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Abstract: In order to solve the problem of high computing cost and low simula-
tion accuracy caused by discontinuity of incision in traditional meshless model,
this paper proposes a soft tissue deformation model based on the Marquardt algo-
rithm and enrichment function. The model is based on the element-free Galerkin
method, in which Kelvin viscoelastic model and adjustment function are inte-
grated. Marquardt algorithm is applied to fit the relation between force and displa-
cement caused by surface deformation, and the enrichment function is applied to
deal with the discontinuity in the meshless method. To verify the validity of the
model, the Sensable Phantom Omni force tactile interactive device is used to
simulate the deformations of stomach and heart. Experimental results show that
the proposed model improves the real-time performance and accuracy of soft tis-
sue deformation simulation, which provides a new perspective for the application
of the meshless method in virtual surgery.

Keywords: Virtual surgery; meshless model; Marquardt algorithm; enrichment
function; soft tissue simulation

1 Introduction

In medical education, interns learn from experienced experts to improve their expertise. Traditional
surgical training is often carried out on the remains of animals or humans, however, for it there still exist
defects such as long training period, non-reusability, and high cost. With the development of computer
science and technology, emerging virtual surgery simulation system has gradually been able to solve the
above problems [1,2].

In the virtual surgery simulation system, interns operate on the virtual soft tissue model repeatedly
through the force and tactile feedback device to improve their surgical skills. Therefore, the soft tissue
model is required to be accurate and with good real-time performance, and be able to handle topological
changes like cutting and suturing [3–6]. Common soft tissue modeling methods include mass-spring
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model [7–10], finite element model [11–13] and meshless model [14–16]. The structure and calculation of
the mass-spring model is simple, but its parameters are difficult to select and the iterative calculation is
unstable [17–19]. Kot et al. [20] proposed the mass-spring model with adjustable Poisson’s ratio, the
model does not need to introduce additional structures and can freely represent homogeneous isotropic
materials, but the stability is poor. Li et al. [21] proposed an improved surface mass-spring model, which
develops new flexion springs and surface triangle topological element to improve the deformation
accuracy and calculation efficiency, but its parameters are difficult to select and determine. The finite
element model has high precision and adaptability, but it is difficult to realize real-time simulation due to
its high computational complexity [22–24]. Wang et al. [25] simulated subcutaneous adipose tissue based
on a linear elastic and hyper-plastic finite element model, this model has high simulation accuracy, but
the computational complexity is high and the real-time performance is poor. Marinkovic et al. [26]
proposed a geometrically nonlinear corotational finite element model to simulate liver and stomach,
which has high accuracy but poor real-time performance. Compared with the previous two models, the
meshless model only needs a set of discrete nodes and does not need to process the mesh data in
advance, so some problems such as mesh distortion and mesh entanglement will not appear, and it has
great advantages in processing large deformation of soft tissue [27–28]. Belinha et al. [29] combined the
natural neighborhood radial point interpolation method with fracture growth algorithm to simulate
fracture propagation in brittle materials, which is faster and more efficient than the mesh-based method.
Dehghan et al. [30] used element-free Galerkin method to simulate the invasion of cancer cells into
surrounding tissues, and the effect of the simulation is realistic. Cheng et al. [31] proposed a novel
interactive meshless cutting model, which divided the model cutting into three stages with high
simulation accuracy. Zhou et al. [32] proposed a meshless local radial point interpolation method for soft
tissue modeling, which solved the difficult problem of solving partial differential equations in traditional
soft tissue models and improved computational efficiency.

Although the meshless model has the above advantages, it still has some deficiencies, for example, it
cannot accurately describe the biomechanical characteristics of soft tissue and has poor real-time
performance during soft tissue simulation [33]. To solve above challenges, this paper proposes a new soft
tissue deformation model based on Marquardt algorithm and enrichment function. The model simulates
the deformation of soft tissue by introducing the element-free Galerkin method with fast convergence. Its
shape function is constructed based on the moving least square method [34,35], and the Kelvin
viscoelastic model and adjustment function are integrated to improve the simulative realism. Meanwhile,
Marquardt algorithm is applied to fit the mathematical relation in advance between the force on the soft
tissue and the displacement of each node. When the soft tissue during virtual surgery is subjected to the
action of force, the deformation can be immediately shown by calling the fitting relation. The enrichment
function is applied to deal with the discontinuity that occurs when soft tissue is used to perform
interaction operation.

The organization of this paper is as follows: Section 2 introduces the nonlinear viscoelastic meshless
method. Section 3 describes the fitting relation between the force and the displacement of each node
based on Marquardt algorithm. Section 4 introduces the processing method for soft tissue discontinuity.
Section 5 gives the experimental process and results. In the last section, we make a summary of our work.

2 Nonlinear Viscoelastic Meshless Method

The meshless method is different from the mesh-based method in that it only relies on a group of nodes,
which the nodes are uniformly or randomly distributed on the internal and boundary, so the meshless method
is suitable for large deformation and progressive cutting of soft tissue. The flow chart of the proposed method
in this paper is shown in Fig. 1.
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The deformation of soft tissue in the meshless method is approximately expressed by field variable u.
Assuming that uh Xð Þ is the moving least squares approximation of the field function u Xð Þ at position X
in the domain of the problem �, and u Xð Þ can be expressed as:

u Xð Þ � uh Xð Þ ¼ PT Xð Þa Xð Þ (1)

where PT Xð Þ represents the polynomial basis function vector and it is usually composed of single algebraic terms
in three-dimensional space, let PT Xð Þ ¼ 1; x; y; z½ �; and a Xð Þ represents the nonconstant coefficient vector.

To solve the nonconstant coefficient vector a Xð Þ, we consider the weight function wi Xð Þ ¼ w X� Xið Þ
of each node and minimize the Euclidean norm of approximation error

J Xð Þ ¼Pn
i¼1

w X� Xið Þ PT Xið Þa Xð Þ � ui
� �2

, we can obtain a Xð Þ as follows:

a Xð Þ ¼ A�1 Xð ÞPT Xð ÞW Xð Þu (2)

where A�1 Xð Þ is the inverse of the weighted instantaneous matrix A Xð Þ, A Xð Þ is defined as:

A Xð Þ ¼ PT Xð ÞW Xð ÞP Xð Þ (3)

where W Xð Þ and P Xð Þ represent the weighted function matrix and polynomial basis function matrix,
respectively. W Xð Þ and P Xð Þ are defined as follows:

W Xð Þ ¼
w1 Xð Þ 0 � � � 0

0 w2 Xð Þ � � � 0

..

. ..
. ..

. ..
.

0 0 � � � wn Xð Þ

2
6664

3
7775 (4)
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Figure 1: Flow chart of the proposed method
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P Xð Þ¼
PT x1ð Þ
PT x2ð Þ
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The moving least square approximation shape function � Xð Þ is defined as:

� Xð Þ ¼ PT Xð ÞA�1 Xð ÞPT Xð ÞW Xð Þ (6)

Finally, the field function can be expressed as:

u Xð Þ � uh Xð Þ ¼ � Xð Þu (7)

The smoothness of weight function w sið Þ plays an important role in the continuity of shape function [36].
In general, cubic spline weight function is adopted, which is expressed as follows:

w sið Þ ¼

2

3
� 4si

2 þ 4si
3; si � 1

2
4

3
� 4si þ 4si

2 � 4

3
si
3;

1

2
< si � 1

0; other

8>>>>><
>>>>>:

(8)

where si ¼ X� Xik k
qi

is the radius of influence of the dimensionless weight function, and qi indicates the

radius of influence sphere of the point i.

In order to improve the authenticity of the simulation and present the biomechanical characteristics of
the real nonlinear viscoelasticity of soft tissue, the Kelvin viscoelasticity model is applied to construct the
mechanical model of soft tissue because its two springs and a damper can be used to represent linear
viscoelastic properties [37], at the same time, an adjustment function is integrated to the viscoelastic
relaxation constitutive relation to show the nonlinear relation between stress and strain. At last, we
establish the nonlinear viscoelastic model and integrate it into the element-free Galerkin method to solve
the equation. The Kelvin viscoelastic model is shown in Fig. 2.

In Fig. 2, r, rd, g, K1 and K2 represent the stress, stress time derivative, damper, the stiffness of the first
spring and the stiffness of the second spring in the model, respectively.

The relaxation constitutive relation of soft tissue under stress loading in the Kelvin viscoelastic model
can be expressed as:

r tð Þ ¼
Z t

0
E t � sð Þ de

ds
ds (9)

where r tð Þ, E tð Þ and e represent relaxation response, relaxation modulus and strain of the material,
respectively.

dσ

σ σ

η

K1

K2

Figure 2: Kelvin viscoelastic model
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In order to make the soft tissue model has nonlinear characteristics, an adjustment function
N eð Þ ¼ eþ ke2 is integrated to the viscoelastic relaxation constitutive relation, so the nonlinear
viscoelastic relaxation constitutive relation is defined as:

r tð Þ ¼
Z t

0
E t � sð Þ dN eð Þ

ds
ds (10)

We divide the deformation simulation time T into n time slices t1; t2; . . . ; tn, Dt ¼ T=n represent a time
increment. Dun, Drn and Den represent the increment of displacement, stress and strain during the time period
from moment tn to moment tnþ1, respectively. We can obtain the stress of the Kelvin viscoelastic model at
moment tn and tnþ1 through the follow equations:

rn ¼
Z tn

0
E tn � sð Þ dN eð Þ

ds
ds (11)

rnþ1 ¼
Z tn

0
E tnþ1 � sð Þ dN eð Þ

de
de
ds

dsþ Den
1

Dt

Z tnþ1

tn

E tnþ1 � sð Þ dN eð Þ
ds

ds

� �
(12)

The incremental form of the nonlinear viscoelastic model is expressed as follows:

Drn ¼ EkDen þ r0;n (13)

where Ek and r0;n. represent the nonlinear relaxation coefficient and the initial stress, respectively.

At moment tnþ1, displacement, stress and strain are expressed as follows:

unþ1 ¼ un þ Dun (14)

rnþ1 ¼ rn þ Drn (15)

enþ1 ¼ en þ Den (16)

The relation between strain and displacement can be expressed as follows:

enþ1 ¼ Lunþ1 þ LDun (17)

where L represents partial differential operator, which can be defined as:

L¼

@

@x
0 0

0
@

@y
0

0 0
@

@z
@

@y

@

@x
0

0
@

@z

@

@y
@

@z
0

@

@x

2
666666666666666664

3
777777777777777775

(18)

Since the function obtained by the least square approximation is a smooth curve and does not pass the
node value, the moving least square approximation shape function cannot characterize the Kronecker delta
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function. In order to enforce the essential boundary conditions, we use the weak form of the constrained
Galerkin method as follows:Z
�

d Luð ÞTD Luð Þd��
Z
�

duTbd��
Z
�t

duT td�� d
Z
�u

1

2
u� uð ÞTa u� uð Þ ¼ 0 (19)

where �, d, u, D, uT , b, �t, t, �u, u and a represent analysis domain, Kronecker function value, displacement,
elastic constant matrix, displacement vector, physical vector, natural boundary condition, corresponding
surface force, essential boundary condition, displacement corresponding to essential boundary condition,
and penalty factor, respectively.

By substituting Eqs. (13)–(17) into Eq. (19), the incremental form of nonlinear viscoelastic meshless
solution equation can be obtained:

Kn þ Ka
n

� �
Dun ¼ DRn (20)

where Kn represents the viscoelastic stiffness matrix, it is defined as:

Kn ¼
X
�

Z
�

BT
i EkBj

� �
d� (21)

where Bi represents the matrix of the derivative of the shape function of node i, and it can be expressed as:

Bi ¼

Φi;x 0 0
0 Φi;y 0
0 0 Φi;z

Φi;y Φi;x 0
0 Φi;z Φi;y

Φi;z 0 Φi;x

2
6666664

3
7777775

(22)

where Φi;x, Φi;y and Φi;z represent the derivative of the shape function with respect to x, y and z at node i,
respectively. Similarly, we can get Bj.

Ka
n is the penalty stiffness matrix determined by the shape function and the derivative of the shape

function in the element-free Galerkin method, and DRn is the vector of unbalanced force. They are
expressed as follows:

Ka
n ¼

X
�

Z
�

ΦT
i aΦj

� �
d� (23)

DRn ¼
X

�
Z
�

d Denð Þ
T

rnd��
Z
�

d Denð ÞTr0;nd�þ
Z
�

d Dunð ÞTbd��
Z
�t

d Dunð ÞTtnd�

þ d
Z
�u

1

2
Dun � Duð Þ

T

a Dun � Duð Þd�
(24)

Given the material parameters of the soft tissue model and time step, we can calculate Dun according to
Eq. (20). Finally, the new displacement, stress and strain at each point can be figured out.
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3 Relation Fitting of Force and Displacement Based on Marquardt Algorithm

Compared with the method based on mesh, meshless method does not need to maintain the topological
information between data points, and can avoid complex topological problems of the model, but its
computation is time-consuming. Therefore, we calculate the displacement of all nodes according to the
nonlinear viscoelastic meshless solution equation. Then, we use the Marquardt algorithm to fit the
relation in advance between the force applied to the soft tissue and the displacement of each node
[38,39], and we can obtain the fitting surface to show the overall deformation of the model, which
improves the real-time simulation.

In order to establish the relation between the applied force and the deformed surface, as well as the fitting
relation between the applied force r and the stressed node d, it is assumed that n spatial forces r are applied to
the node which can be decomposed into component forces rx, ry, rz in three directions. The corresponding
displacement components at the stressed node d are Dux, Duy, Duz and the corresponding displacement
function of each component is:

Dux ¼ r1 þ r2r
1
x þ � � � þ r�xþ1r

�x
x (25)

Duy ¼ v1 þ v2r
1
y þ � � � þ v�yþ1r

�y
y (26)

Duz ¼ l1 þ l2r
1
z þ � � � þ l�zþ1r

�z
z (27)

where r ¼ r1; r2; . . . ; r�xþ1½ �, v ¼ v1; v2; . . . ; v�yþ1

� �
and l ¼ l1; l2; . . . ; l�zþ1½ � are the system parameter

corresponding to three components. �x, �y and �z are the highest order of independent variables of the
system which are determined by cross validation.

When a node is subject to the force, neighbor points will also move accordingly. Therefore, the relation
between the displacement of the stressed node and that of other nodes is established to represent the
deformation surface. For simplification, we assume that the surface nodes have the same coordinates z.
Under the force rz, the induced surface function is:

Dx ¼ ci11 þ ci12xþ � � � þ ci1a1þ1xa1 þ ci1a1þ2yþ � � � þ ci1a1þb1þ1yb1

Dy ¼ ci21 þ ci22xþ � � � þ ci2a2þ1xa2 þ ci2a2þ2yþ � � � þ ci2a2þb2þ1yb2

Dz ¼ ci31 þ ci32xþ � � � þ ci3a3þ1xa3 þ ci3a3þ2yþ � � � þ ci3a3þb3þ1yb3

8<
: (28)

where Dx, Dy, and Dz represent the induced displacement of other points in three directions under the
force rz � ci1 ¼ ci11; ci12; . . . ; ci1a1þb1þ1½ �, ci2 ¼ ci21; ci22; . . . ; ci2a2þb2þ1½ � and ci3 ¼ ci31; ci32; . . . ; ci3a3þb3þ1½ �
ði ¼ 1; 2;…; nÞ represent the parameters of three surface deformation functions. a1, a2, a3, b1, b2 and b3
are the order surface deformation which are determined by cross validation. Similarly, the induced surface
functions of component force rx and ry can be obtained.

4 Discontinuity Processing in Meshless Method

In virtual surgery, interactive operation such as cutting and suturing on soft tissues is necessary. Thus,
the weight enrichment function is introduced to deal with discontinuous cracks on the tissue surface caused
by cutting and other operations [40]. To this end, we take the cutting treatment as a piecewise linear segment,
and calculate the absolute distance between meshless nodes and the segment. According to the distance field,
we obtain the enrichment function. Let the enrichment function multiplies the weight function of the
corresponding node to replace the original weight function. In order to reduce the calculation cost, only
the shape functions of nodes whose distance is less than their expansion parameters qi are recalculated.
The shape functions of other nodes remain unchanged. Fig. 3 is the schematic diagram of the soft tissue
with discontinuous cracks.
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In Fig. 3, s, f, �u, u, �t and r represent normal coordinates, local coordinates, essential boundary
conditions, displacement boundary conditions, natural boundary conditions and force boundary
conditions, respectively.

For a given point x; yð Þ, its two-dimensional distance function d2 x; yð Þ can be calculated as follows:

d2 x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds fð Þ þ ds fð Þj j

2

	 
2

þ s2

s
(29)

ds fð Þ ¼ f� f1 þ f2
2

����
����� f1 � f2

2

����
���� (30)

where ds fð Þ is a one-dimensional signed distance function with endpoints f1; f2ð Þ.
We solve the partial derivative of the distance function d2 x; yð Þ with respect to the normal coordinate s,

and we can obtain the discontinuous function ’ x; yð Þ as follows:

’ x; yð Þ ¼ @d2 x; yð Þ
@s

(31)

Finally, enrichment function h x; yð Þ can be expressed as:

h x; yð Þ ¼ ’ x; yð Þ þ 1

2
(32)

5 Experiments and Results

5.1 Data Acquisition
Meshless method is used for soft tissue modeling, which relies on point cloud data. Therefore,

CT images of soft tissue are imported into the software of Mimics to generate 3D images, and then the
STL format files of the 3D model are exported. The software MeshLab is used to convert STL format
files into OBJ format files to obtain vertex information and point cloud data. And the CT data in this
paper is provided by the First Affiliated Hospital of Nanjing Medical University and the consent of
patients is obtained.

5.2 Experimental Environment
In this paper, Sensable Phantom Omni hand controller is used as force and tactile interactive device,

other hardware includes a computer with Intel Core i9-7960X CPU, NVIDIA GeForce 1080Ti graphics

Figure 3: Schematic diagram of soft tissue with discontinuous cracks
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card and monitors. CHAI3D software package provides API for force feedback to drive the tactile interface.
Meanwhile, VC ++2017 and OpenGL are used for programming. Fig. 4 shows the simulation environment.

5.3 Deformation Simulation of Soft Tissue
During soft tissue deformation simulation, the tissue surface is considered as the problem domain with

scattered nodes, and its displacement can be calculated by meshless method. The proposed model in this
paper is used to establish the fitting relation between forces and soft tissue surface deformation, and the
original displacement and induced displacement can be obtained through this relation when different
forces are applied to the nodes. To verify the validity of the proposed model, simulating the cutting
operation based on the model on stomach and heart is performed. As shown in Figs. 5 and 6, surgical
instruments are used to perform incisions on stomach and heart with forces of 0.6 N, 1.2 N, 1.8 N and
2.4 N. By observing the deforming effect of stomach and heart under different cutting forces, we can see
that the incision of the soft tissue model is smooth. At the same time, according to the surgeon’s
feedback, we can know that the proposed model can effectively simulate the deformation responses of
human soft tissue to some extent. And in the future research, we will compare the deformation data of the
proposed model with the deformation data of real human soft tissue and improve it so as to make the
proposed model more real for human soft tissue deformation simulation and apply it to the interactive
training of virtual surgery.

Figure 4: The simulation environment

Figure 5: Rendering effect of gastric deformation under different cutting forces. (a) 0.6 N, (b) 1.2 N, (c) 1.8
N, (d) 2.4 N
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5.4 Accuracy Verification
In virtual surgery simulation, the accuracy of the model is crucial. Since the accuracy of the finite

element model is high, it is used as a reference model. Under the same force, we calculate the
deformation displacement of the reference model, as well as the deformation displacement of the
proposed model and the interactive meshless cutting model [31]. The specific process is as follows:
Firstly, the finite element model, the proposed model and the interactive meshless cutting model are used
to establish three lung models, and the same stress points are selected. And the intention of modeling the
lung model in accuracy verification is to show the generality of the proposed model. Secondly, choose
10 points near the stress points of the models as sample points, applying cutting force to them and make
the models have small deformation (no cracks) and large deformation (to generate cracks). Finally, the
coordinates of the sample points after deformation of each model are recorded, and the deformation
displacement of the three models are calculated by using Eq. (33), respectively.

Displacement ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs ið Þ � x0 ið Þð Þ2 þ ys ið Þ � y0 ið Þð Þ2 þ zs ið Þ � z0 ið Þð Þ2

q
(33)

where xs ið Þ, ys ið Þ and zs ið Þ represent the coordinates of the sample points i after the deformation of the three
simulation models in x, y and z directions, respectively; x0 ið Þ, y0 ið Þ and z0 ið Þ represent the initial coordinates
of the sample points i in x, y and z directions, respectively.

We can see that Figs. 7 and 8 are deformation displacement radar diagrams of the three models under
small deformation and large deformation, respectively.

At the same time, we calculate the RMSE (Root Mean Square Error) values of the deformation
displacement of the proposed model and the interactive meshless cutting model. Note that the RMSE
values are obtained based on the reference model.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xs ið Þ � xc ið Þð Þ2 þ ys ið Þ � yc ið Þð Þ2 þ zs ið Þ � zc ið Þð Þ2
� 


n

vuut
(34)

where n represents the number of sample points, xs ið Þ, ys ið Þ and zs ið Þ represent the coordinates of the sample
points i after the deformation of the proposed model and the interactive meshless cutting model in x, y and z
directions, respectively; xc ið Þ, yc ið Þ and zc ið Þ represent the coordinates of the sample points i after the
deformation of the reference model in x, y and z directions, respectively. Tab. 1 shows the RMSE of

Figure 6: Rendering effect of cardiac deformation under different cutting forces (a) 0.6 N (b) 1.2 N (c) 1.8 N
(d) 2.4 N
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deformation displacement of the proposed model and the interactive meshless cutting model under small
deformation and large deformation.

It can be seen from Figs. 7, 8 and Tab. 1 that the deformation displacement of the proposed model is
more similar to the reference model, and the RMSE values of the proposed model is smaller regardless of
small deformation or large deformation, which verifies the accuracy of the proposed model in this paper.

5.5 Real-Time Verification
In order to verify the real-time performance of the proposed model, we use the local radial point

interpolation model [32] with better real-time performance in virtual surgical training and the proposed
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Figure 7: Deformation displacement radar diagram of three models under small deformation

0
10
20
30
40
50

1

2

3

4

5

6

7

8

9

10

The finite element model

The proposed model

The interactive meshless cutting model

Figure 8: Deformation displacement radar diagram of three models under large deformation

Table 1: RMSE of deformation displacement relative to reference model

RMSE of the
proposed model (mm)

RMSE of interactive
meshless cutting model (mm)

Error difference between
the two models (mm)

Small deformation 1.05 4.01 –2.96

Large deformation 4.04 8.03 –3.99
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model to establish the stomach model, and we select 8 groups of spatial forces within the range of 0–4.0 N
and apply them to the same stress point. After that, we compare the time consumed by the two models in
calculating the deformation results. As shown in Fig. 9, the time consumed by the two models under
different forces is recorded as histogram. It can be seen that the time consumed by the proposed model in
calculating the deformation results is shorter and it has better real-time performance. Therefore, the
proposed model meets the real-time requirement of virtual surgical training.

5.6 Multi-Performance Indicators Analysis
In order to verify the superiority of the multi-performance indicators of the proposed model, we invite

28 doctors from the First Affiliated Hospital of Nanjing Medical University to evaluate the heart models
which are established by the proposed model, mass-spring model and finite element model. There are
4 chief doctors marked Da, 7 associate chief doctors marked Db, 10 attending doctors marked Dc and
7 interns marked Dd. According to the professional level of doctors, we set their score weights as 0.35,
0.3, 0.25 and 0.1. The evaluation indicators include force feedback ability I1, visual fluency I2,
deformation efficiency I3, immersion I4, texture characteristics I5, interaction naturalness I6 and
system stability I7. The score of each indicator is within the range of [0,10]. The score
Scijði ¼ 1; 2; 3; j ¼ 1; 2; 3;…; 7Þ of 7 indicators of the three models can be calculated as follows:

Scij ¼ 0:35 �
X4
n¼1

Dan=4

 !
Þþ0:3 �

X7
n¼1

Dbn=7

 !
þ0:25 �

X10
n¼1

Dcn=10

 !
þ0:1 �

X7
n¼1

Ddn=7

 !
(35)

The scoring results of Scijði ¼ 1; 2; 3; j ¼ 1; 2; 3;…; 7Þ are shown in Tab. 2.

We use the comprehensive evaluation method of RSR (Rank Sum Ratio) to analyze each indicator score
of the three models [41], and then we can determine the overall performance of the three models. The details
of the calculation procedure are as follows.
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Figure 9: Time comparison of calculated deformation results under different forces

Table 2: Scoring results of model indicators

Model to be evaluated (n) I1 I2 I3 I4 I5 I6 I7
The proposed model 8.95 8.76 9.12 8.78 8.99 9.26 8.69

Mass-spring model 6.89 7.2 7.5 7.18 6.65 6.57 7.22

Finite element model 7.77 7.85 7.98 7.84 7.92 7.52 7.76
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Step 1: rank the indicators to be evaluated. Since the 7 indicators evaluated by the three models are all
high-quality indicators, we rank the indicators to be evaluated according to the size of the indicator scores,
and the result is shown in Tab. 3.

Step 2: calculate the rank sum ratio RSRi of each indicator. And RSR value is the average rank of seven
indicators of each model. The larger the RSR value is, the better the indicators’ performance of the model will
be. The equation is as follows:

RSRi ¼
Xm
j¼1

Rij

m� n
(36)

where Rij, m and n are the rank, number of indicators and number of groups of each indicator, respectively.

The RSR values and ranking of model evaluation indicators of three models are shown in Tab. 4.

Step 3: determine the RSR distribution. We rank the RSR values from small to large and list the
frequency f of each group. Meanwhile, we determine the rank range R and average rank of each group R
by calculating the downward cumulative frequency

P
f , and calculate the cumulative frequency

R=n
� �� 100%. Finally, the Probit value of the corresponding probability unit is obtained by referring to
the comparison table of percentages and probability units, as shown in Tab. 5.

in which 91.7 is estimated using 1� 1

4n

	 

� 100%.

Step 4: calculate the linear regression equation RSR ¼ aþ b� Probit. We set the probability unit value
Probiti corresponding to the cumulative frequency as the independent variable and the rank sum ratio RSRi as
the dependent variable, the linear regression equation is calculated as:

Table 3: Ranking of model evaluation indicators

Model to be evaluated (n) I1 I2 I3 I4 I5 I6 I7
The proposed model 8.95(3) 8.76(3) 9.12(3) 8.78(3) 8.99(3) 9.26(3) 8.69(3)

Mass-spring model 6.89(1) 7.2(1) 7.5(1) 7.18(1) 6.65(1) 6.57(1) 7.22(1)

Finite element model 7.77(2) 7.85(2) 7.98(2) 7.84(2) 7.92(2) 7.52(2) 7.76(2)

Table 4: RSR values and ranking of model evaluation indicators

Model to be evaluated (n) I1 I2 I3 I4 I5 I6 I7 RSR

The proposed model 8.95(3) 8.76(3) 9.12(3) 8.78(3) 8.99(3) 9.26(3) 8.69(3) 1.0000

Mass-spring model 6.89(1) 7.2(1) 7.5(1) 7.18(1) 6.65(1) 6.57(1) 7.22(1) 0.3333

Finite element model 7.77(2) 7.85(2) 7.98(2) 7.84(2) 7.92(2) 7.52(2) 7.76(2) 0.6667

Table 5: Probability unit values

RSR f
P

f R R R=n
� � � 100% Probit

0.3333 1 1 1 1 33.3 4.5684

0.6667 1 2 2 2 66.7 5.4310

1.0000 1 3 3 3 91.7 6.3852

CMES, 2020, vol.124, no.3 1143



RSR ¼ 0:2746� Probit� 0:8328 (37)

Step 5: grade the three models according to the RSR estimate corresponding to the regression equation.
We divide the three models into three grades according to the grading table: excellent, good and poor. And
the grading table is based on the grading standards provided by statistician professor Tian. The grading is
shown in Tab. 6 below.

Tab. 6 shows that the proposed model in this paper has better overall performance.

6 Conclusion

In virtual surgery, the real-time performance and accuracy of the soft tissue model are crucial. Therefore,
this paper proposes a soft tissue deformation model based on Marquardt algorithm and enrichment function.
The model uses the nonlinear viscoelastic meshless method based on element-free Galerkin to simulate the
soft tissue deformation. At the same time, Marquardt algorithm is applied to fit the relation between the force
and displacement of surface deformation on soft tissue, which improves the authenticity and real-time
performance of simulation. Furthermore, the enrichment function is applied to deal with the discontinuity
of soft tissue in the interactive operation, which makes the interactive simulation between soft tissue and
surgical instruments more stable and effective.

To verify the validity of the model, gastric and cardiac dissection operations are simulated. Finite element
model is regarded as a reference model, the RMSE of deformation displacement of the proposed model and the
interactive meshless cutting model based on the reference model are compared, so as to verify the accuracy of
the model. In terms of the real-time performance of the model, the time consumed by the local radial point
interpolation model and the proposed model in calculating the deformation is compared. In addition, the
comprehensive evaluation method of RSR is used to evaluate the proposed model, the mass-spring model
and the finite element model. The experimental results show that the deformation of the proposed model is
valid and the accuracy is equivalent to the finite element model. Moreover, the model has good real-time
performance, and nice overall performance in force feedback ability, visual fluency, deformation efficiency,
immersion, texture characteristics, interactivity and system stability.
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