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Three-Dimensional Isogeometric Analysis of Flexoelectricity with
MATLAB Implementation

Hamid Ghasemi', Harold S. Park?, Xiaoying Zhuang>* " and Timon Rabczuk® ¢

Abstract: Flexoelectricity is a general electromechanical phenomenon where the electric
polarization exhibits a linear dependency to the gradient of mechanical strain and vice versa.
The truncated pyramid compression test is among the most common setups to estimate the
flexoelectric effect. We present a three-dimensional isogeometric formulation of
flexoelectricity with its MATLAB implementation for a truncated pyramid setup. Besides
educational purposes, this paper presents a precise computational model to illustrate how the
localization of strain gradients around pyramidal boundary shapes contributes in generation
of electrical energy. The MATLAB code is supposed to help learners in the Isogeometric
Analysis and Finite Elements Methods community to learn how to solve a fully coupled
problem, which requires higher order approximations, numerically. The complete MATLAB
code which is available as source code distributed under a BSD-style license, is provided in
the part of Supplementary Materials of the paper.

Keywords: Flexoelectricity, Isogeometric Analysis (IGA), MATLAB, B-spline elements,
finite elements, coupled electromechanical problem.

1 Introduction

In dielectric crystals with non-centrosymmetric crystal structure such as quartz and ZnO,
electrical polarization is generated upon the application of uniform mechanical strain. This
property of certain materials, which is known as piezoelectricity, is caused by relative
displacements between the centers of oppositely charged ions. Flexoelectricity which has
recently attracted significant attention; however, differs from the piezoelectricity in two
aspects: 1) it is a more general effect which is available in all dielectrics including those
with centrosymmetric crystal structures and 2) the induced electrical polarization is related
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to the gradient of mechanical strain and is thus a size dependent effect [Sharma, Maranganti
and Sharma (2007); Yudin and Tagantsev (2013)].

The compression of a truncated pyramid is a common setup to measure flexoelectric
properties of dielectrics [Zhu, Fu, Li et al. (2006); Abdollahi, Millan, Peco et al. (2015);
Huang, Shu, Kwon et al. (2014); Kwon (2017)]. The pyramidal boundary shapes introduce
strain gradients and thus induce electrical voltage. By recording these two quantities, one
can quantify flexoelectricity [Cross (2006)]. Sometimes the experimental and theoretical
measurements of flexoelectric coefficients differ, noticeably [Sharma, Landis and Sharma
(2010)]. One potential reason is lack of a precise mathematical model. Available analytical
models [Sharma, Landis and Sharma (2010); Maranganti, Sharma and Sharma (2006);
Eliseev, Morozovska, Glinchuk et al. (2009); Mao and Purohit (2014)] are not capable to
address the complexity of the deformation fields; particularly around the edges of the
pyramid. There are also computational models [Qi, Huang, Fu et al. (2018); Shen and Hu
(2010); Mao, Ai, Xiang et al. (2016); Yvonnet and Liu (2017); Mao, Purohit and Aravas
(2016); Nguyen, Zhuang and Rabczuk (2018)]. Abdollahi et al. [Abdollahi, Peco, Millan
et al. (2014); Abdollahi, Peco, Millian et al. (2015)] presented a meshfree model in 2D.
Thai et al. [Thai, Rabczuk and Zhuang (2018)] presented a large deformation isogeometric
approach for flexoelectricity. He et al. [He, Javvaji and Zhuang (2019)] implemented
element-free Galerkin method to characterize flexoelectricity in a composite material.
Sidhardh et al. [Sidhardh and Ray (2018)], presented a numerical model to obtain the
effective properties of flexoelectric fiber-reinforced nanocomposite. The authors of this
paper already presented an IGA model for flexoelectricity in two-dimensional space
[Ghasemi, Park and Rabczuk (2017, 2018)]. It is noteworthy to mention that, only a few of
available computational models are in 3D [Abdollahi, Millan, Peco et al. (2015); Deng,
Deng and Shen (2018); Codony, Marco, Fern'andez-M endez et al. (2019); Liu, Wang, Xu
et al. (2018); Poya, Gil, Ortigosa et al. (2019)]. This is our motivation to extend our
previous work into three-dimensional space for precisely obtain the mechanical strains near
the edges of the pyramid.

Proposed by Hughes and his co-workers [Hughes, Cottrell and Bazilevs (2005)], the basic
idea behind IGA was to unify Computer Aided Design (CAD) and Computer Aided
Engineering (CAE). IGA shows some advantages in comparison to the classical FEM.
Among them one can point to the exact representation of the geometry, ease in adaptivity
and mesh refinement, accuracy in imposing the essential boundary conditions and the
higher and controllable continuity at the inter-element boundary. Here, IGA benefits us
with compact support high order B-spline basis functions to discretize the fourth order
partial differential equations of flexoelectricity; which demand at least C* continuous basis
functions in Galerkin method [Abdollahi, Millan, Arroyo et al. (2014)].

We present a MATLAB implementation for a 3D isogeometric formulation of
flexoelectricity. We provide necessary tutorials for each section of the code, making it
straightforward to follow. Hopefully, it will contribute to the popularity of the topic. The
remainder of this paper is organized thus: Section 2 summarizes the discretized governing
equations of flexoelectricity, Section 3 explains MATLAB implementation, Section 4
discusses about results and Section 5 offers concluding remarks.
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2 A summary of the governing equations and discretization
2.1 Governing equations

A summary of the governing equations of the flexoelectricity is presented in this section.
More details are available in [Abdollahi, Peco, Millan et al. (2014); Ghasemi, Park and
Rabczuk (2017)] and references therein. Accounting for the flexoelectricity, the enthalpy
density, H, can be written as

1 1 1
H (&, Ei, €1) = 5 Cijraéij€ia = MijkiEigjis — 5 ki EiEj + 2 Rijiimn €ij k€mn (D
where Cjjy; is the fourth-order elasticity tensor, &; is the mechanical strain, E; is the
electric field, y;jy; is the fourth-order flexoelectric tensor, h;jximn is the sixth-order strain-
gradient elasticity tensor and k;; is the second-order dielectric tensor.

The different stresses / electric displacements including the usual (6;; / D;), higher-order

(Gijic / D; ;) and physical (o;; / D;) ones are then defined through the following relations
A~ oH oH

aij=¥ij and Eiz_a_n )
Gijre = a‘% and Dy =— a"’;j 3)
0;j = 6;j — Gijx and D; = D; — Dy 4)
thus

0ij = 0ij = Gijick = Ciji€rr + MuijicEvie = Rijiimn€imnk &)
D; = Dy — Dyjj = ki Ej + fyjéra,j (6)

which are the governing equations of the flexoelectricity. By imposing boundary
conditions and integration over the domain, (), the total electrical enthalpy is

1 ~ - —
H = Efﬂ (O'ijsij + O-ijkgij,k - DiEi) aq (7)

Using Hamilton’s principle, we finally have
f (Cijradeijern — ik Ei8€ij 1 — KijOEiEj — pij1aOE i€kt + RijitmnO&i] k€mn ) A
Q

— Jp, & 0wdS + [, @86dS =0 (8)

which is the weak form of the governing equations of the flexoelectricity. In Eq. (8), u; is
the mechanical displacements, 6 is the electric potential, t; is the prescribed mechanical
tractions and @ is the surface charge density. [} and [, are boundaries of () corresponding
to mechanical tractions and electric displacements, respectively.

2.2 IGA discretization

There are two different spaces in IGA namely the physical space (Fig. 1(c)) and parameter
space (Fig. 1(b)). Knot vectors discretize the parameter space. A knot vector in one dimension
is a non-decreasing set of coordinates in the parameter space. We call knot vectors
corresponding to X , YV and Z directions as & ={&,$3, 0 Snaper} > M=
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M1 M2) o Mmaqerd and ¥ = {X1, X2, -, X14r4+1) TESpectively. i is called the knot index
and &;,7;, x; € R are the i*" knot in each direction. n, m and [ are the number of basis
functions; while p, q and r are their polynomial orders. The parent element (Fig. 1(a)) is used
for numerical integration. If knots are equally-spaced in the parametric space, they are said
to be uniform. A knot vector is said to be open if its first and last knots appear p + 1 times.

b) Parameter space ¢) Physical space including control points

a) Parent element

L1
-1-11 i1,

L
n
Y

ALt oL

d) Field approximation

Figure 1: IGA concept: parent element (a), parameter space (b), physical space and control
points (¢) and field approximation (d). G, G~* and u,denote mapping, inverse mapping
and a solution field, respectively

B-spline basis functions, N;,, (&) are recursively defined by using Cox-de Boor formula
and starting with piecewise constants (p = 0) [Hughes, Cottrell and Bazilevs (2005)]

1 if§<éE<é
Ni,O(E) — {0 f gl— f fl+1 (93)

otherwise
and forp = 1 2 3,..

lp(f) = _ i,p— 1(5) + MNi+1,p—1(§) (%9b)

€L+p+1_€i+1

assuming that — = 0. The derivatives of basis functions, Nl-',p (&) are given by

lp(f) _—_ i,p— 1(§) — i+1,p—1(f) (10)

Among important B-spline basis functions properties, one can point to partition of unity
(i1 N;»(§) = 1) and non-negativeness ( N;,(§) = 0, V<) as observable in Fig. 2.

f+p+1 $i+1
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Figure 2: Order elevation, Quadratic (p = 2) B-spline basis functions for an open uniform
knot vector & = {0,0,0,1,1,1} (a), and cubic (p = 3) B-spline basis functions for an open
uniform knot vector § = {0,0,0,0,1,1,1,1} (b)

Basis functions can be enriched by increasing their order. They are CP~™ continuous (i.e.,
there are p — m continuous derivatives) across element boundaries, where p is polynomial
order and m is multiplicity of each knot value. This higher continuity is our main motivation
to use B-spline basis functions to discretize the fourth order PDE of flexoelectricity.

Fig. 3 shows that, the support of a B-spline function of order p is p + 1 knot spans; it
means N; ,, is non-zero over {§;, §;4,+1}.There is a notion of k-refinement in IGA, which
is an order elevation to p followed by a knot insertion, to obtain C?~continuity of the basis
functions at inserted knot.

Assuming N;;,(£), M; 4(n) and Py ,-(x) to be univariate B-spline basis functions of order
p , q and r corresponding to knot vector &, 7 and y, B-spline basis functions in three

dimensional space, Ng’ﬁ,’: (&,7, y) are presented as
NYE(En, 20) = Nip(©) My q() Picr () (11a)

with the matrix form (for cubic basis functions) as

NG =
[PyMN; P;M;N, P;M;N; P;M,N; P;M;N, .. P3M3zN; P3M3N, P;M;N;]T
(11b)
Control points (red dots in Fig. 1(c)) in IGA are used to discretize the geometry and define
the degrees of freedom. They do not necessarily lie on the surface itself, but define its
envelope. As shown in Fig. 1, each element in the physical space is the image of a
corresponding element in the parameter space (and vice versa) via mapping G and G™1,
respectively. Solution fields (e.g., uy) can be similarly approximated via tensor product of
nodal values (either coordinates or solution fields) with their corresponding basis functions

F(f! 77:)() = ?21 277-:1 Z;{=1N€,;’1]’(r(fanX) Qi,j,k (12)

where {Qi, j_k} is the corresponding control points of the element.
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Figure 3: k-refinement of three element, higher-order meshes, each basis-function is CP~*
across element boundaries

For displacement u, and electric potential 8y, fields, we have

up(x,,2) = Ny Xy Yieea NU Em ) U p = (Ny)Tu® (13a)
On(x,,2) = iy XLy Xie=1 Ny (61,200 055 = (Ng)T6° (13b)
djup = 0;(N,)" u® = (B,)"u® =¢ (13c)
2;0, = a,-(Ne)T 0° = (By)"6° = -E (13d)
0;0,up = a,-ak(Nu)T u® = (H)"u® (13¢)
00k O = 0;0,(Ng)" 6° = (H,)"6° (131)
where the superscript e denotes nodal parameters at the control points;

dN; ON; ON;

> 0 0 0 —= I

aN; aN; aN; ON; ON; ON;

B)T=|0 a_yl 0 —* 0 ——*landBg=|ox 9y 9z |contain the spatial

o o o ow ow : : :

0z ay x
derivatives of the B-spline basis functions.
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H,, and H are Hessian matrices containing the second derivatives of the basis functions:

62NL' 62NL' azNi
dx2 9xdy 0x0z 0 0 0 0 0 0
9%N; 9%N; 92N;
H,=1|0 0 0 ay9x 02 9y0s 0 0 0
62NL' 62NL' 62NL'
0 0 0 0 0 0 0z0x 0z0y  0z2
0 0 9%N; 9?N; 9%N; 09%N; 09%N; 92N;
0z0x 0zdy 9z%2 Oydx 0y? 09ydz
62NL' ale- 62NL' 0 0 ale- ale- 62NL' d
0z0x 0zdy  0z2 0x%2 0xdy 0x0z an
92N; 9%N; 09?N; 09%N; 09%N; 9°%N; 0 0
dydx 9y? 0ydz 9x2 09xdy 0x0z
62NL- aZNL- aZNL,
dx2 0 0 dx0y 0 0x0z 0
ale- 62NL' 62NL'
H,=| 0 357 0 0 y9x 0 0 39792 0
d%N; 9%N; d%N;
0 0 0z2 0 0 0z0x 0 0 0zdy
9%N; 92%N; 0 9%N; 9°%N; 0 9%N; 9%N; 0
dydx 0z0x dy2  0zdy dydz 0z2
ale- 0 62NL' ale- 0 ale- ale- 0 62NL'
0x2 0z0x 0x0y 0z0y 0x0z 9z2 |
0 d%N; 92N; 0 9%N; 92N; 9%N; 9%N;
0x2  0yodx dxdy  9y? 0x0z 0yoz
The discrete system of Eq. (8) is expressed as
Ayy Aue] U fu]
= 14
Agy Agg [9] fo (19
with
Ayy = Xe fﬂe[ (Bu)TC (By) + (Hs)h(Hs)T] g (142)
Ayo =Y. J,, (Hy) 1" (Bo)"dO) (14b)
Agy =X o (Bo)n(Hy)'dQ (14c)
Ago = —Ze [, (Bo) K (Bp)" dO (14d)
fu=Zel, Nitrds (14¢)
fo==cJ;, Njwds (14f)

In Egs. (14a)-(14f), the subscript, e, in Q,, I}, and I}, denotes the eth finite element
where (0 = U, Q.. fy and fg are mechanical and electrical load vectors. We consider
isotropic elasticity and permittivity tensors and adopt cubic symmetry for flexoelectric
tensor. Thus, C, k, e and u read as follows:
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€11 C12 €12 O 0 0

€12 €11 €12 O 0 0

|12 €2 ¢ O 0 0
C=10 0 0 cu 0 O (152)

0 0 0 0 ¢ O

0 0 0 0 0 cyq
with ¢;; =Y(A —v)/(A+v)(1—=2v); ¢1, =Yv/(A+v)(1 —2v) and ¢4y = (¢11 —
€12)/2; where v denotes Poisson’s ratio and Y is the Young’s modulus.
K11 O 0
K= [ 0 k41 O ] (15b)
0 0 K1

b

M1 0 0 e O 0 e O 0
[ul3x18 =0 w12 O 0 pn O 0 e O

0 0 w2 O 0 w2 O 0 w1 -
- 0 0 0 0 0 pye O e O
0 0 g 0 0 0 puy O O (15c¢)
0 pge O pyy 0 O 0 0 0
with py, = 0 and
c;1 O 0 0 ¢ ¢ O 0 0 0 0
0 ¢i1 0 ¢, O 0 0 0 ¢4y
0 0 ¢1 O 0 0 ¢ ¢2 O
0 ¢ 0 ¢1 O 0 0 0 ¢4y
ciz O 0 0 c¢1 ¢ O 0 0
¢ O 0 0 ¢ ¢11 O 0 0
[h]18x18=(11)2 0 0 ¢ O 0 0 ¢4 €3 O
0 0 ¢ O 0 0 ¢ ¢117 O
0 ¢2 0 ¢ O 0 0 0 ¢4 O
0o - 0 ¢4 O
0 o - 0
0 0 g4
(15d)

where, [; is the length scale to guarantee positive definiteness of the strain energy
[Abdollahi, Millan, Peco et al. (2015)].

3 MATLAB implementation

Due to difference in surface areas, the truncated pyramid experiences different tractions on
the top and bottom surfaces. This results in strain gradient and consequently, electrical
polarization. We consider a pyramid subject to a uniform pressure on its top surface with
dimensions and material properties listed in Tab. 1. The boundary conditions are
demonstrated in Fig. 4. We use cubic B-spline elements, unless otherwise specified.
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Table 1: Dimensions and material properties of the pyramid (barium strontium titanate,
BST) [Abdollahi, Millan, Peco et al. (2015)]

az/ay h a vV My = My K11 Y F L
2.72/113 0.76 =w/4 0.33 121 141.6 152 200 10 nm
mm mm uc/m nC/Vm GPa N

Legends: o: inclination angle, Y: Young’s modulus, v: Poisson’s ratio, l;: Length scale,
Hyy/ M, flexoelectric constants, k4 /k35: dielectric constants

a) N\ b)
\\
N
\ ) az
N\ a NN
1 \\\ F .
\\ \)( C(\Y,
\“x // al \\\
o h o~ N
- p- G & N
a, 2

Figure 4: The geometry of the pyramid (a) loading and boundary conditions (b)

3.1 Element structure and connectivity

The function CUBIC Mesh generates cubic elements with eight vertices in the parametric
space. The inputs of the function are number of elements in X, Y and Z directions as well as
the number of nodes per element which is eight. The function returns the nodes coordinates
and connectivity as configured in Fig. 5.

The function cppolygonPrint 3D _truncated returns coordinates of the control points. For a
typical quadratic element, the corresponding control points are identified according to the
pattern shown in Fig. 6. The function pageomapping 3D _truncated (Listing 1) maps all
elements nodes from the parameter space onto the physical space.
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Figure 5: Elements connectivity and local node numbering

a) for a typical element b)

Figure 6: Control point volume array (a) and connectivity of control points in a typical
quadratic element (b)
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Listing 1: MATLAB code used to generate meshes in physical space

for e=1:numberNodes;
xi=nodeCoordinates(e,1);
eta=nodeCoordinates(e,2);
gamma=nodeCoordinates(e,3);

[shape,naturalDerivatives,Jacobianmatrix,elementDof]=shapeFunctionNURBS 3D tr
uncated(xi,eta,gamma,cpCoordinates,numberElementsX,numberElementsY ,numberEl

ementsZ,p,q,r,n,k,z);

spatter=elementDof{( 1: ndof);

counter=counter+1;
geoX(counter)=shape’xcpCoordinates(spatter,1);
geoY (counter)=shape’xcpCoordinates(spatter,2);
geoZ(counter)=shape’xcpCoordinates(spatter,3);

end

geoCoordinates = [geoX(:) geoY(:) geoZ(:)];

3.2 Assembling stiffness and force matrices

The function formStiffness 3D Truncated flexo (Listing 2) returns the global stiffness
matrix of the pyramid. The variable, GDof depicts the total number of degrees of freedom,
which is four times the total number of control points. In fact, on each control point there
are three components of the displacement field and an electric
potential, [uxy U, u, O6]T . The solution field is also obtained as
(U, Ux, o Uy, Uy Uy, o Uy Uy Uy, o Uy O Oy o Oy]T.

Listing 2: MATLAB code used to form the global stiffness matrix

Loop over elements

Loop over Gauss points
stiffness(index_disp,index_disp)=stiffness(index disp,index disp)+(B_u’xCxB_u+
Hessian sx h_matrixxHessian_s’)xabs(wtxdetJacobxJ2);
stiffness(index_phi,index_phi)=stiffness(index_phi,index_phi) -
B_electricx(Permittivity matrix)xB _electric’x abs(wtxdetJacobxJ2);
stiffness(index_disp,index_phi)=stiffness(index_disp,index phi)+(Hessian_ux
flexo matrix’xB_electric’  )xabs(wtxdetJacobxJ2);
stiffness(index_phi,index_disp)=stiffness(index phi,index_disp)+(B_electricx
flexo_matrix xHessian u”  )xabs(wtxdetJacobxJ2);

end % loop over Gauss points
end %loop over elements
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3.3 Derivatives of basis functions

As demonstrated in Fig. 1, there is a coordinate transformation in IGA in such a case that
each point x = {x,y, z} in the physical space is mapped to a corresponding point & =
{&, 1,7} in the parameter space and vice versa. In order to define the gradient (B,, and By)
and Hessian (H, and H) matrices appearing in the weak form, we need to compute
derivatives of the basis functions with respect to the physical coordinates. It takes the form

d2f 2°1Y
el o2
o%f i
ay? an> of
o*s o's (5¢)
922 _ ay? of
\ aif r = []66] 1S az_f r— []63] 5 (16)
0yoz ony or
o%f a%f 0z
dxdz &y
K 2%f
\9xdy/ \asn

with [J¢¢] and [J 3] defined in Appendix A, where derivation of Eq. (16) is presented. The
basis functions with their first and second natural (w.r.t £, 1, x) derivatives are returned by
the shapeFunctionNURBS 3D truncated function. Listing 3 converts natural into
geometrical (w.r.t X, Y and Z coordinates) derivatives.

Listing 4 applies uniform pressure on the top of the pyramid. Firstly, the corresponding
elements are picked up and then the pressure is applied by integrating the parameter
P _APPLIED top using 2-D Gauss quadrature method. The size of the force matrix is equal
to the total number of degrees of freedom, GDof, and it is assembled asForce =

[fxl fxz fxn fy1 fyz fyn le fzz fzn f91 fBz an]T-
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Listing 3: MATLAB code used to convert natural into geometrical derivatives

invJacobian=inv(Jacobianmatrix);
detJacob=det(Jacobianmatrix);
XYderivatives=naturalDerivativesxinvJacobian;

J2 = ((nodeCoordinatesX(el1+1)-nodeCoordinatesX(e1)) x (nodeCoordinatesY (e2+1)-
nodeCoordinatesY(e2)) x (nodeCoordinatesZ(e3+1)-nodeCoordinatesZ(e3)) )/8;

dervX xi=Jacobianmatrix(1,1); dervY xi=Jacobianmatrix(2,1);

dervX eta=Jacobianmatrix(1,2); dervY eta=Jacobianmatrix(2,2);
dervX chi=Jacobianmatrix(1,3); dervY_chi=Jacobianmatrix(2,3);
dervZ xi=Jacobianmatrix(3,1); dervZ eta=Jacobianmatrix(3,2);

dervZ chi=Jacobianmatrix(3,3);

J 6 6=[dervX xi"2; dervX eta’2; dervX chi”2; dervX etaxdervX chi;
dervX xixdervX chi; dervX xixdervX eta; dervY xi*2; dervY_eta"2; dervY chi"2;
dervY_etaxdervY chi; dervY xixdervY chi; dervY xixdervY eta;dervZ xi"2;
dervZ eta’2; dervZ chi™2; dervZ etaxdervZ chi; dervZ xixdervZ chi;
dervZ xixdervZ_eta; 2xdervZ_xixdervY_xi;

2xdervZ etaxdervY eta;2xdervZ chixdervY chi;(dervY etaxdervZ chit+dervY chi
xdervZ_eta);

(dervY_xixdervZ chitdervY_ chixdervZ xi);(dervY xixdervZ etatdervY_etaxderv
Z xi);

2xdervZ_xixdervX xi;  2x  dervZ etaxdervX eta;  2xdervZ chixdervX chi;
(dervX etaxdervZ chit+dervX chixdervZ eta);(dervX xixdervZ chitdervX chixder
vZ xi); (dervX xixdervZ etatdervX etaxdervZ xi); 2xdervX xixdervY xi;
2xdervX_ etaxdervY_eta; 2xdervX_chixdervY_chi;
(dervX etaxdervY chitdervX chixdervY eta);

(dervX xixdervY chit+dervX chixdervY xi);(dervX xixdervY etatdervX etaxderv
Y _xi)];

XYderivatives_second=(naturalDerivatives second-
XYderivativesxJacobianmatrix 3 6)xinv(J_6 6);
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Listing 4: MATLAB code used to apply uniform pressure on the top of the pyramid

[W,Q]=quadrature(noGPS_REDUCED, ‘GAUSS’, 2); % noGPsxnoGPs point
quadrature

Loop over top elements
for gp=1:size(W,1);
pt=Q(gp:);  wt=W(gp);  ptxi=p(1);  pteta=pt(2);

xi=(nodeCoordinatesX(1,e1))+0.5%(ptxi+1)*(nodeCoordinatesX(1,e1+1)-
nodeCoordinatesX(1,e1));

eta=(nodeCoordinatesY(1,e2))+0.5x(pteta+1)x(nodeCoordinatesY(1,e2+1)-
nodeCoordinatesY(1,e2));

% 2D shape functions and derivatives

[shape,naturalDerivatives,naturalDerivatives second,Jacobianmatrix,Jacobianmatrix
2 3.elementDof]=shapeFunctionNURBS_2D(xi,eta,cpCoordinates(topNodes,1:2),nu
mberElementsX,numberElementsY,p,q,nnel,n,k);

% Jacobian matrix, inverse of Jacobian, derivatives w.r.t. X,y
invJacobian=inv(Jacobianmatrix);
detJacob=det(Jacobianmatrix);
XYderivatives=naturalDerivativesxinvJacobian;

J2 = ((nodeCoordinatesX(el1+1)-nodeCoordinatesX(el))*(nodeCoordinatesY (e2+1)-
nodeCoordinatesY(e2)))/4;

indice_pressure_force=elementDof{(1:ndof xy) +zx(numberControlpoints_xy)+
2xnumberControlpoints ; % on top surface in Z direction

% Force vector

force(indice pressure force)=force(indice pressure force)+shapexP APPLIED topx
wtxdetJacobx]J2;

end
end %loop over top elements

3.4 Boundary conditions

To apply the equipotential boundary condition on the top surface of the pyramid, penalty
stiffness method is used as described in Listing 5. The electric potential degrees of freedom
corresponding to the top nodes are tied to each other one by one in both X and Y directions.
The script applyBC 3D (see Listing 6) is used to impose mechanical boundary conditions
as well as the zero-electric potential boundary condition on the bottom edge.
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Listing 5: MATLAB code used to apply equipotential electrical boundary condition
DUMMY AA=reshape((topNodes),n+1,k+1);
DUMMY _BB=reshape((topNodes),n+1,k+1)';
for j=1:k+1;
for i=1:n;
sctr x =[DUMMY _BB(j,i) DUMMY_ BB(j,i+1)]+3*numberControlpoints;
sctr y =[DUMMY_AA(,i)) DUMMY _ AA(j,i+1)]+3xnumberControlpoints;
w_phi =100000;
penaltyStiffness_phi =w_phix[1 -1;-1 1];

stiffness(sctr_x,sctr_x) = stiffness(sctr_x,sctr x) + penaltyStiffness_phi;
stiffness(sctr_y,sctr_y) = stiffness(sctr_y,sctr y) + penaltyStiffness_phi;
end
end

Listing 6: MATLAB code used to apply ground electrical and mechanical BC

bewt=mean(diag(stiffness)); % a measure of the average size of an element in K
% used to keep the conditioning of the K matrix
force=force-stiffness(:,udofs)xuFixed; % modify the force vector

force=force-stiffness(:,vdofs)xvFixed; force=force-stiffness(:,wdofs)xwFixed;
force=force-stiffness(:,phidofs)xphiFixed; force(udofs) = bcwtxuFixed,
force(vdofs) = bewtxvFixed; force(wdofs) = bewtxwFixed;

force(phidofs) = bcwtxphiFixed;

stiffness(udofs,:)=0; % zero out the rows and columns of the K matrix
stiffness(vdofs,:)=0; stiffness(wdofs,:)=0; stiffness(phidofs,:)=0;
stiffness(:,udofs)=0; stiffness(:,vdofs)=0; stiffness(:,wdofs)=0;
stiffness(:,phidofs)=0;

stiffness(udofs,udofs)=bcwtxspeye(length(udofs)); % put onesxbcwt on the
diagonal

stiffness(vdofs,vdofs)=bcwtxspeye(length(vdofs));
stiffness(wdofs,wdofs)=bcwtxspeye(length(wdofs));
stiffness(phidofs,phidofs)=bcwtxspeye(length(phidofs));

3.5 Post processing

The function VTKPostProcess3d, is adopted to visualize the numerical results using
ParaView which is an open-source, multi-platform data analysis and visualization platform.
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4 Results and discussions

Fig. 7 shows the simulation results for the inclination angle, & = % with different area ratios,

2
R = (%) . The pressure is set so that to apply the load of F = 200 N for all values of R.
1

The electric potential and strain through thickness direction are plotted for each case. The
results show acceptable conformity with results presented in Abdollahi et al. [Abdollahi,
Millan, Peco et al. (2015)]. It is observable that an increase in R causes larger strain gradients

and consequently more electric polarization. The same trend is also found for a = g as
shown in Fig. 8.
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values of area ratio, R = (Z—Z) . In all insets a = % and F = 200 N
1

4.1 Extensions

A suite of extensions can be thought for the presented code. For instance, change in
supporting and boundary conditions can be mentioned. Flexible supports instead of rigid
type can cause bending of the pyramid, besides its compression. The inverse flexoelectric
effect can be investigated by applying electric potential on the electrodes and measure the
deformation of the pyramid. A flexoelectric multi-pyramid composite can be designed
using multi patches.
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1

5 Concluding remarks

We present a three-dimensional isogeometric formulations of flexoelectricity with its
MATLAB implementation for a truncated pyramid setup. We take advantages of the B-
spline basis functions to discretize the fourth order partial differential equations of
flexoelectricity; which demand at least C continuous basis functions in a Galerkin method.
Our numerical simulation clarifies that the strain gradients are highly localized around the
edges of the pyramid and their magnitudes increase by an increase in the pyramid area ratio,
R. We provide MATLAB code as Supplementary Materials of the paper with explanations
to facilitate the popularity of the topic.
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Appendix A
Using the chain rules of partial differentiation for a given function f(x(§)) we can write:
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(A1)

(A2)

The 3 X 3 matrix is called J which is the Jacobian matrix of the transformation. For a
quadratic B-spline basis functions corresponding to an element with 9 control points, we

have 9 basis functions f3, f5, ...
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To calculate the second derivatives we write:
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Finally, one can compute the derivatives with respect to physical coordinates as:
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