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Abstract: To improve the milling surface quality of the Al-Li alloy thin-wall
workpieces and reduce the cutting energy consumption. Experimental research
on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based
on Response Surface Methodology was carried out. The single factor and interac-
tion of milling parameters on surface roughness and specific cutting energy were
analyzed, and the multi-objective optimization model was constructed. The Multi-
objective Particle Swarm Optimization algorithm introducing the Chaos Local
Search algorithm and the adaptive inertial weight was applied to determine the
optimal combination of milling parameters. It was observed that surface rough-
ness was mainly influenced by feed per tooth, and specific cutting energy was
negatively correlated with feed per tooth, radial cutting depth and axial cutting
depth, while cutting speed has a non-significant influence on specific cutting
energy. The optimal combination of milling parameters with different priorities
was obtained. The experimental results showed that the maximum relative error
of measured and predicted values was 8.05%, and the model had high reliability,
which ensured the low surface roughness and cutting energy consumption. It was
of great guiding significance for the success of Al-Li alloy thin-wall milling with a
high precision and energy efficiency.

Keywords: Al-Li alloy thin-wall workpieces; response surface methodology;
surface roughness; specific cutting energy; multi-objective particle swarm
optimization algorithm

1 Introduction

The Al-Li alloy, a lightweight with high-strength structural materials, is widely applied in aerospace
industry in the 21% century via superior properties that provides low density, high specific strength,
stiffness and excellent corrosion resistance [1,2]. The AA2195 Al-Li alloy belongs to the third-generation
Al-Cu-Li alloy mainly used in space shuttle fuel tank, which is the most widely used material in the
Weldalite series, and reduce the weight of 10% and increase the strength of 30% compared with the
traditional Al alloy [3,4]. Scholars have shown great interest in the research and application development
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of Al-Li alloy due to the excellent comprehensive properties, including mechanical properties [5],
weldability [6,7], corrosion resistance [8,9] and other related research.

It is found that due to an improper selection of milling parameters for AA2195 Al-Li alloy often lead
to less than 20% of the material utilization rate, the machine tools energy consumption is large, and the
machining accuracy and surface roughness cannot meet the requirements. With a rapid development of
aerospace industry, the demand for the lightweight, high-strength Al-Li alloy is also increasing.
Therefore, how to select milling parameters reasonably to improve the surface roughness of AA2195
Al-Li alloy thin-wall workpieces and reduce the machine tools energy consumption becomes
particularly crucial.

Over the past decade, extensive researches were conducted to improve surface roughness and reduce
energy consumption of Al-based materials by using different approaches. For instance, Mou et al. [10]
analyzed the influence of milling parameters on the Al-Li alloy surface roughness through orthogonal
experiment, which supplied the experimental basis for the improvement of the fatigue properties of Al-Li
alloy by using the mechanical milling process. Sahoo et al. [11] proposed an optimization method
combining weighted principal component analysis with Response Surface Methodology (RSM) to
achieve good surface finish and lower tool vibration in CNC turning process of 63400 Al alloy. Yahya
et al. [12] adopted the RSM to establish the relationship model of AA6061 surface roughness with
machining parameters, and determined the significance of each parameter. They confirmed RMS was an
efficient and robust technique from the observations of optimization error. Hussain et al. [13] adopted
grey correlation analysis and Taguchi method to conduct surface roughness optimization research
investigation on the milling parameters of 6063 Al alloy, and the results showed that the proposed
method was feasible and applicable for continuous improvement in product quality in manufacturing
industry. Liu et al. [14] presented a novel model for predicting surface roughness when slot milling Al-
7075 and validated the proposed model by experiments under various cutting conditions. The model was
straightforward, thus providing great potential for surface roughness control in real production. In order
to reduce the energy consumption, Zhang et al. [15] optimized the process parameters by the model with
the specific cutting energy consumption and the processing time, provided an efficient solution to reduce
the impact of the environment caused by energy consumption and to realize the sustainable
manufacturing. Carmita [16] employed the RSM to generate the regression model for the electrical
energy consumed and surface roughness during slot milling of AISI 6061 T6 and reduced the
environmental impacts on the related to the milling process without compromising the performance and
quality of the final product.

Besides lots of experiments and complicated mathematical models, the optimization of process
parameters can be achieved by the implementation of advanced optimization tools such as Particle Swarm
Optimization (PSO), Multi-objective PSO (MOPSO), hybrid PSO. Rashmi et al. [17,18] studied the
parameters influence on milling force, surface roughness and energy consumption in AA6061 Al material
milling systematically, and determined the optimal parameters by PSO. Here, the authors found that the
PSO successfully optimized the process parameters. Singh et al. [19] adopted two evolutionary
optimization methods, namely PSO and bacteria foraging optimization (BFO), for the optimization of
maximum tool flank wear. They found the PSO outperformed BFO in terms of time saving and better
convergence due to lesser number of steps. Gupta et al. [20] introduced the PSO along with the teaching
learning-based optimization approach to optimize process parameters. Here, both algorithms proved to be
highly effective, with the PSO being concluded as the best amongst the two. Li et al. [21] developed the
regression models based on the experimental data, and the optimal parameters for minimizing energy and
time were determined through the MOPSO algorithm. The authors drawn a trade-off point successfully
between the low processing time and high energy efficiency. Jang et al. [22] used the artificial neural
networks PSO (ANN-PSO) to find cutting conditions to minimize the specific cutting energy in a milling
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process. The results shown that the overall error between the model prediction and experiment at the
optimized cutting conditions obtained from the ANN-PSO was less than 1%. Zhou et al. [23] proposed
an integrated optimization method with grey relational analysis (GRA), radial basis function (RBF) neural
network and PSO to simultaneously obtain minimum surface roughness and maximum compressive
residual stress. Verification experiments shown that a higher improvement was obtained with the
proposed method (62.87%) than that of the original GRA (50.00%).

The above scholars have an important guiding significance for the improvement of the surface roughness
and reduce energy consumption of Al-based lightweight and high-strength materials. Meanwhile, the PSO
methods prove a great success when it is required to tackle complex engineering application derived from
experiments. However, there are relatively few reports on the study of surface roughness and energy
consumption when end milling of Al-Li alloy thin-wall workpieces, especially on the optimization of
machining parameters.

Therefore, this work explored the feasibility for multi-objective optimization with the RSM-PSO
method. The Central Composite Design (CCD) was applied to experimentally establish data of AA2195
Al-Li alloy thin-wall workpieces to study the effect of process parameters (cutting speed (v), feed per
tooth (f.), radial cutting depth (a.) and axial cutting depth (a@,)) on the responses such as surface
roughness (R,) and specific cutting energy (e,). By adopting the ANOVA and RSM, the interaction
between the process parameters were analyzed and the response models were acquired. The Adaptive
Chaos Multi-objective Particle Swarm Optimization (AC-MOPSO) algorithm was used to determine the
optimal parameters combination with different priorities, and the results were verified through
confirmation experiments.

2 Milling Experiments of AA2195 Al-Li Alloy

2.1 Experimental Materials and Equipment

The 4 mm diameter with tungsten steel matrix and PVD-TIiAIN coating cutting tool cutter is adopted to
carry out dry milling on the XK540F milling machine for the 2195 Al-Li alloy thin-wall workpieces after T6
artificial aging treatment, as shown in Fig. 1. The size of workpieces is 110 mm x 80 mm X 8 mm, and its
chemical composition is shown in Tab. 1. The Kistler mutli-component dynamometer is adopted to measure
the milling force along the X, Y and Z directions. Upon using the Roughness detector and KEYENCE VHX-
5000 optical ultra-depth microscope to observe the surface roughness and macroscopic morphology of the
workpieces, respectively.

~_Cutting tool

- Workpieces

= 2 : Fixture
- ; —

_Dynamometer|

Figure 1: The milling experiment
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Table 1: Chemical composition of 2195 Al-Li alloy (/%)

Cu Li Mg Ag Zr Ti Al
3743 0.8~1.2 0.25~0.8 0.25~0.6 0.08~0.16 0.1 Bal.

2.2 Experimental Design

The RSM is a comprehensive optimization method for experimental design and modeling. Upon
combining experimental methods, the RSM could obtain accurate correlation between target and factors
with fewer experiments and higher modeling accuracy. The CCD is adopted to establish the central
composite matrix with 6 replicated center points and 24 axial points for four factors and two levels,
namely, 6 groups of central experiments, 24 groups of factorial experiments, a total of 30 groups of
central composite design experimental schemes. Each factor is defined as 5 levels: +a (axial point, a = 2),
+1 (factorial point) and 0 (center point), as shown in Tab. 2.

Table 2: Ranges and designations of the studied process factors

Level  Cutting speed  Feed per tooth ~ Radial cutting  Axial cutting

(m/min) (mm/z) depth (mm) depth (mm)
+a 80 0.1 2.8 1.2
65 0.08 2.6 1.0
0 50 0.06 2.4 0.8
-1 35 0.04 2.2 0.6
—a 20 0.02 2.0 0.4

2.3 Specific Cutting Energy

The specific cutting energy is defined as the energy required to remove a specific volume of workpiece
material [24,25]. A smaller specific cutting energy, and a higher the energy efficiency. In this study, the model
is established based on the effective cutting energy, which only considered the energy consumption of the
milling area in the material removal process [22,26]. The model was shown in Eq. (1):

Py
— M 1
VT (1
where P, denotes the milling power (W) and MRR is the volumetric material removal rate (mm?>/s).
P M = F M XV (2)

where F), is the milling resultant force (N) obtained by Eq. (3):

Fy=\/F} +F} +F3 (3)

The volumetric material removal rate MRR [26,27] is shown in Eq. (4):

MRR =a, X a, X f. Xz X n 4)
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where a, is the radial milling depth (mm), z is the number of milling cutter edges, z = 2, and n denotes the
spindle speed.

2.4 Multi-Objective Optimization Method

To solve the multivariable and nonlinear optimization problem with constraints, an effective algorithm is
necessary. The PSO [28,29] is a stochastic computation algorithm proposed by Kennedy and Eberhart in
1995. PSO is widely applied in industrial optimization for its simple arithmetic, good robustness and high
dependability. In this paper, we propose a modified MOPSO to analyze the trade-off between multiple
objective functions.

2.4.1 PSO Algorithm

The PSO algorithm randomly initializes swarm X = (xy, x5, **, Xy); in the feasible solution D-dimensional
space. The all particles is N, the position, the velocity and the optimal position of particle i are expressed as
x= (xl X2, ,xlD), v = (vl Vi e ,le) and pBest; = (pl.l,pf, e ,plp), respectively, and the global optimal

12770 i
position is expressed as gBest = (pé, pé, s pg ) For the ™ iteration, the position and the velocity of the
D-dimension particle i are updated by Eqs. (5) and (6):

W= oW +cir (p? = x4) + car <pg N x?) ”

xf = xf + v?’ (6)
where, 1 <i< N, w is the inertial weight factor; ¢; and ¢, are the acceleration coefficients; r and r, are the
random numbers obey U (0, 1); p¢ and p‘g’ are the individual optimal position of the i particle and the d"
component of the global optimal position; v/ is the d™ component of the i generation particle velocity
Vi v? € [Viin.a>Vmax.al> taking the boundary value when the particle updating exceeds the boundary.

2.4.2 AC-MOPSO Algorithm

The MOPSO algorithm [21,23] is established on the basis of PSO algorithm, which has the advantages
of diverse non-inferior solutions, rapid computational efficiency and solution speed, and has become an
effective means to solve multi-objective optimization problems. The MOPSO algorithm is composed of
external archive maintenance and global optimal position selection and update, which solves the
dominant situation between individuals based on the Pareto relationship, and selects the individual and
the global optimal position according to the external archive information and crowded distance. In this
paper, the Chaos Local Search (CLS) algorithm and the adaptive inertial weight are introduced in
MOPSO algorithm. The best 20% particles which remains for the sorting of fitness function values are
performed by the CLS algorithm. Upon shrinking the search area and randomly generated the remaining
80% particles, which can prevent the particles falling into the local optimal solution. After updating the
position and the velocity, the inertial weight is updated via Eq. (7) for balancing the local search and
improvement, and speeding up the convergence of the algorithm.

((Umax - wmin) (Pfi —Pﬁlin)
w = ¢ @min i %
o (p ng 4 min)

wmax

where, @,,in, ®nqx are the minimum and maximum inertial weight; pzvg and p‘,f”.n are the mean and minimum
values of all the particles before the iteration.
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The step flowchart is shown in Fig. 2, and the steps are as follows:

Step 1: Initializing the x* and V* randomly, where 1 <i < N. The particle swarm size is N, the inertial
weight is @, the acceleration coefficient are ¢; and c,, the particle velocity boundary iS [Viina> Viax.dl-
Evaluating the initial particle fitness function value P(().

Step 2: Creating and initializing the external archive matrix Ay.
Step 3: Evaluating the each particle fitness function value p(( )f‘ based on the dominance relationship

between the objectives, obtaining the pBest! and gBest*, storing the each particle x* and p({ )I.‘ in pBest!,

1
and the position and fitness value of the optimal individual in pBest! are stored in 4.

Step 4: Calculating the crowded distance for all pBestf‘ in A; and sorted them, and remaining the best
20%. Performing the CLS algorithm and updating the pBest* and gBest**!.

Step 5: Satisfying the termination condition, ending and outputting the Pareto front solutions gBest**!,
Otherwise, performing the Step 6.

Step 6: Updating the velocity v/ *!, the position x¥*! and the inertial weight .

Step 7: Maintaining the external archive matrix according to the crowded distance, forming A4, and
performing the Step 3.

—_—
Start Remaining the best 20%
okl performing the CLS

' '
Initializing x} and v?, Comparing pBest,-k‘land
Evaluating P(¢)* updating gBest/ !

'

Creating and initializing

the external matrix 4;
Determining non- Updating xf™, vF™! and
inferior solutions Inertial weight @
' B
Obtaining pBestf and Maintaining the external
gBest? matrix, forming 4x+1
. ——

Calculating and sorting k+1
the crowded distance ( Ead; outpuk gBest:)
I
Figure 2: The AC-MOPSO algorithm flowchart

3 Results and Discussion

3.1 Establishment of Regression Model

The experimental design and results are shown in Tab. 3. The significance of regression model, model
coefficient, and the lack of fit are carried out, and the optimal fitting model is selected according to the fitting
analysis results. The step-wise regression method is used to eliminate the non-significant model terms, and
the statistics R?, adjusted R?, precision R* and Adeq precision are calculated to confirm the accuracy of the
response models. To verity the models adaptability and the correlation between the model predicted values
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Table 3: The experimental design and results

Std. order ~ Run order Factors Response values
v(mm/s) £ (mm/z) a.(mm) a,(mm) Ra(um) e, (J/mm’)
11 1 35 0.08 2.2 1 0.7403 4.6839
6 2 65 0.04 2.6 0.6 0.4529 12.8984
3 3 35 0.08 2.2 0.6 0.6974 7.4802
18 4 80 0.06 2.4 0.8 0.6453 7.5867
26 5 50 0.06 2.4 0.8 0.6397 6.7325
16 6 65 0.08 2.6 1 0.8081 4.9808
13 7 35 0.04 2.6 1 0.4813 9.7369
14 8 65 0.04 2.6 1 0.4767 9.2989
29 9 50 0.06 24 0.8 0.6503 6.7505
20 10 50 0.1 2.4 0.8 0.8791 4.8451
24 11 50 0.06 2.4 1.2 0.6628 5.4264
5 12 35 0.04 2.6 0.6 0.4553 14.5093
22 13 50 0.06 2.8 0.8 0.6387 6.5174
30 14 50 0.06 24 0.8 0.6309 6.4718
10 15 65 0.04 22 1 0.5023 10.7262
8 16 65 0.08 2.6 0.6 0.7279 6.5246
17 17 20 0.06 24 0.8 0.5965 8.0892
21 18 50 0.06 2 0.8 0.6683 8.7903
15 19 35 0.08 2.6 1 0.7350 4.5199
19 20 50 0.02 24 0.8 0.3461 17.4914
9 21 35 0.04 22 1 0.4880 10.9840
22 65 0.04 22 0.6 0.5186 15.4339
27 23 50 0.06 2.4 0.8 0.6557 6.9112
7 24 35 0.08 2.6 0.6 0.7410 6.9184
12 25 65 0.08 22 1 0.7693 5.1675
23 26 50 0.06 2.4 0.4 0.6223 11.9397
4 27 65 0.08 2.2 0.6 0.7524 7.8169
25 28 50 0.06 2.4 0.8 0.6414 6.5416
1 29 35 0.04 2.2 0.6 0.4691 16.0254
28 30 50 0.06 2.4 0.8 0.6039 6.7303

and the experimental results, the normal distribution probability of residuals are analyzed and the predicted
values are compared with the experimental values, as shown in Figs. 3 and 4, respectively. Fig. 3 indicates the
residuals of each response model are normally distributed on a straight line, showing that the residuals are
evenly distributed and the model had adaptability. As shown in Fig. 4, each response model have a high
prediction accuracy.
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Figure 3: The normal distribution probability (a) surface roughness (b) specific cutting energy
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Figure 4: The comparison diagram between the models predicted and experimental values (a) surface
roughness (b) specific cutting energy

3.2 Regression Model and ANOVA of Surface Roughness

The ANOVA results of surface roughness is shown in Tab. 4, and the F-value of 58.55 implies the model
is significant. The R* of 0.9035 indicates a high correlation between the predicted values and experimental
results. The adjusted R? and predicted R* approaches 1, and the difference between adjusted R* and predicted
R? is less than 0.2, while Adeq precision is greater than 4, which verifies the model reliability. The p-value <
0.05 indicates that the model term is significant. For the surface roughness model, the £, is the significant
model term, as shown in Eq. (8):

Ra = 0.2028 + 0.0008v + 6.6525f. — 0.0247a, + 0.0557a, ®)

Fig. 5a shows the perturbation diagram of the influence of each milling parameter on the surface
roughness. Fig. 5b demonstrates that the surface roughness is increased with the elevated feed per tooth
and cutting speed. At 0.04 z/mm feed per tooth and 20 m/min cutting speed, the minimum value of
surface roughness is achieved. The reason for the worse surface roughness with elevated feed per tooth is
speculated that the workpiece material near the center line during the milling machining removes by
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Table 4: The ANOVA for surface roughness

Source Sum of square df  Mean square F-value  p-value prob > F
Model 0.4321 4 0.1080 58.55 <0.0001 Significant
v 0.0037 1 0.0037 2.01 0.1685
JA 0.4249 1 0.4249 230.24 <0.0001
e 0.0006 1 0.0006 0.3165 0.5787
a, 0.0030 1 0.0030 1.61 0.2155
Residual 0.0461 25 0.0018
Lack of fit 0.0199 20 0.0010 0.1896 Not significant
Pure error  0.0262 5 0.0052
Cor total 0.4783 29
Std. Dev. 0.0430 R? 0.9035
Mean 0.6288 Adjusted R 0.8881
C.V.% 6.83 Predicted R 0.8844
PRESS 0.0553 Adeq Precision  30.3476
0.9 A:Cutting speed (v)

= B:Feed per tooth (f2

§ 0.8 C:Radiall) cuttti.ng (Ef;l)ath (ae) B

;’ D:Axial cutting depth (ap)
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Figure 5: (a) Perturbation plot showing the effects of parameters on surface roughness. (b) Interaction effect
of feed per tooth and cutting speed on surface roughness

shearing action, and the materials will not be completely crushed and residue in the bottom of the groove with
the elevated feed of tooth. The defects (such as the pits, micro-cracks and matrix material tearing) are
obviously increased, and the surface roughness is increased due to a decrease in surface quality. The
surface roughness is slightly increased with the elevated cutting speed and axial cutting depth, and this
finding is similar to the outcomes of Sen et al. [30]. It is possible that a higher cutting speed lead to the
cutter eccentricity increases, and the impact between the tool and the workpiece material increases
resulting in lots of scratches. Moreover, the milling force, friction and tool deformation increase with the
elevated depth of cut, which resulting in the deposition of material on the rake face of the cutting tool
and phenomenon helps to increase the surface roughness. Radial cutting depth has non-significant effect
on the surface roughness.
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3.3 Regression Model and ANOVA of Specific Cutting Energy

The ANOVA results of specific cutting energy are shown in Tab. 5, the F-value of 113.08 indicates the
model is extremely significant. The lack of fit is not significant, implying that the model is reliable. The R* of
0.9906 and the Adeq Precision of 38.5314 indicates that the experimental values has a high correlation with
the predicted values and the model has a strong recognition ability, respectively. For the model of e, the
significant model terms are f., a. and a,, interaction terms f.a,, quadratic terms v, fzz, ag and az. The
model of e, is shown in the Eq. (9):

e, = 135.8295 — 0.1892v — 855.7500f, — 54.2133a, — 55.5392a, + 0.7887vf, — 0.0407va,
+0.0523va, + 70.6438f.a, + 136.4531f.a, + 4.5001a.a, + 0.0019v* + 3146.5104f” )
+9.5001a; + 15.9326a;,

Table 5: The ANOVA for specific cutting energy

Source Sum of square df  Mean square F-value  p-value prob > F
Model 381.10 14 2722 113.08 <0.0001 Significant
v 0.3790 1 0.3790 1.57 0.288

JA 245.84 1 245.85 1021.22  <0.0001

a, 7.57 1 7.57 31.43 <0.0001

a, 68.46 1 68.46 284.39 <0.0001

vf, 0.8957 1 0.8957 3.72 0.0729

va, 0.2383 1 0.2384 0.9900 0.3355

va, 0.3932 1 0.3932 1.63 0.2207

Sae 1.28 1 128 531 0.0360

fa, 4.77 1 4.77 19.80 0.0005

a.a, 0.5186 1 0.5186 2.15 0.1628

Vv 4.98 1 4.98 20.68 0.0004

12 43.45 1 43.45 180.48 <0.0001

a2 3.96 1 3.96 16.45 0.0010

aIZJ 11.14 1 11.14 46.28 <0.0001
Residual 3.61 15 0.2407

Lack of fit 1.08 10  0.1078 0.2129 0.9818 Not significant
Pure error  2.53 5 0.5065

Cor total 384.71

Std. Dev.  0.4906 R’ 0.9906

Mean 8.56 Adjusted R? 0.9819

C.V.% 5.73 Predicted R 0.9744

PRESS 9.86 Adeq Precision  38.5314

The perturbation plot shows that the effects of the parameters on specific cutting energy in Fig. 6a.
Fig. 6b shows the specific cutting energy decreases significantly with increasing feed per tooth and radial
cutting depth. At 0.08 z/mm feed per tooth and 2.6 mm radial cutting depth, the minimum value of
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Figure 6: (a) Perturbation plot showing the effects of parameters on specific cutting energy. (b) Interaction
effect of feed per tooth and radial cutting depth on specific cutting energy

specific cutting energy is acquired. The feed per tooth, radial cutting depth and axial cutting depth have obvious
negative influence on specific cutting energy, and the normal stress on the rake face of the cutting tool increases
via their increasing, while the friction factor and stress decreases. Meanwhile, the decreasing friction angle
causes the elevated shear angle and the decreasing deformation of the material, so that a low specific
cutting energy. The cutting speed has non-significant influence on specific cutting energy, because the
cutting speed is only related to the energy consumption of plastic deformation of material, while the effect
of specific cutting energy and friction energy consumption is not [31]. The finding is consistent to the result
of the work published by Carmita [16]. Nonetheless, an elevated cutting speed increases the heat in the
cutting zone and helps to soften the material [30]. It decreases the strength and hardness of the processed
metal. This is beneficial for reducing spindle energy consumption and tool wear.

4 Multi-Objective Optimization Model
4.1 Objective Function

In this paper, the surface roughness and specific cutting energy of AA2195 Al-Li alloy thin-wall
workpieces milling are optimized. The optimization objective functions are shown in Eqgs. (8) and (9).

4.2 Constraints

To determine the optimal parameters combination of AA2195 Al-Li alloy thin-wall workpieces milling,
the constraints of cutting speed, feed per tooth, radial cutting depth, axial cutting depth, machine spindle

power, spindle torque and surface roughness should be satisfied. The specific constraints are shown in
followings:

1. The cutting speed: v,,;, <V < V00, Where v,,;, and v, are set the minimum and maximum » of the
machine tool respectively.

2. The feed per tooth: £ i, < f. < fo mar Where f. ., and f, .. are the minimum and maximum f, when
milling processing.

3. The radial cutting depth: @, ,,in < @e < Ao ppax, Where de i, and a, ., are the minimum and maximum a,
allowed for milling processing.

4. The axial cutting depth: a,, ,,.;,, < a, < @), max, Where a,, i, and a,, 4, are the minimum and maximum a,
allowed for milling processing.

5. Machine spindle power constraints: P. < #P,,.., where # is the machine tool efficiency and P,,,, is the
machine tool rating.
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6. Spindle torque constraint: F.D/(2 x 10%) < T,,..., where F, is the circumferential force of cutter milling, D
is the cutter diameter, and 7,,,, is the maximum allowable spindle torque of machine tool.
7. Surface roughness constraint: Ra = 318f./[tan(L,,) + cot(C,)] < Rana.x, Where, L, and C, is the rake

angle and the relief angle of the milling cutter respectively, and Ran., is the maximum allowable
surface roughness.

In conclusion, the multi-objective optimization model of Al-Li alloy thin-wall milling parameters can be
expressed as:

Min[F(x)] = Min[Ra(n,f., ac,ap), es(n, 1., ae, ap) ] (10)

Amin < 7 < Nipax

fzmin sz Sf;max

Aemin < e < demax

S.t. apmin < ap < Apmax

P. < 7/]Pmax

FCD/(Z X 103) < Thnax
318f./[tan(L,) + cot(C,)] < Ramax

4.3 AC-MOPSO Algorithm Optimization Results

The AC-MOPSO algorithm is adopted to optimize the multi-objective optimization model. The
algorithm population size is N = 100, the number of iterations is 2000, the inertia weight is @,,,. = 0.9,
®pmin = 0.6, the independent variable search area ranges from [—10, 10], the CLS algorithm maximum
step is 10, and the learning factor ¢; = ¢, = 2. Three representative parameter combinations are selected
from the non-inferior solutions, which are the optimal Ra, the optimal e, and the two objectives with the
same priority. The optimization results are shown in Fig. 7 and Tab. 6.
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Figure 7: The AC-MOPSO algorithm solutions for optimization

The verification experiments are carried out on the same CNC milling machine, and the comparison
results are shown in Tab. 7. The results shown that the maximum relative error between the experimental
results and the predicted values of surface roughness and specific cutting energy is 8.05%, and the
surface quality is good when the machined surface was is observed with the optical microscope at
magnification of 200, as shown in Fig. 8.
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Table 6: The optimal parameter combinations and results

No. Factors Response values

v (m/min) £ (mm/z) a.(mm) a,(mm) Ra(um) e, (J/mm’)

1 35 0.04 2.6 0.4 0.461 14.152
65 0.04 2.6 0.8 0.482 9.074
3 55 0.08 2.5 0.8 0.786 4.220

Table 7: The verification experiment results

No. Ra e
Experimental Predicted Relative error Experimental Predicted Relative error
0.461 0.454 1.54 14.152 15.077 6.14
0.482 0.494 2.43 9.074 9.868 8.05

3  0.786 0.802 1.99 4.220 4411 4.33

T 808.14 um

684.33 EEmEES
570.62 B
456.02 &
34201
228.00 £
113.99 &
0.00

(b)

Figure 8: The verification experiment observations (a) The machined surface (b) The three-dimensional
shape

5 Conclusion

In this paper, the CCD was adopted to design the AA2195 Al-Li alloy thin-wall workpieces milling
experiment scheme. The influence of milling parameters such as the cutting speed, feed per tooth, radial
cutting depth and axial cutting depth on the surface roughness and specific cutting energy were studied
by ANOVA and RSM, and the prediction models were established. The multi-objective optimization
model was solved that go through the AC-MOPSO algorithm, so as that to determine the optimal milling
parameter combination, and the accuracy of the prediction model was verified by experiments. The
results were shown in followings:

1. The correlation analysis of machining performances signified that the improvement of surface
roughness was achieved once a decrease in the feed per tooth, cutting speed and axial cutting depth.
Conversely, the increasing in feed per tooth, radial cutting depth and axial cutting depth produced a
low specific cutting energy.
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2. The ranges of statistical parameters such as the statistics R, adjusted R?, precision R* and adeq precision
revealed that the RSM effectively developed a relationship between input and machining responses.

3. The AC-MOPSO algorithm introduced the chaos local search and the adaptive inertial weight was applied
to obtain the non-inferior solutions of the multi-objective optimization model, and the optimal parameter
combinations with different priorities were obtained, respectively.

4. The v of 35 m/min, f. 0f 0.04 z/mm, a, of 2.6 mm and a,, of 0.4 mm are the best parameter combination for
minimizing R, (0.461 um). When the v and a,, are increased to 65 m/min and 0.8 mm respectively, the
equal priority of R, and e, are acquired. The best solution corresponds v of 55 m/min, f; of 0.08 z/mm,
a, of 2.5 mm and a,, of 0.8 mm, which gives minimum e; (4.220 J/mm?).

5. The verification experiments shown that the maximum relative error between the experimental results and
model predicted values of surface roughness and specific cutting energy was 8.05%. The experiment
results demonstrated the validity for the models. The expectation of lower surface roughness and
cutting energy consumption was realized.

In future, the optimal parameters of Al-Li alloy can be studied in milling or other conventional
machining, and after that, the responses such as temperature, cutting force, residual stress and surface
morphologies can be investigated and modeled using different evolutionary optimization techniques. The
research of Al-li alloy machining and production will further meet the needs in aerospace industry.
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