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Abstract: Artificial Intelligence (AI) becomes one hotspot in the field of the med-
ical images analysis and provides rather promising solution. Although some
research has been explored in smart diagnosis for the common diseases of urinary
system, some problems remain unsolved completely A nine-layer Convolutional
Neural Network (CNN) is proposed in this paper to classify the renal Computed
Tomography (CT) images. Four group of comparative experiments prove the
structure of this CNN is optimal and can achieve good performance with average
accuracy about 92.07 ± 1.67%. Although our renal CT data is not very large, we
do augment the training data by affine, translating, rotating and scaling geometric
transformation and gamma, noise transformation in color space. Experimental
results validate the Data Augmentation (DA) on training data can improve the per-
formance of our proposed CNN compared to without DA with the average accu-
racy about 0.85%. This proposed algorithm gives a promising solution to help
clinical doctors automatically recognize the abnormal images faster than manual
judgment and more accurately than previous methods.

Keywords: Artificial intelligence; convolutional neural network; data
augmentation; renal lesion; computed tomography image

1 Introduction

In general, the common diseases of urinary system of human includes calculi, infection, tumor,
congenital dysplasia and trauma. CT as one main tool is applied to detect and diagnose most of them.
With the development of the digitalized and intelligent medical diagnosis, AI becomes one hotspot in the
field of the medical images analysis and provides rather promising solution. In an essence, AI could not
replace human wisdom but assist in overcoming the disadvantage of human being energy limited and
fallible. Although some research has been explored in smart diagnosis for the common diseases of
urinary system, some problems remain unsolved completely.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
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Han et al. [1] has transferred the GoogleNet model to classify the renal cancer into three major subtypes
in three-phrase enhanced CT images. They constructed three classifiers to implement the tri-class task. The
accuracy of this algorithm on a dataset with 169 images could reached 85%.

Kuo et al. [2] investigated Resnet to predict eGFR and CKD status in the ultrasound images, the average
accuracy on a dataset with 1446 images was nearly 85.6%.

Both of the deep learning application are facing same challenges, they didn’t make any comparison with
other algorithms, meanwhile, the performance of the test accuracy still need be improved in further.

Kumar et al. [3] proposed a two-layer perceptron with back propagation algorithm to diagnose the renal
stone disease. Their dataset contained 1000 samples from real clinical data. They extract eight kinds of
features to express the renal stone symptoms. The accuracy of this algorithm was 92%. It showed this
neural network took 5% and 8% advantages over Learning Vector Quantization and Radial Basis
Function respectively.

Mangayarkarasi et al. [4] adopted a PNN model to classify the renal ultrasound images into normal and
abnormal categories. Their dataset only contained 24 normal and 53 abnormal images. Which are
preprocessed by histogram equalization, mean filter and Gauss filter, segmentation of Region of Interest
(ROI) operations. Then the PNN is trained by inputting the image attributes of mean, entropy and
variation of one image. Though the overall average accuracy was 93.5%, the generalization of this
method is hard to guarantee for possible existing overfitting on this small dataset.

These neural networks took specified features extracted by experience as the input data and obtained
about 7% higher accuracy than typical deep learning models. This indicates that supervised machine
learning models depend on both human knowledge and training data. Because the number of the training
samples are often deficient, the performance of the classifier may be less generalization.

Since the typical CNN model has been applied successfully in massive discriminative tasks of various
fields, such as medical diagnosis, it becomes one promising tool for researchers. Wang et al. [5] designed a
seven-layer CNN to classify the renal lesion on the dataset with 614 CT images and got the state of art result
of 90.36 ± 1.02% accuracy.

In the case of the training data acquired rather difficult, some methods such as transfer learning, data
augmentation and so on could be applied to solve the problem of overfitting [6]. The effect of data
augmentation techniques on image data depend on whether the data label is preserved after data warping
and oversampling. For example, Wang [7] used rotation, gamma transformation and noise injection to
augment CNN training dataset so as to achieve better performance in alcohol use disorder detection.
Afterwards, this paper attempts to investigate the effect of data augmentation in our CNN model to
distinguish the renal lesion.

The main contributions of this paper have three points. The first one is to improve the recognition
accuracy for the renal lesion on CT dataset with CNN. The second one is to normalize the distribution of
our dataset by color space transformation. The third one is to investigate the effect of the data
augmentation on the class imbalance dataset.

The remaining of this paper is organized as below. Section 2 describes the dataset of the related kidney
CT images from the clinical patients. One CNN with data augmentation is constructed and explained in detail
according to the classification target in Section 3. As following, the implementation parameters and results
are tuned and illustrated, especially the effect of the data augmentation is discussed. Furthermore, more
comparisons between the structures of CNN and other deep learning models are checked in Section 4.
Final conclusion is drawn at the end of the paper (Section 5).
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2 Dataset

This study got formal written consent approved by the Ethics Committee of Tongliao hospital of Inner
Mongolia and all the subjects in the dataset kept credential formal written consent with Tongliao hospital.
Our dataset consists of 614 kidney CT images, which is collected by clinical doctors through general or
enhanced scans to diagnose the renal lesions with the device of Siemens SOMATOM Force CT in
Tongliao hospital.

According to the clinical diagnosis by experienced doctors, these kidney CT images are identified as
abnormal and normal classes. Moreover, there are four subtypes representing typical renal diseases in the
abnormal class which are calculi, cysts or Hydronephrosis, calculi with cysts or Hydronephrosis and
tumor. Then the samples in our dataset are illustrated in Tab. 1. To construct our CNN classifier, the
human preprocessing only includes cropping out the Region of Interest (ROI) in the CT images. No any
other preprocessing need to be done. In addition it should be worth mentioned the enhanced CT images
are selected by doctors using the excretory urography which is taken from the excretory phase after
injecting contrast agents about 15 minutes. For example, the sample of 1–4 tumor subtype was scanned
by the enhanced CT, its tumor lesion was located in the dark part of the corresponding ROI.
Comparatively, the rest samples in this table were scanned by the general CT, the lesion contrast of which
varied significantly in intensity, shape and size.

Totally our dataset involves 500 general CT images and 114 enhanced CT. These CT images cover two
categories of normal and abnormal with total five renal lesion types. We define the abnormal category as the
positive class and the normal category as the negative class.

As following, the size of our dataset presented in Tab. 2 is obviously not large and exists the case of class
imbalance. The main reasons of this come from the difficulties for clinical doctors in their daily works to
track diseases, mark images and integrate text records all together for us. Thus, two problems are prone
to appear, overfitting caused by training on a small dataset and biasing to the majority class for prediction
by training on a class imbalance dataset. To solve the problem of class imbalance, a common method is
to increase the penalty cost of wrong prediction for minority class in the target function of the classifier
model. In next section, data augmentation as a solution to alleviate these two problems is clarified in detail.

To evaluate the generalization of one classifier, it is best to use new data instead of training data to test.
The holdout idea separates a part of dataset as test data and uses the remainder as training and validation data.
In order to keep different classes in test data with same probability, same number of test data are hold out
based on the class with less samples as below in Tab. 3.

NormalAbnormalCategory

Type 1-1 1-2 1-3 1-4 Healthy

CT 

ROI 

Table 1: Kidney CT and ROI of our dataset

(Renal Lesion Type: 1-1 = calculi, 1-2 = cysts or hydronephrosis, 1-3 = calculi with cysts or hydronephrosis,

1-4 = tumor).
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3 Methodology

As we have seen, CNN as a classic deep learning model is one end to end network which is heavily
explored for researchers. Our method comprises two parts as shown in Fig. 1. One part of this method is
the data augmentation techniques applied to enlarge our kidney CT dataset. The other is one nine-layer
CNN constructed to classify the renal lesion through training. Next, the related theories should be
understood and interpreted at first for further reading.

3.1 CNN Structure
According to the function of a layer, a CNN consists of a series of basic layers of complex convolution,

activation [8,9], and fully-connected, as well additional layers of pooling, batch normalization, softmax.
These layers are organized together in sequence and some of them repeat several times. Each layer as a
module is composed of certain units [10–12]. Each unit transforms the input x to the output f xð Þ. Thus,
the values from those units of the previous adjacent layer connecting to the unit of this layer compose of
its input vector xi. The corresponding output value of the unit is f xið Þ: Therefore, the operation f of the
unit and the connection relationship determine the functions of this layer. Thus, the outputs of all units of
the layer compose of a vector y as below.

Table 2: Distribution description of our dataset

Image Category Renal Lesion Type Sample Size

Normal Healthy 191

Abnormal
Calculi

423
145

Tumor 80

Cysts or Hydronephrosis 107

Calculi with cysts or hydronephrosis 91

Total 614

Table 3: Test with holdout data

Healthy Abnormal

Test 41 41

Training 150 382

Total 191 423

Data Augmentation

Kidney 

CT 
Dataset 

CNN 

1…n

Convolution

Batch Normalization

Activation

1…m

Fully-connected

Activation Softmax 

Fully-
connected 

Figure 1: The structure of our proposed method
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y ¼ yi ¼ f xið Þ½ � (1)

As for the dimensions of these vectors of input and output, they rely on the number and the connection of
the units locating in two adjacent modules. So, the number of the units are those external parameters need be
chosen for users. These modules are assembled together carefully to implement a specific image recognition
task. Next we explain the functions and the connections in those layers.

3.2 Convolution, Batch Normalization and ReLU Layer
The convolution operation can be expressed as f xð Þ ¼ wxþ b, where w is the vector of the convolution

kernel weights [13–15], b is the bias for the output. When the convolution operates on an image
I ¼ Height; Width;Channel½ �, the size of the kernel filter need be designed initially as
K ¼ height;width½ �. Then the output with this filter in a specific position of the image I is

f I ; p; qð Þ ¼
Xheight

i¼1

Xwidth

j¼1
w i; jð ÞI pþ i; qþ jð Þ þ b

0 < p < Height; 0 < q < Width

The connections among the units for a convolution kernel are sparse [16–18], so as to extract these
important features in local region. At the same time, w and b are just internal parameters learned from the
training data. Then, If the kernel filter is operated with the sliding the window one by one, a new image
is output as a feature map. It is obvious that the output size O1 is

O1 ¼ Height � height þ 1; Width� widthþ 1½ � (3)

which is smaller than the input size. Therefore, to these pixels in the border of the input image, the kernel
filter needs an additional padding around the four borders so that the output size is same to the input size.
When the padding size is P = [up, down, left, right], the output size O2 is

O2 ¼ Height � height þ upþ downþ 1; Width� widthþ left þ right þ 1½ � (4)

When the kernel filter slides more than one pixel, another a pair of parameters are set as
stride ¼ stride height; stride width½ �. Thus, the output size O3 of the feature map is

O3 ¼ Height � height þ upþ downð Þ
stride height

þ 1;
Width� widthþ left þ rightð Þ

stride width
þ 1

� �
(5)

When set multiple kernel filters as K ¼ height;width; kernel number½ �which are the external parameters
about the size and the number of the kernel filters, the number of the output of the convolution layer is exactly
the number of the kernel filters.

From the above explanation, we find out the kernel filter operates the input image iteratively for all
pixels. In order to overcome the tediousness, parallel computation in batches applies
B ¼ Height;Width;Channel;Batch½ �, the tensor way to implement the acceleration.

However, the distribution of the batches in the training dataset may vary greatly, which affects the
stability of the internal parameters learned. To solve it, Ioffe, Szegedy [19] proposed Batch Normalization
(BN) operation before the activation function to reduce the shift of internal covariate [20].

BNc;b xið Þ ¼ ci ðxi � lBÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ E

q� �
þ bi (6)

lB ¼
Xm

i¼1
xi=m (7)
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r2B ¼
Xm

i¼1
ðxi � lBÞ2=m (8)

As far as the activation layer, it is to simulate the response output only when surpass a certain threshold.
Common applied functions include ReLU xð Þ ¼ max 0; xð Þ; sigmoid xð Þ ¼ 1= 1þ e�zð Þ and so on.

3.3 Fully-Connected and Softmax Layer
For a fully-connected layer, the function is same to that of the convolution layer. Differently, each unit of

the fully-connected layer collects the information from all units of the previous layer as own input [21–24].
Thus, the connections in the fully-connected layer are rather dense. The number of corresponding weights for
the connections is N ¼ n � m½ �, much larger compared to the convolution layer. Meanwhile the value of
these weights and biases do not be shared each other because the output of each unit represents a value in
a definite category [25–28].

If we need get the relative value among different categories, the softmax function realizes this
transformation based on the Bayes probability model.

softmax xð Þ ¼ ½exi=
X

i
exi � Such that

X
i
exi ¼ 1 and exi > 0 (9)

Typically, xi with larger relative scores yields exponentially larger probabilities.

3.4 Data Augmentation
Deep Learning relies on big data to avoid overfitting. In the case of the limited data, artificially inflating

datasets namely data augmentation achieves the benefit of big data in the limited data domain. Many data
augmentation techniques have been proposed for constructing better datasets which can generally be
classified as either a data warping or oversampling technique [29].

For data warping techniques, transformations in geometric and color space are two common forms of it.
On one hand, geometric transformations encompass translation, rotation, scale, flipping, cropping. On the
other hand, color transformations contain color filter, noise injection [30], histogram change, kernel
filters, mixing images, random erasing and so on. All of them target to cover the more general data
distribution to shorten the difference between training data and test data. However, the disadvantages of
these methods include additional memory and time costs computationally. Meanwhile, the error rate drop
from some methods such as mixing images is very difficult to explain from a human view.

Data augmentation prevents overfitting by modifying limited datasets to possess the characteristics of
big data. It performs best under the assumption that the training and test dataset are both extracted from
the same distribution. Otherwise, these methods will very unlikely be useful.

Data augmentation also alleviates class imbalance harm because they prefer the models to majority class
predictions and render accuracy as a deceitful performance metric. Data augmentation falls under a data-level
solution to it. Many different strategies for implementation are used. A naive and easy solution would be a
simple random oversampling with small geometric and color space operations with different class ratios for
majority and minority class [31].

However, oversampling could also cause overfitting more prevalent post-sampling on the minority class
[32]. So more intelligent strategy on oversampling methods to increase the minority class size while
preserving the extrinsic distribution, such as adversarial training, neural style transfer, GANs, and meta-
learning schemes is a promising area for future work.

In regards to our samples dataset, because the sample size is small and the class size is imbalanced, data
augmentation will be applied to overcome the overfitting and data bias problems. Four geometric
transformations and two color transformations are used together to our dataset. The detailed values of
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these transformations are described as Tab. 4 below, where affine transformation applies two dimensional
shear operations, noise type chooses Gaussian white noise with zero mean and variance of 0.01. As for
gamma enhance, because gamma represents the degree of adjusting brightness, less than 0.4 will make
the new image too bright, while greater than 1.6 will make it too dark.

For each original training sample image, 30 new images are generated by one transformation with the
same size to the input of our proposed CNN.

As shown in the following Fig. 2, one original CT image with the renal lesion type of calculi with cysts is
taken as one example. As a result, 180 new images are generated by these six transformations with
corresponding value ranges and steps. Only six new images of each transformation are exhibited in Figs.
2b–2g, whose indices are 1, 6, 11, 16, 21, 27 in the corresponding 30 new images.

3.5 Implementation
The CNN program is developed in Matlab 2019a. Its training and test stages are all run on a laptop with

the operating system of Windows-10, NVidia GeForce GTX 1050 with 5 multiprocessors, and CPU clock
rate of 2.2 GHz. To evaluate our CNN’s performance, six indicators are used to get the average and
overall values from multiple viewpoints. They are sensitivity (recall positive category), specificity (recall
negative category), and precision of the positive category, accuracy of all categories, F1 and MCC. MCC
gives a correlation coefficient between observation and prediction, whose value ranges between −1 to 1
and means disagreement to a perfect prediction.

4 Experiments, Results and Discussion

4.1 Training Configuration
The CNN training algorithm minimizes the loss function [33] with least mean squared error and L2

regularization item shown as Eq. (10), where there are m training samples and n optimized parameters, r
is the L2 Regularization coefficient set as 0.005.

w� ¼ argmin
w

½L ¼ 1

m

Xm

i¼1
ðf w; xið Þ � yiÞ2 þ r

Xn

j¼1
w2
j � (10)

The weights are updated by the optimizer of stochastic gradient descent with momentum method [34]
which averages previous gradients together to obtain smoother search path. It is given as Eqs. (11) and (12).

wj ¼ wj þ vk (11)

vk ¼ mvk�1 � erL; v0 ¼ 0 (12)

Table 4: Transformation description of our data augmentation

Transformation Type Name Value range Step

Geometric Affine transformation [−0.2, 0.2] Random

Rotation [−30, 30] 2

Scale [0.7, 1.3] 0.02

Shift [−50, 50] Random

Color Gamma enhance
Noise

[0.4, 1.6] 0.04

Sigma = 0.01 Random
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where m is the momentum coefficient set as 0.9, rL is the gradient of the objective function at one iteration
stage, e is the learning rate which defines howmuch degree to update the internal parameters in each iteration.
The parameters we assign in the software are given as following. The mini-batch size is 128, the maximum
epoch is 30. The initial learning rate is 0.001 with decreasing by a factor of 0.1 in step of every 10 epochs.

4.2 Network Configuration
We construct a nine-layer deep CNN to classify our renal CT dataset. The structure of this CNN is shown

in Fig. 3. The parameter values of each layer of CNN are described in Tab. 5. The input data are the
preprocessed kidney CT images with size 72 × 72 and 3 channels. One whole convolutional layer is
composed of the convolution operation directly followed by a BN and a ReLU stage. The output size of
one convolution layer is calculated as Eq. (5).

(c)

(a) (b)

(d)

(e)

(f)

(g)

Figure 2: Examples of six transformations of our data augmentation. (a) Original (b) Affine transform (c)
Rotation (d) Scale (e) Shift (f) Gamma enhance and (g) Noise

1008 CMES, 2020, vol.124, no.3



Given the input size of Conv_1 layer is [72, 72, 3], the kernel size is [3, 3, 16], the stride size is [2, 2] and
the padding is [0, 1, 0, 1], the output width is (72 – 3 + 0 + 1)/2 + 1 = 36. Therefore, the output size of Conv_1
is [36, 36, 16]. Our CNN has 7 such convolution layers to extract multi feature maps. At the end of the CNN
pipelines, three fully connected layers (FCL) are added. Two FCLs with ReLU activation are used to output
values. FCL(50) means there are 50 neurons in this FCL. Another FCL with softmax activation FCL(2)
outputs the probability of the image binary classification.

4.3 Performance of Proposed CNN
We train the proposed CNN ten times and achieve the prediction results on the test dataset. Tab. 6 shows

the performance of ten runtimes evaluated by these 6 indicators which are sensitivity, specificity, precision,
accuracy, F1 and MCC. Each row gives the performance of one runtime. Finally the mean and the standard
deviation of ten runtimes are exhibited at the last row. It indicates our CNN classifier performs rather well and
steadily because the average values of the front five indicators are all above 91.98% and the standard
deviation of them are less than 2.40%.

4.4 Result of Data Augmentation
Here we investigate the effect of data augmentation of renal lesion image by using our nine-layer CNN

in Kidney CT dataset. Besides the above experiments, we run CNN training ten times on original dataset

Figure 3: Feature maps of each layer of our proposed network

Table 5: The Structure and parameters of our 9-layer CNN

Layer Purpose Kernel size,
number

Stride Padding Weight Bias Activation

Input 72 × 72 × 3

1 Conv_1 3 × 3, 16 2 × 2 [0 1 0 1] 3 × 3 × 3 × 16 1 × 1 × 16 36 × 36 × 16

2 Conv_2 3 × 3, 32 2 × 2 [0 1 0 1] 3 × 3 × 16 × 32 1 × 1 × 32 18 × 18 × 32

3 Conv_3 3 × 3, 64 2 × 2 [0 1 0 1] 3 × 3 × 32 × 64 1 × 1 × 64 9 × 9 × 64

4 Conv_4 3 × 3, 128 3 × 3 [0 0 0 0] 3 × 3 × 64 × 128 1 × 1 × 128 3 × 3 × 128

5 Conv_5 3 × 3, 128 1 × 1 [1 1 1 1] 3 × 3 × 128 × 128 1 × 1 × 128 3 × 3 × 128

6 Conv_6 3 × 3, 128 1 × 1 [1 1 1 1] 3 × 3 × 128 × 128 1 × 1 × 128 3 × 3 × 128

7 FCL(50) 50 × 1152 50 × 1 1 × 1 × 50

8 FCL(10) 50 × 10 10 × 1 1 × 1 × 10

9 FCL(2) 2 × 10 2 × 1 1 × 1 × 2
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without data augmentation. The corresponding performance results are listed in Tab. 7. The averages of the
front five indicators are 91.46%, 90.99%, 91.13%, 91.22% and 91.21% respectively. From the comparison of
Tab. 8, the corresponding averages of the ten-runtime experiments with DA are 0.72%, 0.99%, 0.93%,
0.85%, 0.86% and 1.63% higher than those without DA. It indicates DA can improve the classification
performance through enlarging the training data. On the other hand, data augmentation of each image in
original dataset takes nearly 2 seconds. Because image transformation is forward and the dataset is small,
so the time cost is quite short. At the same time, the augmented images are stored in hard disk to save
RAM memory. Therefore, the spatial cost of data augmentation is acceptable relatively to the enormous
hardware capacity. Therefore, the effect of data augmentation performs well.

Table 6: Statistical analysis of 10 runs of our method

Runtime Sen (%) Spe (%) Pre (%) Acc (%) F1 (%) MCC (%)

1 95.12 95.24 95.45 95.18 95.23 90.47

2 92.62 90.24 90.45 91.43 91.51 82.91

3 90.24 90.24 90.24 90.24 90.24 80.48

4 95.12 92.74 92.86 93.90 93.96 87.86

5 87.74 92.74 92.46 90.24 89.97 80.68

6 92.62 95.12 94.99 93.87 93.77 87.79

7 90.24 90.24 90.24 90.24 90.24 80.48

8 95.12 87.86 88.72 91.49 91.80 83.21

9 92.74 92.74 92.74 92.68 92.68 85.48

10 90.24 92.62 92.50 91.43 91.34 82.91

Mean ± SD 92.18 ± 2.40 91.98 ± 2.21 92.06 ± 2.05 92.07 ± 1.67 92.07 ± 1.70 84.22 ± 3.34

Table 7: Statistical analysis of 10 runs of without DA

Runtime Sen (%) Spe (%) Pre (%) Acc (%) F1 (%) MCC (%)

1 87.86 92.74 92.37 90.24 90.00 80.69

2 85.36 92.62 92.11 88.99 88.59 78.21

3 90.24 92.74 92.50 91.46 91.34 82.98

4 95.12 87.74 88.72 91.46 91.80 83.15

5 90.24 92.74 92.61 91.49 91.39 83.03

6 95.12 90.24 90.69 92.68 92.85 85.46

7 87.74 92.74 92.46 90.24 89.97 80.68

8 95.12 87.86 88.64 91.46 91.75 83.17

9 95.12 90.24 90.69 92.68 92.85 85.46

10 92.74 90.24 90.48 91.49 91.58 83.03

Mean ± SD 91.46 ± 3.50 90.99 ± 1.92 91.13 ± 1.45 91.22 ± 1.07 91.21 ± 1.27 82.59 ± 2.10
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4.5 Optimal Structure of Convolutional Layers
The convolutional layers do multiple feature extraction in a deep neural network. When fixing three

FCLs as Tab. 5, we check how many convolutional layers the CNN should have so as to obtain the best
performance. The number of convolutional layers is adjusted from small value to large value. Tab. 9
shows the experimental results of five CNNs with 3 to 7 convolutional layers. All the last convolutional
layer has the same parameters setting to the Conv_6 in Tab. 5. It proves that the CNN with
6 convolutional layers is the optimal structure since the performance does not improve any more
according to those six indicators.

4.6 Optimal Number of FCL
Here we fix six convolutional layers, and tuned the number of FCL layers carefully from small to large

value. The experiments change the number of FCL from 2 to 5. The results are shown in Tab. 10. The input to
the first FCL is the output of the sixth convolutional layer which has 3 × 3 × 128 = 1152 dimensions.

When the number of FCL layers is set as 2, FCL(50) and FCL(2) are applied in sequence. When the
number of FCL layers is set as 3, then FCL(50), FCL(10) and FCL(2) are applied in sequence. When the
number of FCL layers is set as 4, then FCL(50), FCL(25), FCL(10) and FCL(2) are applied in sequence.
When the number of FCL layers is set as 5, then FCL(50), FCL(25), FCL(10), FCL(5) and FCL(2) are
applied in sequence. It indicates that the CNN with 3 FCLs performs the best.

Table 8: Comparison of using DA and not using DA

Sen (%) Spe (%) Pre (%) Acc (%) F1 (%) MCC (%)

Without DA 91.46 ± 3.50 90.99 ± 1.92 91.13 ± 1.45 91.22 ± 1.07 91.21 ± 1.27 82.59 ± 2.10

With DA (Ours) 92.18 ± 2.40 91.98 ± 2.21 92.06 ± 2.05 92.07 ± 1.67 92.07 ± 1.70 84.22 ± 3.34

Table 9: Optimal structure of Convolutional layers

Sen (%) Spe (%) Pre (%) Acc (%) F1 (%) MCC (%)

3Conv + 3FCL 90.73 ± 2.87 90.48 ± 2.30 90.66 ± 1.88 90.61 ± 0.57 90.61 ± 0.73 81.37 ± 1.16

4Conv + 3FCL 90.74 ± 2.64 91.01 ± 1.55 91.07 ± 1.28 90.86 ± 1.11 90.84 ± 1.22 81.85 ± 2.18

5Conv + 3FCL 91.69 ± 1.19 91.73 ± 2.23 91.77 ± 2.09 91.70 ± 1.30 91.69 ± 1.24 83.48 ± 2.61

6Conv + 3FCL 92.18 ± 2.40 91.98 ± 2.21 92.06 ± 2.05 92.07 ± 1.67 92.07 ± 1.70 84.22 ± 3.34

7Conv + 3FCL 91.95 ± 2.17 91.96 ± 1.90 92.05 ± 1.66 91.96 ± 0.81 91.94 ± 0.86 84.02 ± 1.62

Table 10: Optimal number of FCL

Sen (%) Spe (%) Pre (%) Acc (%) F1 (%) MCC (%)

6Conv + 2FCL 91.21 ± 2.22 91.70 ± 1.62 91.74 ± 1.45 91.46 ± 0.94 91.42 ± 1.00 83.01 ± 1.89

6Conv + 3FCL 92.18 ± 2.40 91.98 ± 2.21 92.06 ± 2.05 92.07 ± 1.67 92.07 ± 1.70 84.22 ± 3.34

6Conv + 4FCL 91.46 ± 1.99 91.20 ± 2.92 91.38 ± 2.57 91.34 ± 1.49 91.36 ± 1.42 82.78 ± 2.96

6Conv + 5FCL 91.48 ± 2.2 91.49 ± 2.71 91.60 ± 2.26 91.48 ± 0.77 91.47 ± 0.73 83.07 ± 1.50
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4.7 Comparison to State-of-the-Art Algorithms
To validate the advantages of our method over the previous methods, we compare with the related works

to classify kidney images. One is PNN model used in paper [4] with the selected features, which include
mean, entropy and standard deviation of ultrasound images. The other is our previous 7-layer deep CNN
[5]. The results given in Tab. 11 show the average overall accuracy of our nine-layer CNN is 1.71%
higher than the 7-layer CNN and over 26% higher than PNN. In fact our proposed 9-layer CNN without
data augmentation achieves average accuracy of 91.22 ± 1.07% which performs 0.86% better than the
previous 7-layer CNN.

We also compare the time costs of these methods. The training times are listed in Tab. 11. The nine-layer
CNN proposed in this paper takes 811.86 seconds for ten times training on the original dataset, which is
called the original training time. When it runs on the augmented training dataset which is 180 times of
the original training dataset, it takes about 180 times of the original training time. So on average one
training on DA dataset costs about 4 hours. It evidently is more time-consuming than previous methods.
Nevertheless, the trade-off is valuable to get a more accurate classification model in the training stage.
While in the test stage, the test time of our DA-CNN is comparable because it takes 10.37 seconds on
82 test samples. Therefore the result means only less than 0.13 second is used to identify whether one
image has the renal lesion. All in all, it is evident that the new method is faster than manual judgment to
get more accurate prediction.

4.8 Discussion
In our deep learning algorithm, the number of convolutional kernels increases with the layers piling up,

while the size of them keep same. This is the key point that CNN extracts a large number of local features to
replace predefined limited features which are used to differentiate categories of samples. At the fully
connected layers, the number of the nodes in one FCL decreases with the layers piling up. This realizes
the function of gathering different features layer by layer to summarize the categories.

Meanwhile, the effect of data augmentation is positive to train a more accurate model. After enlarging
the training dataset by DA, the learning model converges after certain epochs. So maximum epoch can be set
as 10 so as to rationally reduce the training time.

From the above four groups of comparative experiments, we get the optimal structure of the nine-layer
CNN. In general, the number of training samples, convolutional layers and fully connected layers could
affect the performance of our CNN algorithm to some extent with moderate time cost.

Table 11: Comparison with previous algorithms

Method Features Accuracy (%) Training Time(s) Test Time(s)

PNN [4] Selected image features
as paper [4]
mean+ standard deviation+ entropy

64.51 ± 2.70 1.4 0.2

CNN [5]
(5Conv + 2FCL)

Feature maps in 5 convolution layers 90.36 ± 1.02 720 8

DA-CNN (Ours)
(6Conv + 3FCL)

Feature maps in 6 convolution layers 92.07 ± 1.67 180 × 811.86 10.37
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5 Conclusion

In this paper, a nine-layer convolutional neural network is proposed to classify the renal CT images. Four
groups of comparison experiments prove the structure of this CNN is optimal and can achieve good
performance with average accuracy about 92.07 ± 1.67%. Although our renal CT data is not very large,
we do augment the training data by affine, translating, rotating and scaling geometric transformation and
gamma, noise transformation in color space. Experimental results validate the Data Augmentation (DA)
on training data can improve the performance of our proposed CNN compared to without DA with the
average accuracy about 0.85%.

Despite all of them, some works need be done in future. (i) The optimal structure of convolutional and
fully connected layers have been verified in our method, but pooling layers are not considered. Further
comparison about the pooling effect can be discussed. (ii) We compared with some related works, but
more deep neural network algorithms should be covered to find out the best result. (iii) Our dataset
includes CT images collected from different sources of the general and enhanced CT devices. Whether
different brightness affect the classification performance may be investigated.

Currently the radiography is applying AI to implement the medical image recognition in clinical
practice. Our algorithm is validated to be faster than manual judgment and more accurately than previous
methods. With the amount of the images increasing in daily check, the limited manual diagnosis is
becoming more laborious and time-consuming. Therefore, this kind of automatic identification of
abnormal images may be a promising alternative prejudge approach to help clinical radiologists and
doctors reduce their workload. Future works also need focus on generalization and interpretability of deep
learning method.
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