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1 INTRODUCTION  
THE underlying distribution of many real time 

market data are usually assumed to be uni-modal. 
However the assumption does not consider those 

exceptional market shocks which are always 
influential in measuring market impacts. Fong and 

Wong (2008) argued that the probability of these 

shocks can be underestimated if the multimodal 
components are neglected. As a matter of fact, the fat 

tail pattern, which can be treated as a multimodal 
distribution, has been empirically and commonly 

encountered. Market events/shocks do not follow 
central limit theorem, but are usually not 

mathematically well-behaved. The well known “80-
20” rule (Also known as Pareto principle that is for 

many events, roughly 80% of the effects come from 

20% of the causes) is a manifestation of a fat tail 
distribution. People thus start to assume such 

heterogeneous economic market data to be generated 
from a mixture of Gaussian distribution (i.e. Wong 

and Li (2008), Nguyen and Wu (2017)) in a sense that 
a normal Gaussian distribution with a fat tail can be 

treated as a minor Gaussian distribution centered on 

the tail of the major Gaussian distribution. Instead of 

estimated the parameters of a Gaussian with fat tail, it 
would be more sensible to estimate a few normal 

Gaussians that can be used to form that fat tail 
Gaussian.  The idea can also be regarded as local 

model approach. 
The purpose of this study is to explicitly model the 

density of a number of possible observations by a 

probabilistic vector quantization algorithm. One of 
such algorithms is known as Gaussian Mixture Model, 

which has been widely used to describe a mixed 
distributions that represents the probability 

distribution of a number of sub-populations within an 
overall population, such as Seo and Thorson (2016), 

McLachlan, et al. (2004), Zhuang, et al. (1996), 

Jacobs, et al. (1991). The observed density is 
represented by a weighted sum of component 

densities, while the weighting factors are all non-
negative and sum to one. By using such a weighting 

scheme, the mixture model can be used to model a 
rich class of densities by assuming a number of 

sources that generate the data each with a probability 
equal to its mixing weight. The model can generate an 

entire distribution of the parameters of interests, 

leaving users to decide which quantile to report. In 
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prediction of the return of a financial instrument, the 

mixture model can be a comprehensive statistic 
inference of underlying investment risks. Moon (1996), 

Xu and Jordan (1996) suggested that a conventional 
approach being used to estimate the parameters of a 

mixture model is the Expectation Maximization (EM) 
algorithm. The EM algorithm is an iterative procedure 

that can find the local maximum of a certain log-

likelihood function. The popularity of EM algorithm 
comes from its easy implementation and its robustness 

in finding a local maximum of the log-likelihood 
function. However the EM algorithm may not always 

be able to reach the global minimum, as sometimes it 
can be sensitive to the initial status of the parameters. 

Besides, the EM algorithm, on its original form, is a 
batch algorithm which can be inefficient in processing 

online data and is not always computationally efficient 

as being argued by Figueiredo and Jain (2002) and 
Verbeek, et. al. (2003). 

Successful applications of Self-Organizing Map 
(SOM) by Heskes (2001), Verbeek, et. al. (2003) on 

iteratively estimating parameters of mixture model 
have appeared on literature for ages. Yin (2006) 

proved that SOM is a simplified Gaussian, while the 

neighborhood is functioning as the variance of 
Gaussian. In general, SOM enables a representation of 

a higher dimensional data space by a lower 
dimensional latent variable space with a spatial 

organizing algorithm. The neighborhood function 
enables SOM to preserve topology by keeping similar 

clusters “nearby”. Heskes (2001) showed that SOM is 

a popular clustering method applied to many 
engineering problems. However, SOM on its original 

form suffers from inherent deficiencies, such as the 
absence of a cost function, the lack of a theoretical 

basis for choosing learning rate and neighborhood 
parameters, and no definition of a probability density. 

In this paper, we propose a SOM alike learning 
algorithm using probabilistic mixture model. The 

proposed algorithm uses a recursive Bayesian 

approach which can yield a posterior distribution 
based on both the informative prior (if there is any) 

and data samples. Since we aim to analysis patterns 
buried in market data of large size, the proposed 

algorithm uses iterative learning process, that is, the 
data is processed online rather than in a batch. The 

posterior distribution at each step of learning is a 

revision of the previous prior. The magnitude of 
revision reflects the information contains in samples. 

In order to avoid the improper initialization/learning, 
such as trapped in a local minima, the adaptive 

simulated annealing technique is applied to “distort” 
the originally monotonically decreasing learning rate. 

Meanwhile, we further impose an additional 

topological constraint on the parameter updating. That 
is although the updating Gaussian variance is well 

functioning as the neighborhood function of SOM, the 
topology order/shape of a certain choice of lattice can 

apply a further control on the learning process at a 

little cost of computational efficiency. The structure of 

lattice should be carefully chosen based on the prior. 
Finally in order to prevent unnecessary learning, a 

profile likelihood confidence interval has been used to 
cut down the maximum number of iterations. The 

proposed algorithm can be useful in other applications 
provided the data has clustering nature, i.e. cross-

sectional analysis of temporal data and can reach the 

solutions that are similar to or even better than those 
obtained by batch EM operations. 

2 METHODOLOGY 
One of the key challenges of mixture model 

estimation is to find a number of appropriate density 

parameters  ,k k k   of the model/density k . There 

is a trade-off between the precision of estimated 
parameters and the computation efficiency. When 

k is assumed to be a diagonal covariance matrix, the 

distribution of sub-models is of an ellipse shape with 

its horizontal axes either parallel or orthogonal to data 
ordinates. If 

k  is a spherical covariance matrix, the 

sub-model distributions are circle-alike with different 

radiuses. In this paper, we define
k  as a full 

covariance matrix, the distribution of sub-models can 

be any tilted ellipse shape. In order to make the 
parameters estimation not only precise but also 

efficient in a sense of robustness in its convergency, 
attempts have been made to integrate a SOM alike 

general learning algorithm that can be applied to any 
probabilistic mixture model. Under such probabilistic 

framework, the neighborhood function of Kohonen 

SOM can be interpreted as a distribution over the 
component. Yin (2002) and Verbeek, et. al. (2005) re-

derived the original SOM algorithm through defining 
a lower bound which consists of the data log-

likelihood and a non-negative Kullback-Leiler 
divergence. Since Cover (1991) proved the Kullback-

Leiler divergence has a form of entropy, it can be 
regarded as a penalty which is high when the true 

posterior is far from its estimation. 

2.1 Gaussian Mixture with classic EM approach 
Probability distribution of a process ( )f X can be 

represented by a Gaussian mixture if it is defined as a 
convex combination of Gaussian densities. A 

Gaussian density k  defined in a d -dimensional space 

can be defined as 
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where
k  , which is introduced previously as a mixture 

probability, can be treated as a prior probability as 

well as a self-organizing adaptive parameter or 

weight. 
The classic approach used to estimate time 

invariant parameter  is to maximize the joint 

likelihood    | ( ) |tP X F X t   from a group of 

independent (ideally) samples 
tX . The Expectation-

Maximization (EM) algorithm can be used to update 

the parameters   iteratively. 

For each input data sample
tX , a discrete latent 

variable (The latent variable is always a binary 

sequence. The number of elements in the sequence is 
equal to the number of mixture density K ), 

tc  is 

defined to indicate which Gaussian component might 
generate (by how much in percentage) the input data 

sample 
tX . The mixture probability 

k  can be thus 

generated by, 
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The density parameters  ,k k k   of the sub-

model or sub-density k  can be generated by, 
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where 1, ,k K  and the probability of the data 

sample
tX  generated by Gaussian component k  is 

denoted by 

  | , ( )t t k k tP c X p X   (6) 

Thus, each sub-model k  has an associate 

probability ( )k tp X . 

However, the EM algorithm can not guarantee the 

best solution, which implies that the likelihood may 
not be bounded and the solution yielding maximal 

joint likelihood may not be found. In fact, Lindsay 
(1983) found that the classic EM approach may lead to 

a singular estimation of parameters. 

2.2 Self-organizing Estimation 
The proposed model is defined by a mixture of K  

Gaussian densities. A bit different from the updating 
mechanism of conventional finite Gaussian mixture 

model, at each time step t , the model is presented by 

a data sample ( )X t , then a winning Gaussian 

component and its neighbors (equal or less than 1K  ) 

are updated in a self-organizing manner. 

Only one Gaussian component, which is defined as 

the winning component of the mixture model, is 
suppose to have better chance (i.e. with maximum 

likelihood or highest posterior probability) to generate 
the input data sample 

tX . The probabilities of other 

Gaussian components that may generate input data 
sample 

tX  decrease (proportionally) according to the 

topological distance (i.e. similarity) to that winning 
component. The topology can be defined by a 

rectangular lattice, a hexagonal lattice or any other 

geometrical structures that meets the needs of the 
sample data. 

Heskes (2001) had concluded that algorithm of 
self-organizing map for vector quantization is similar 

to mixture modeling in many applications. Self-
organizing has a neighborhood structure which can be 

used to regulate the learning process. Parameters of 
each Gaussian distribution (similar as the neuron of 

SOM) can be estimated iteratively following a SOM 

manner - a guided EM process. Giving a piece of input 
data sample

tX , a good quantizer 
kW  with a low 

quantization error should have high probability to find 
the input

tX . Hence, we may use a confusion 

probability ( )kg i  which means the input sample is 

generated by mixture component i  instead of k . 

  ( ) |k k t kg i p c i g   (7) 

the probability ( )kg i  is a distribution around the 

center unit k . The probability ( ) ( )k kg k g i  which 

means the sub-model is uni-modal, while 

1 2( ) ( )k kg i g i  if 
1i  is topologically close to k  than 

2i  in the lattice. This definition which is originally 

derived by Verbeek (2005) is inspired by the 
neighborhood function of self-organizing map. The 

probability ( )kg i  can be approximated by a Gaussian 

kernel / neighborhood function. 
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where 
2

,i k  represents a topological distance (i.e. a 

similarity measure) which is commonly used in the 

original SOM algorithm, ( )k t  and ( )t  are two 

positive decreasing learning rates shrinking with time 
t  which are quit sensitive and need to be estimated 

empirically. The quantization error can thus be 

defined by using the confusion probability ( )kg i , 
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where 
i

  is a neighbor of k  and 
tW  is the reference 

weight vector of neuron i  in the SOM. 
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 k tp X denotes the probability that data sample 
tX  

is assigned to neuron k . Since the confusion 

probability ( )kg i  corresponds to the lateral-

interaction strength, it is a decreasing function of the 

distance between neurons k  and i . The definition of 

( )kg i  enforces the self-organization of the network. It 

assigns a decreasing probability to neuron i  as their 

topological distance to neuron k  increases, and the 

value of ( )kg i  can indicate whether the neuron i  

would be updated ( ( ) 0kg i   means not update) and 

by how much (in case when ( ) 0kg i  ). The 

confusion probability ( )kg i  can thus be taken as the 

neighborhood function which is also proportional to 

the rate of update in the SOM. 

Meanwhile,  k tp X  is an updated probability 

calculated by the updated parameters of neuron k  

which corresponding to a maximum likelihood in the 
previous step of parameters learning. Thus for certain 

input 
tX , there will be a neuron   with 

   t k tp X p X   where k  . If we define   as 

the winning neuron with the highest posterior 
probability, neurons have relatively lower posterior 

probabilities forms a “neighborhood” of winner  . 

However, this neighborhood doesn't include any 
topological information. The topology thus can be 

automatically formed by the distribution of posterior 
probabilities rather than being forced to follow a 

certain lattice structure (i.e. introduction of confusion 

probability ( )kg i ). 

In order to maintain the topological preserving 
property given some useful prior information, we 

include both pre-defined neighborhood which is the 

confusion probability ( )kg i  and a posterior 

probability  k tp X  during the learning process. Thus 

we could have “double” neighborhood functions to 

ensure the convergence of the proposed SOM alike 
EM algorithm. 
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Figure 1. “Shape” of the neighbourhood functions and the 
posterior probabilities at different learning epochs (from 100 
epochs in the upper left to 900 epochs in the lower right) 

In order to show the effects of “double” 

neighborhood functions as well as other features of the 
proposed algorithm, we implement the algorithm with 

a set of artificial data (i.e. with five mixed centers 
illustrated by the upper-half of Figure2). The 

evolution process of neighborhood function of one of 
the mixed centers is shown on Figure1. It shows that 

both the ( )kg i  and  k tp X  can gradually catch the 

center (i.e. location of the winning unit) and its 
neighbors in general. The evolution process 

(compromising) of neighborhood in Figure1 shows 

that the “shape” of the neighborhood are not similar at 
the beginning, but will be able to gradually get 

converged.  
The use of double neighborhood functions makes 

the algorithm more capable in accommodating not 

only the “nature” distribution  k tp X , but also the 

“man-made” topological conservation ( )kg i . Thus 

more robust when handling data with difference 

properties.  The double neighborhood is one of major 

inventions of this study and is the most important 
connection between SOM algorithm and Gaussian 

mixture model.  Successful implementations of the 
proposed algorithm on both artificial data and real 

world data verify the double neighborhood setting is a 
good attempt in incorporating self-organizing 

parameter estimation into the proposed algorithm.  

2.3 Recursive Bayesian Approach 
The Bayesian approach can improve the SOM's 

classification ability in dealing with Gaussian mixture 
problem. In a finite SOM lattice with K units, each 

unit (or sub-model) can be parameterized by a 

Gaussian kernel  ,k k k    and a mixture weight 

k . The mixture weight is used to be initialized by a 

random value or equals to 1/ K  and being updated 

accordingly. 

In a Bayesian approach, the past 
k  (or ( )P c  

whose average over all samples is 
k ) is treated as a 

prior. At each time step, the posterior probability of 
each Gaussian unit is updated/estimated by 
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The winning unit is defined as the one with highest 

posterior probability at each epoch. It shows that the 
way to find the best matched unit on the self-

organizing map is coincident with the Maximize a 

Posterior (MAP) approach. 
In order to update the parameters of network 

iteratively and efficiently, a popular approach is to 
define the “direction” of learning by minimizing the 

Kullback-Leibler information metric which has been 
detailed in Runnalls (2007). The partial derivatives of 
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the information metric, with respect to unknown 

model parameters can be used to form a recursive 
stochastic approximation method, e.g. the Robbins -

Monro method (utilized by Byrd (2016) and Banks 
(2017)), which can be used to find these parameters. 

The following updating equations are then obtained. 
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where ( )t  is a step size or learning rate of the 

Robbins-Monro algorithm which is always 

monotonically decreasing and must satisfy some mild 

constrains. It used to be in a form of  1/ at b or 

 1/ 1/at a  and 0 1a  , with higher values of 

  bring more variability to the estimations. 

The learning process sometime is, however, likely 

to trap into local optima, due to the effects of “double” 

neighborhood. Although these two neighborhood 
functions might have different topological structure, 

but both of them could very much likely have a same 

wining neuron with its Gaussian kernel 
k  

neighborhoods, as being depicted in Figure 1. 

 argmax ( | , )k t t kP c


  x  (14) 

By integrating the topological constraint, the 

neighborhood function ( )kg i  depresses the learning 

rates for those neighbor neurons. Whilst the winning 
neuron is updated relatively faster than its neighbors 

by imposed ( )kg i . It will consequently weaken the 

neighborhood effects which aim to reduce the 
possibility that the learning process may trap into local 

minima.  

2.4 Adaptive Learning Process 
In order to avoid the side effect of “dual-

neighborhood” function, we should extend the original 
learning process or make it adaptive to the learning 

speed. The value of likelihood based on the updating 
parameters should increase during the learning 

process. However, if the value of likelihood is gaining 

too quick, the learning process may also trap into a 

local minimum. To make the algorithm adaptive to the 
adverse effects of “dual-neighborhood” function and 

achieves a good balance, we propose an annealing 
algorithm which can slow down or re-start the 

learning process from an earlier point (during the 
learning process) when necessary. 

Annealing is a mechanism/process during which 

the temperature of some metal being dynamically 
cooled down to make it reaches a state of low energy. 

Shown by Fan (2015), simulated annealing is a 
process starting from a random search at high 

temperature and gradually changes to a greedy descent 
as the temperature approaches zero. In our case, if the 

newly learnt parameters can generate a higher 
likelihood value (i.e. better fit to the sample data) then 

we can accept the assignment of this new parameters. 

Otherwise, if in a case of lower likelihood value, we 
may still accept the parameters, but with some 

relatively small probability, depending on the 
temperature (i.e. stage of learning) and how much it is 

worse than the previous parameters. Simulated 
annealing requires an annealing schedule, which 

specifies how the temperature is reduced as the search 

progresses and there is no guideline to choose an 
appropriate schedule. Thus the parameter setting is 

done by trial-and-error.  
In this paper, we imposed the annealing process on 

the learning rate 
( )t

 of the Robbins-Monro 

algorithm. Instead of using a monotonically 

decreasing variable, we made 
( )t

adaptive to the 

posterior probability 
( | , )t k kP c x

 as being shown by 

the Pseudo-code of Annealing Schedule as follows, 
 

 

The annealing effects is shown in Figure 2. It can 

be found that the annealing schedule works well with 
SOM mixture recursive Bayesian model. With the 

help of annealing, represented by the blue curve in the 
lower part of Figure2, the learning process which has 

been “interrupted” is more sustainable and adaptable, 
however without annealing effects, the red curve 

represents a less efficient learning: the learning 

process doesn't improve the model performance since 
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approximately 600 epochs. The clustering 

performance shown by the sum of log-likelihood in 
the lower figure and the estimated means (date centers) 

as well as the standard deviation (circles) also 
confirms that annealing schedule can improve the 

quality of learning outcome. 
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Figure 2. The figure above shows the learning outcomes of 
SOM mixture recursive model with and without adaptive 
annealing. The black dots represent original data points which 
consist of three groups of points and the black circles 
represent the centres and standard deviations of three groups. 
The red dot lines and crosses illustrate the outcomes of SOM 
mixture recursive model without proposed annealing schedule, 
while the blue dashed lines and triangles illustrate the 
outcomes of those without annealing schedule. The figure 
below shows the learning processes of the proposed model 
both with (red) and without (blue) adaptive annealing. 

The parameters of annealing process is not as 

crucial as the learning rates in the self-organizing 
stage. Value of parameters would be mostly 

acceptable as long as the learning process can be 
somewhat slowing down.  The annealing process is an 

adaptive adjuster in the proposed algorithm, so it 
should be purposely designed according to the nature 

and needs of its application.  

2.5 Model Assessment 
Recursive model estimation is always associated 

with a huge amount of computation. In order to 
dynamically assess the quality of those model 

parameters as well as optimize the learning process, 
we proposed to use the likelihood ratio instead of 

likelihood to judge whether the learning process 
should be terminated during the learning process . The 

traditional maximum likelihood estimation approach 

seeks the maximum of a likelihood function. In the 
case of recursive learning, as the data arrives 

randomly, so does the update of model parameters, 
changes of likelihood thus may not be always going 

towards a maximum. Consequently the maximum 
likelihood estimation, though generally applicable to 

many applications, may not be universally suitable, 

especially in the case when process control is needed. 
Likelihood ratio, on the other hand, assesses the 

development of likelihood and can signal when 
updating of parameters can not make any significant 

difference. 

If we denote the parameter set 
*  as the estimated 

parameters for the less informative (or previous) 

model, while the learning parameter ̂  denotes the 

estimated parameters for the informative (or updated) 

model, a likelihood ratio test can be constructed as 
follows, 

  *

*

ˆ( ) ˆ2log 2 ( ) ( )
( )

L
LR

L


 



 
    

 

 (15) 

where (.)L  denotes a likelihood function, LR  

represents the value of likelihood ratio and is believed 

to follow the chi-square distribution (
2~ pLR  ), p  is 

the degree of freedom. In our case, we aim to measure 

the learning efficiency by testing whether consecutive 
learning steps are making significant difference, that is 

with a large LR  where 
*  and ̂  represent 

consecutive estimated parameters. 

As being shown, the value of LR  shows the 

difference between two log-likelihood functions ˆ( ) , 

*( ) . The magnitude of the difference depends on 

the “curvature” of the likelihood function (.)L  which 

is used to be defined by Jiang (2016) as a so-called 

information matrix, 

 

2

2

3/2
2

( )

( )

( )
1

d

dI

d

d










  
  
   

 (16) 

since ( )  is a function of   with its maximum at 

*( ) , it has * *( ) / 0d d   . The curvature that is 

represented by the information matrix ( )I   can be 

rewritten as * 2 * *2( ) ( ) /I d d    which equals to 

the Hessian of ( )  at 
* . ( )  with large curvature, 

or more information, will have relatively large LR  
comparing with that of with smaller curvature. 

Chen (2016) argues that the profile likelihood 

confidence interval derives from the asymptotic Chi-
squared distribution of the likelihood ratio statistic. It 

is believed to be more accurate than the Wald test 

when sample size is small. The null hypothesis 
*̂   

is rejected at 0.05   if 2

1 (0.95)LR  where 

2

1 (0.95)  is the 0.95 quantile of a Chi-squared 

distribution with one degree of freedom. If the 
*̂   

can not be rejected, we can then conclude that update 

from 
*  to ̂ is insignificant. It can serve as a 

criterion whether to stop the training / parameters 
updating. 
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In the proposed mixture model, we have more than 

one parameter to estimate. Thus the marginal profile 
confidence interval is applied, where all but one 

parameter has been fixed to a specified value, so that 
the log likelihood becomes a function of just one 

parameter. If suppose we would like to take a 
hypothesis test on  , where the null hypothesis is 

*

0
ˆ:H   . The likelihood ratio statistic should be, 

 
*

2

| 1* *

ˆ( , )
2log ~

( , )

L
LR

L








 
  

 
 (17) 

We can reject the null hypothesis *̂   at 

0.05   if 
2

| 1 (0.95)LR   . Likewise, we then 

hold   for some specific value and test whether the 

null hypothesis *    at 0.05   can be rejected 

by checking if 
2

| 1 (0.95)LR    . 

Since the proposed training process, which 
incorporates the SOM learning mechanism, is not very 

sensitive to the number of iterations and can always 

converge to a local optima, we only stop the learning 
process when both   and   can not effectively 

change the corresponding likelihood ratio, meanwhile, 
as the raw sample data is fed in one by one in the 

learning process, the corruptive noise will be very 

likely to generate misleading LR  (either too large or 
too small) and then mistakenly interrupt the training. 

Therefore we need to use a compromised solution 

which measures an averaged LR  over a certain time 
window and compare with a threshold value. Any 

averaged LR  below that threshold should be the stop 
signal of the training process. 

3 EXPERIMENT  
IN order to justify the usefulness of the proposed 

method upon time series analysis, we apply the 
method on both artificial data and real data. For the 

artificial data, we generate both one-dimensional and 
two-dimensional time series data. For the real data, we 

collect the wine data which are the results of a 
chemical analysis of wines grown in the same region 

in Italy but derived from three different cultivars (The 

data is retrievable from Machine Learning Repository 
http://archive.ics.uci.edu/ml/datasets/Wine), and 

foreign exchange rate data (USD/EUR) as well as the 
Chinese stock prices data which is collected from 

CIS300 component stocks (blue chip stocks), finance 
related stocks in A share board (Chinese main board), 

Small and Medium-size Enterprise board and Growth 

Enterprise Market board (known as Chinese 
NASDAQ). 

Firstly we create a set of “peaked” data, which is 
assumed to follow a multi-modal distribution. The 

data points are randomly generated with pre-allocated 

two centers ( ) and pre-specified distributions ( ). 

The proposed method has been used to model the 

density distribution of the randomly generated data. 
Figure 3 depicts the learning outcome. 

 

Figure 3. The figure above is a histogram which shows the 
original data distribution while the figure blow shows the 
learnt distribution by a 3-D mesh using proposed adaptive 
recursive self-organizing mixture map. 

The estimated distribution can visually well match 

the density (e.g. the shapes and locations of two 
peaks) of generated data. In order to verify the 

robustness of the algorithm, we repeated independent 

estimation for 100 times while Figure 3 shows only 
one of the results. It clearly shows that on average the 

estimated distribution can well catch the real 
distribution. The generating parameters, the averaged 

estimated parameters as well as the bias in percentage 
are shown in the Table 1. It shows that quantitatively 

the estimation of both the locations (represented by 
 ) of data centers and the “shapes” (represented by 

 ) of distributions are trustworthy, though some of 
estimated   are not very stable, representing by 
relatively large bias. Such instability is highly 

correlated with the level of corruptive noise. The 

percentage of bias though cannot tell that the 
estimated parameters are “significantly” equal to the 

original parameters, but is within a satisfying level. 
 
Table 1. The Parameters Estimation on Figure 3 
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Figure 4. The upper figure shows the artificial data generated 
by three pre-allocated centres as well as associated standard 
deviations. The lower part shows the estimated centres (red 
cross) and combined distribution (red dashed line) against the 
original distribution (black circles and black solid line).  

Figure 4 shows the capacity of the proposed 
algorithm on identifying the generating parameters 

(   and  ) given the “noisy” one-dimensional data. 

When estimating the parameters of one dimensional 
Gaussian models, we replace the covariance matrix by 

a single variance which simplifies the learning 
process. The estimated results shown by the red 

crosses and dashed line are very close to the desired 

black circles and solid line. Together with the 
comparative results in Table 2, we can generally 

conclude that the proposed adaptive recursive SOMM 
algorithm is able to outperform general EM in both 

estimating accuracy and computing efficiency(in 
terms of less number of epochs before the learning 

outcome reaches a satisfying level of accuracy) in the 

case of one dimensional sample data. 
 

Table 2. The Parameters Estimation on Figure 4 

 

Figure 5 shows the clustering performance of the 
proposed adaptive recursive SOMM on the classic 

wine data (These data are the results of a chemical 

analysis of wines grown in the same region in Italy but 
derived from three different cultivars. The analysis 

determined the quantities of 13 constituents found in 
each of the three types of wines. The data can be 

retrieved from UCI database.). In order to visualize 
the clustering results more straightly, we draw four 

scatter plots each with 2 different attributes only. It 

shows that the algorithm can not only catch the peaks 

of data densities but also the structure of their 

distributions. 
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Figure 5. Four figures show the clustering effects of the 
proposed adaptive recursive SOMM algorithm on 8 (out of 13) 
attributes of the three types of wines. We indicate the three 
different types of wine by cross, star and dot, and the 
clustering result is shown by three blue circles with their 
shape determined by the covariance matrix Σ. 

Figure 6 indicates that the algorithm is also able to 
deal with stock data with satisfying accuracy. Daily 

closing prices of 240 stocks, in the group of 60, are 
randomly collected from four different sources: 

Chinese Growth Enterprise Market board, Small and 
Medium-size Enterprise board, non-finance blue chip 

shares and finance related shares during two years' 

interval since 1 March 2013 to 1 March 2015. It can 
be seen that each of the four groups performs quite 

differently. The proposed algorithm can well catch the 
distribution of the stock data.  
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Figure 6. Stock prices (in terms of average daily return and 
standard deviation from 1 March 2013 to 1 March 2015) 
collected from four different categories. The red stars 
represent stocks in Growth Enterprise Market board; the 
green crosses represent finance related stocks; the blue dots 
represent blue chip stocks; the black triangles represent stocks 
in Small and Medium-size Enterprise board. The proposed 
model can generally discover the difference as well as 
boundaries of those four categories. 

4 CONCLUSION AND FUTURE WORKS 
THE research proposed a self-organizing adaptive 

Bayesian mixture model which enables traditional 
Gaussian Mixture Model to have a SOM style 

updating mechanism. The similarity measure of best 
matching unit of self-organizing map learning is 
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performed by using the maximize a posterior 

approach. The neighborhood function of the SOM 
learning is consists of an additive confusion 

probability with a Gaussian kernel and an inherent 
posterior probability of winning unit and its neighbors. 

Such a double neighborhood structure ensures that two 
neighborhood functions are somewhat similar at 

beginning and can gradually converge during the 

learning process. In order to further fine tuning the 
algorithm, we implement a pair of operations: an 

annealing schedule which aims to slow down the 
updating speed and an early stop criterion triggered by 

the profile likelihood confidence interval. The 
algorithm is purposely designed to be theoretically 

efficient in identifying the grouping properties of 
target data. It can theoretically reach a good balance of 

both efficiency and accuracy. The proposed model is 

examined by both artificial and real market data. The 
clustering performance is satisfying in comparing with 

traditional approaches. We therefore believe the 
algorithm we have proposed can be a good alternative 

to the traditional EM approach which has been widely 
used for Gaussian Mixture Model parameter 

estimation. 

The model, though has integrated several useful 
functions and with its better comprehensive 

performance over traditional approaches, is still far 
from prefect. We would further explore model's ability 

in adapting to multiple data sets especially real market 
financial data, which has been believed to be more 

noise corrupted.  

Weakness of the proposed algorithm lies in its 
robustness in convergence. The “dual-neighbourhood” 

function uses both confusion probability and  posterior 
probability. The learning process thus would be speed 

up and more likely to trap into local minima. 
Performances on different applications might be 

sensitive to learning parameters, which is also an 
inherent challenge of SOM algorithm. This is also 

why annealing has been used to prevent learning 

process being trapped into local optima. The model 
includes quite a few useful adjustable parameters, 

such as adjustable neighborhood shape, adaptive 
learning rate, purposely designed early stop criterion 

etc. The flexibility or accuracy always goes with the 
risk of over-fitting. Therefore, further efforts are 

needed in how to balance the model flexibility and 

complexity. 
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