:59	10�3

10�6 50 2:08	10�6 1:47	10�6 2:06	10�6 1:45	10�6 1:56	10�5 9:81	10�6

150 1:07	10�5 7:59	10�6 1:06	10�5 7:49	10�6 8:05	10�5 9:81	10�6

250 2:31	10�5 1:63	10�5 2:27	10�5 1:61	10�5 1:73	10�4 2:03	10�5

350 3:82	10�5 2:70	10�5 3:76	10�5 2:66	10�5 2:86	10�4 3:42	10�5

450 5:56	10�5 3:93	10�5 5:48	10�5 3:88	10�5 4:16	10�4 5:03	10�5

Figure 5: Numerical solution obtained by CTBS-DQ using N=20, Δt=10−5, at t=0.01
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For this kernel the proposed scheme (12) and (13) is applied with the matrices

P¼ I�2b0ðDtÞ
3
2ffiffiffi

p
p A

" #
; Q¼ Iþ2b1ðDtÞ

3
2ffiffiffi

p
p A

" #
, A¼½að2Þij �Ni;j¼1, I is N×N identity matrix and

F¼ Dtffiffiffi
p

p ½s1; s2;…; sN �T . The error norms for N=17, 129, Δt=10−5, 10−6, 10−7 and L=50,

150, 250, 350, 450 are obtained which are recorded in Tab. 7 along with results of
SMLP [Fahim, Araghi, Rashidinia et al. (2017)] and SMTR [Fahim, Araghi, Rashidinia
et al. (2017)]. From Tab. 7, accuracy of the CTBS-DQ increases as the time step Δt
decreases but it does not increase by increasing of the number of spatial nodes N.
Furthermore, CTBS-DQ provided more accurate solution for N=17 as compared to the
accuracy of SMLP [Fahim, Araghi, Rashidinia et al. (2017)] and SMTR [Fahim, Araghi,
Rashidinia et al. (2017)] for N=17. However, SMLP [Fahim, Araghi, Rashidinia et al.
(2017)] and SMTR [Fahim, Araghi, Rashidinia et al. (2017)] require N=129 to attain this
accuracy of CTBS-DQ for all L=50, 150, 250, 350. Fig. 7 illustrates solution obtained
using CTBS-DQ at t=0.001. In Fig. 8, error in the solution obtained by the present
method at t=0.001 is shown. Fig. 9 shows the CTBSF-DQ solutions at different time
levels upto t=0.001

Figure 6: CTBS-DQ solutions at various times in [0, 0.01] using N=20, Δt=10−4
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Table 7: Results for Problem 3

N=17 N=129 N=17 N=129

CTBS-DQ CTBS-DQ SMTR SMLP SMTR SMLP

Dt L E1 E2 E1 E2 E1 E1 E1 E1
10�5 50 6:28	10�5 4:44	10�5 6:29	10�5 4:45	10�5 8:52	10�4 2:75	10�3 3:41	10�6 5:28	10�5

150 3:30	10�4 2:33	10�4 3:31	10�4 2:34	10�4 8:94	10�4 2:83	10�3 1:92	10�5 2:92	10�4

250 7:12	10�4 5:04	10�4 7:14	10�4 5:05	10�4 9:86	10�4 2:87	10�3 4:56	10�5 6:45	10�4

350 1:18	10�3 8:35	10�4 1:18	10�3 8:38	10�4 9:71	10�3 2:88	10�3 5:37	10�5 1:08	10�3

450 1:72	10�3 1:22	10�3 1:73	10�3 1:22	10�3 … … … …

10�6 50 1:98	10�6 1:40	10�6 1:99	10�6 1:41	10�6 8:28	10�4 1:05	10�3 9:86	10�7 1:67	10�6

150 1:04	10�5 7:38	10�6 1:05	10�5 7:40	10�6 8:41	10�4 2:58	10�3 5:17	10�6 9:24	10�6

250 2:25	10�5 1:59	10�5 2:23	10�5 1:60	10�5 9:73	10�4 2:61	10�3 6:84	10�6 2:04	10�5

350 3:73	10�5 2:64	10�5 3:74	10�5 2:65	10�5 8:84	10�4 2:61	10�3 7:13	10�6 3:43	10�5

450 5:45	10�5 3:85	10�5 5:46	10�5 3:86	10�5 … … … …

10�7 50 6:27	10�8 4:44	10�8 6:29	10�8 4:45	10�8 9:71	10�7 3:57	10�6 7:53	10�8 6:11	10�8

150 3:30	10�7 2:33	10�7 3:31	10�7 2:34	10�7 7:34	10�6 1:65	10�4 8:91	10�8 2:28	10�7

250 7:12	10�7 5:03	10�7 7:14	10�7 5:05	10�7 6:52	10�5 4:35	10�4 9:52	10�8 6:45	10�7

350 1:18	10�6 8:35	10�7 1:18	10�6 8:37	10�7 1:41	10�4 6:13	10�4 1:54	10�7 9:44	10�7

450 1:72	10�6 1:22	10�6 1:73	10�6 1:22	10�6 … … … …

Figure 7: CTBS-DQ solution at t=0.001 using N=20, Δt=10−5
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4 Conclusion

A differential quadrature based cubic trigonometric B-spline method is presented for
approximate solution of a second order parabolic type partial integro-differential equation
with a weakly singular kernel. Three test problems including two nonhomogeneous are
provided for its validation, and the results are computed through error norms. The
method is computationally efficient and improved accuracy is obtained for relatively
small time step sizes. It is found that condition number of the system matrix does not
increase with increase in the number of grid points and decreasing the time step size, and

Figure 8: Error in CTBS-DQ solution at t=0.001 using N=20, Δt=10−5

Figure 9: Numerical solutions obtained by CTBS-DQ at different times in [0, 0.001] using
N=20, Δt=10−5
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thus leads to stable computation. The condition number of this method is sufficiently smaller
than Sinc-collocation method. In most cases, it is observed that the present method provided
better accuracy than Sinc-collocation methods when small number of spatial nodes and small
time step are used. Also, the proposed method provided better accuracy than quasi-wavelet
method. Due to excellent agreement of the method with the exact solution, the proposed
technique is found efficient in obtaining approximate solution of this kind of PIDEs.
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