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1 INTRODUCTION 
AN ECG signal is the process of electrical activity 

recording cardiac pacing; it reflects potential 
physiological information of the human body 

(Agrafioti, Gao, & Hatzinakos, 2011). Since an ECG 

consist of physiological information that exists along 
with one’s life, and the waveforms are various such as 

an individual’s heart size, position, gender, age and 
other self-factors. The ECG signal represents 

discriminative identity information among different 
individuals. As time goes on, the change of each 

individual’s ECG signal is very tiny excluding the 
organic lesion of the heart. So, the stability of the 

signal lays a foundation for identity recognition. 

The common process of identity recognition 
includes ECG signals pre-processing, feature 

extraction, processing, and heartbeat classification 

recognition (Choi et al., 2019). In previous related 
research, the key techniques of an individual’s ECG 

identification have achieved a series of progress (Bras, 
Ferreira, Soares, & Pinho, 2018; Dong, Si, & Huang, 

2018; Tan, & Perkowski, 2017; Patro, & Kumar, 

2017). For feature extraction of an ECG signal, one is 
directly measuring the ECG signal to obtain 

information, which is a low-level feature of the signal 
(Kannathal, Acharya, Lim, Sadas ivan, & Iyengar, 

2004; Coutinho, Silva, Gamboa, Fred, & Figueiredo, 
2013; Silva et al., 2015); Another technique is deeply 

mining low-level information of the signal to extract 

deep-level features of the signal (Ji, & Wu, 2013; Jin, 
Ping, Mary, Saeid, & Abbas, 2013). Chen et al. (Chen, 

Xu, & Shen, 2015) extracted fusion features of QRS 
(Q-wave, R-wave and S-wave) complex and other 
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feature points with KPCA (Kernel Principal 

Component Analysis) to identify. Coutinho et al. 
(Coutinho, Fred, & Figueiredo, 2010) took average 

single heartbeat waveforms as a feature input and 
conducted dimension reduction based on the data 

compression technique, which is the Ziv-Merhav cross 
parsing algorithm. Hejazi et al. (Hejazi, Al-Haddad, 

Singh, Hashim, & Aziz, 2016) used the 

autocorrelation (AC) algorithm to extract non-fiducial 
features and kernel methods to reduce the dimension. 

Though the above literatures can be seen that the ECG 
signal low-level feature extraction algorithm depends 

on positioning accuracy of the fiducial points and 
waveforms, and it cannot deeply express the internal 

information of the signal. Though the ECG signal 
deep-level feature extraction algorithm could mine 

effective information of signals, meanwhile it brings 

complexity of recognition computation. For the 
establishment of the heartbeat classification model, 

commonly adopting such as the supervised 
classification algorithm, neural network and machine 

learning model based on the statistical learning theory 
to identify an individual (Rai, Trivedi, & Shukla, 

2013; Zidelmal, Amirou, Ouldabdeslam, & Merckle, 

2013; Khazaee, & Ebrahimzadeh, 2013; Moein, 
Logeswaran, & Faizal bin Ahmad Fauzi, 2016). 

Kouchaki et al. (Kouchaki, Dehghani, Omranian, & 
Boostani, 2012) adopted 1NN (nearest neighbor) 

classifier to recognize the ECG frequency signals 
obtained by EMD (empirical mode decomposition) 

decomposition and Hilbert transform. Lin et al. (Lin, 

Chen, Lin, & Yang, 2014) implemented the nonlinear 
SVM (support vector machine) with polynomial 

kernel function to identify the extracted chaotic 
feature set. Rahhal et al. (Rahhal et al., 2016) built the 

deep neural network model to classify the ECG signal 
features that are obtained from SDAEs (stacked 

denoising autoencoders). Beyli (Beyli, 2009) set up 
the RNN (recurrent neural network) model to classify 

ECG heartbeats. Although various classifiers can 

classify and identify the ECG signal, in the practical 
application, establishing the deep recognition model 

with strong robustness and generalization performance 
will have actual significance. 

Aiming at these problems existed in research of the 
feature extraction and classification. The paper 

focuses on studying ECG signals and identity the 

recognition system based on the LSTM network. The 
Long Short-Term Memory unit was first proposed to 

improve the traditional RNN model by Hochreiter & 
Schimidhuber (Hochreiter, & Schmidhuber, 1997). 

Compared with the RNN, the LSTM network with 
memory function can effectively solve the problem of 

exploding and vanishing gradient problems during 

training, which makes the network suitable for long 
time series signals. The LSTM type of RNN has been 

widely applied in fields of handwritten numeral 
recognition, machine translation, information retrieval 

and so on in recent years, especially in speech 

recognition that has achieved great results and 

significantly reduced the recognition error rate 
(Bahdanau, Cho, & Bengio, 2014; Palangi et al., 2015; 

Sutskever, Vinyals, & Le, 2014). In view of the 
application of LSTM in other fields is effective and 

suitable for interrelated ECG signals in principle. So, 
for the classification model, the paper studies to 

establish the deep LSTM model to identify extracted 

features of ECG signals. 
The conclusion that dynamic characteristics of 

healthy life system is “chaotic” was proposed by 
Goldberger (Goldberger, 1996). With the rapid 

development of nonlinear science, researchers have 
applied nonlinear systems and the chaos theory to the 

biological research system. The chaotic characteristic 
has been found in various kinds of physiological 

signals such as; blood pressure, EEG 

(electroencephalogram), EMG (electromyogram) and 
ECG. The ECG dynamics system is a typical chaotic 

dynamical (Shekofteh, Jafari, Sprott, Golpayegani, & 
Almasganj, 2015), method of nonlinear dynamic 

research that could be adopted to analyze cardiac 
electric activity. At present the analysis and research 

of an ECG nonlinear characteristic mainly focuses on 

a correlation dimension, Lyapunov exponent, 
approximate entropy, complexity and so on to include 

parameters. So, for the feature extraction algorithm, 
the paper introduces the Lyapunov exponent to study 

chaotic feature parameters of ECG signals, which is a 
feature input for identity recognition. The system 

respectively employs low-level features and chaotic 

deep-level features as the feature input for the LSTM 
classification model is to verify recognition 

performance. 
For the purpose of building the recognition model 

with strong robustness, the paper proposes to establish 
the ECG deep learning model based on LSTM 

network for training feature data. The network 
contains two LSTM hidden layers and a softmax layer 

for classification. The morphological features and 

chaotic features are as inputs for network to construct 
an entire system. The subsequent arrangement of the 

paper is as follows: Section 2 introduces the basic 
structure and internal principle of the LSTM neural 

network. Section 3 represents the ECG identity 
recognition model of the deep LSTM network. Section 

4 analyzes experimental results and discussions, and 

Section 5 states the conclusion and future work. 

2 LSTM NEURAL NETWORK STRUCTURE 
UNLIKE an ordinary multilayer perceptron, the 

RNN neural network (Graves, 2012) has cyclic 
structure in the internal connection, namely hidden 

layer adds, a self-connection structure, which 
expresses the temporal relation. The loop network 

connection enables to effectively utilize the context 

information. The typical RNN network structure is 
shown in Figure 1. 
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As illustrated in Figure 1, cyclic characteristic of 

the RNN network reflects that the input of each node 
in the hidden layer contains not only an upper layer 

output but also a hidden layer output at the previous 
moment. So, the network enables to deal with 

sequence data. The input set is marked as 

, the output set of the network is 

marked as . The output set of the 

hidden layer node is marked as , 

which is calculated based on the node state of the 

input layer and the previous step in the hidden layer. 
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Figure 1.  Structure Diagram for One-way RNN Network. 

  (1) 

where  is the nonlinear activation function. The 

output  of each hidden layer backward transfers 

receives a previous layers’ information in theory, but 

actually it is difficult to train deeply. The error 
gradient of the RNN will gradually decrease to vanish 

as the number of layers increase, which is leading to 

the so-called vanishing or exploding gradient problem. 
The emergence of the RNN network model with the 

LSTM unit alleviates this problem and enables to 
clearly express a long-short time dependence relation. 

The structure of the LSTM network is same as the 
RNN, only complicating the inner structure of hidden 

layer unit. The LSTM unit, which is adopted in the 

paper contains four structures in the memory block; 
three sigmoid layers and one tanh layer. The memory 

block structure is shown in Figure 2. 
As shown in Figure 2, the LSTM unit solves the 

vanishing gradient phenomenon through adding a 
latent variable as the memory cell, so it will overcome 

the long dependence problem in a time series. The 

gating mechanism is introduced through input gate , 

output gate  and forget gate . They control 

information flowing through the cell, that is how much 

information in the previous network should be kept 

and how much new information will enter. 

  (2) 
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Figure 2.  Structure Diagram for Memory Block of the LSTM 
Unit. 
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  (4) 
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  (7) 

Among which, input gate , output gate  and 

forget gate  are determined by the sigmoid 

activation function .  is the updated value of the 

memory cell at the current moment. The memory cell 
state of the previous moment multiplies by the forget 

gate, which chooses to discard partial information, 

then adds the updated part to the generate state value 

of cell  at the current moment. Finally,  in 

equation (7) is the final output of the hidden layer for 

each LSTM network unit. 

3 ECG IDENTITY RECOGNITION MODEL 
BASED ON THE LSTM NETWORK 

SINCE the before and after moments the ECG 
signals are associated and represent correlation for an 

individual identity. The LSTM network can break 
through the theoretical limitation of the RNN 

establishing a long correlative connection among the 

ECG inputs. The overall block diagram of the ECG 
identity recognition system based on the LSTM 

network in the paper is shown in Figure 3. 
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Figure 3.  The Overall Architecture of Identity Recognition based on the LSTM Network.

3.1 Pre-processing 
The original ECG signals with noise are inputted 

into the system and decomposed into eight layers by 

the DB4 wavelet lifting. The dynamic threshold 
setting is conducted according to the frequency 

distribution of the noise combining with the soft 
threshold algorithm, so the pure ECG signals, which 

have been removed from the high frequency noise and 
baseline drift can be acquired. Compared with the 

other bands in the ECG signal, the fluctuation 
characteristic of the QRS complex is more evident, the 

amplitude and slope of R wave are relatively large. 

The system uses a second order difference threshold 
method to detect the R wave peak points. Since the 

heartbeat is a minimum component unit of the ECG 
signals, the identity recognition for ECG signals will 

finally fall on the heartbeat classification, so the ECG 
signals should be segmented for the subsequent 

feature extraction. 

3.2 Low-level Feature Extraction of ECG Signals 
The ECG signal is an irregular periodic signal, its 

waveforms and characteristic parameters could 
directly reflect different forms of ECG signals among 

different individuals. Therefore, the ECG signal low-

level feature extraction algorithm of the system 

extracts the whole heartbeat information of signals. 
The algorithm not only ensures to gain complete 

information contained in heartbeats but also provides 
the same dimension feature input for the classified 

neural network model. Taking the detected R wave 

peak position as the center, 120 sampling points are 
chosen forward and behind, together with R wave 

peak amplitude and R-R interval, so there are 243 
dimensions of morphological low-level features. 

These extracted characteristic points of the ECG 
signals not only add morphology of the P wave and 

the T wave but also keeps the influence of different 
heart rates for waveforms. The morphological low-

level features of the five different individuals and five 

heartbeats of the same individuals are extracted as 
shown in Figure 4. 

As shown in Figure 4, this low-level feature 
extraction method of the system describes 

discriminative information among different 
individuals and correlative information in the same 

individual. Then the extracted low-level features are 

performed and normalization to guarantee the value of 
the features within [-1,1] and prevents data to 

overflow during iterations. 
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Figure 4(a). 

 

Figure 4(b). 

Figure 4.  Comparison for Low-level Features of Different 
Individuals and Same Individuals. 

3.3 Chaotic Feature Extraction of ECG Signals 
Nonstatistical characteristics of physiological 

signals, that is chaotic feature parameters, provide new 

direction for internal analysis and study of 
physiological signals obtained by the chaos theory. 

The Lyapunov exponent can measure sensitivity of 
initial conditions for the chaotic signals motion and 

describe the average index rate of convergence or 

divergence for adjacent orbits in phase space 
(Allshouse & Peacock, 2015). The value of the 

nonlinear dynamic parameter indicates the chaotic 
degree of the system and deeply analyzes chaotic ECG 

signals. The paper employs the Wolf algorithm to get 
the Lyapunov exponent sequence of the ECG time 

series as chaotic feature parameters. 

Resampling the segmented R-R interval time series 
of the ECG signals to 300 points so that it is 

convenient for the subsequent deep-level chaotic 
feature extraction. The resampling ECG time series 

 are performed as phase space reconstruction. The 

embedded dimension  and delay-time  are 

respectively determined by the G-P algorithm 

(Grassberger, 1983) and the mutual information 

method (Fraser & Swinney, 1986), namely the 

dimension and delay of reconstructed phase space, so 
the reconstructed phase space is 

 and the 

correlation integral is calculated as: 

  (8) 

where  is distance between two points in the 

phase space,  represents the cumulative 

distribution function,  is correlation length and  is 
Heaviside step function. Within proper range for , 

there is the logarithmic linear relationship between 

attractor dimension  and cumulative distribution 

function . 

  (9) 

 

Figure 5.  ln (C(r))-ln(r) Curves for Various m Values of ECG 
Signals R-R interval. 

The resampling ECG local sequences are used as 
input signals. Utilizing the G-P algorithm to test, that 

taking  from 1 to 10, the simulation of 

 curves is shown in Figure 5. It is 

evident from Figure 5 that with  increasing, the 

slope of the curve will raise. When 6, the slope 

will not change, that is parallel curves. So 6 is the 

optimal dimension of the reconstructed space of ECG 
signals R-R interval. At the same time, the optimal 

delay-time  will be selected when the first minimum 

value appears in the mutual information function 
between reconstruction of two components with 

delayed relation. 
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in the reconstructed phase space of the ECG time 
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for two points is tracked until the distance  exceeds 

)(tx

m 

         ,2,1,1,,,  imtxtxtx iii 

   





N

jiji

ji
N

xxrH
N

rC
,1,

2

1
lim

ji xx 

 rC

r H

r

d

 rC

 
  
 r

rC
md

ln

ln


m

    rrC lnln 

m

m

m



 0' tY  0tY

0L

'0L



346 LIU, SI, and WANG 

 

the specified value  at  at that moment. So  

evolves into  at that moment. Another point 

 should be found near  that distance  

between them is less than , and the angle is as small 

as possible. Repeating the above process until all data 

points are completed, so the Lyapunov exponent is 
computed as follows: 

  (10) 

 

Figure 6(a). 

 

Figure 6(b). 

Figure 6.  Comparison for Chaotic Features of Different 
Individuals and the Same Individual. 

As seen in Figure 6, the chaotic features of the 

Lyapunov exponent sequence for five different 

individuals exist as an obvious distinction, and for the 
same individual is similar. It is proven that the 

Lyapunov exponent possesses a basic condition for 
recognizing individuals. Thus, the chaotic features can 

be as input for the LSTM network classification model 

to validate the recognition system performance 

effectively. 

3.4 Classification Model based on the LSTM 

Network 
No matter for the morphological low-level features 

or the chaotic deep-level features, the feature data in 
sequence are not independent. The LSTM network 

memorizes previous information and applies it to the 
calculation of the current output nodes, that is nodes in 

the hidden layer are connected. Two kinds of extracted 
features are served as inputs for the LSTM 

classification network respectively. And the stacked 

two layers of the LSTM units are adopted as hidden 
layers for feature sequence modeling, so the model 

could mine prior information of the ECG signals and 
provide new ideas for the ECG signals recognition 

research. The individual classification model structure 
of deep LSTM neural network in this paper is shown 

in Figure 7. 
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Figure 7.  Deep LTSM Neural Network Classification Model 
Architecture. 

Let morphological features and chaotic features be 

the input of the deep LTSM classification model for 
training, which are extracted based on Section 3.2 and 

3.3. As shown in Figure 7, features 

 are input into the LTSM 

network units according to the heartbeats order of time 

series in turn, where . The 

classification model employs stacked two layers of the 

LSTM structure as hidden layers, output for previous 
layer of the LSTM should be as input for the next 

layer. The outputs of the LSTM show each node are 
integrated by a fully connected layer. As the multi-

classification layer, the Softmax layer outputs 
probability distribution of individual category labels, 

which is . And the dropout 
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module is introduced into the Softmax layer that 

partial nodes work with a certain probability in the 
training process. This regularization method can 

effectively prevent model overfitting. Random 
initializing network parameters, and the BPTT 

(Backpropagation Through Time) algorithm is 
adopted to the fine-tune model parameters layer by 

layer. The loss function at  moment: 

  (11) 

where  is actual output value of the Softmax layer, 

 is true output value. So, the whole loss function of 

system is: 

  (12) 

4 RESULTS AND DISCUSSION 

4.1 Experimental Database 
IN this paper, the deep learning system for the 

ECG signal identity recognition is constructed by the 

input layer, stacked LSTM layer, fully connected layer 
and the Softmax layer. The system is evaluated on the 

ECG-ID database and the MIT-BIH Arrhythmia 

database from PhysioNet. 
ECG-ID database contains 310 ECG recordings, 

obtained from 90 individuals. There are 44 males and 
46 females, ages from 13 to 75 years. The number of 

records for each person varies from 2 to 20. Each 
signal is recorded for 20 seconds and sampling 

frequency is 500Hz. The ECG recordings are collected 

during the day or periodically over 6 months. Thus, 
the ECG signals of this database have individual 

representation and universality for identity 
recognition. The MIT-BIH Arrhythmia database 

contains two-channel ambulatory ECG recordings for 
48 individuals. Each signal lasts 30 minutes and 

sampling frequency is 360Hz. The ECG recordings 

are collected from a mixed population of inpatients 
and outpatients with arrhythmia. 

4.2 Experimental Results and Analysis 
In this paper, the LSTM identity recognition model 

is applied to different databases, which healthy people 
in the ECG-ID database and people with heart disease 

in the MIT-BIH Arrhythmia database, so experiments 

could effectively evaluate robustness of the heartbeat 
classification system. The detailed experimental 

results and analysis are as follows: 
The experiment selects 88 individuals from the 

ECG-ID database, and (2) 20 seconds signals of each 
individual are respectively selected as the training set 

and testing set. The 243-dimension morphological 
feature vectors are extracted to be the input of the 

LSTM recognition model (Section 3.2). The number 

of hidden layer nodes is 512. The batch gradient 

descent algorithm is used for the train model, of which 

batch size is the number of samples for each gradient 
descent training. When the batch size is selected 

small, the convergence effect of the algorithm is not 
obvious. Appropriately increasing the batch size can 

reduce the number of iterations for training all 
samples and improve the algorithm efficiency. 

Meanwhile, another parameter learning rate is selected 

so large that the loss function will oscillate, and global 
optimum will be missed. Therefore, the batch size is 

set to 50 and learning rate is 0.05 considering the 
number of iterations and classification accuracy 

through multiple experimental simulations. 
The training accuracy of LSTM recognition 

network is 100% and the testing accuracy is 80.9% 
through 20 iterations, which is shown in Table 1 and 

Figure 8. After 10 training iterations, the training 

accuracy has been 100% and the heartbeat 
classification accuracy of the testing set is over 80%. 

 

Table 1.  Training and Testing Accuracy of the Deep LSTM 
Network 

Iteration 

Number 
Training accuracy  Testing accuracy  Training time 

1 75.07% 59.27% 6.59s 

2 92.40% 70.89% 4.93s 

3 97.27% 76.99% 4.12s 

4 98.15% 77.23% 3.56s 

5 99.66% 80.04% 3.21s 

6 99.66% 80.04% 3.22s 

7 99.85% 79.04% 2.98s 

8 99.95% 79.32% 2.94s 

9 99.95% 80.37% 2.71s 

10 100% 80.90% 2.64s 

11 100% 80.04% 2.59s 

12 100% 80.66% 2.46s 

13 100% 80.37% 2.62s 

14 100% 81.04% 2.49s 

15 100% 80.32% 2.53s 

16 100% 80.42% 2.36s 

17 100% 80.66% 2.39s 

18 100% 80.47% 2.17s 

19 100% 80.80% 2.36s 

20 100% 80.90% 2.29s 

 

Figure 8.  Simulation for Accuracy and Iteration Number of the 
Deep LSTM Network. 
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Figure 9 is a simulation diagram of the mean 

square error and the iteration number for the training 
process. The mean square error is utilized to evaluate 

the ability of fitting data for the LSTM classification 
model. The mean square error is getting smaller as the 

number of iterations increases, which indicates the 
predicted neural network model could well describe 

the training data. The detailed recognition results of 88 

individuals are shown in Figure 10 (a) and Figure 10 
(b). 

 

Figure 9.  Simulation for the Mean Square Error and Iteration 
Number. 

Taking the first individual for example, the number 

of heartbeats, which are correctly classified into the 
first individual is defined as TP, the number of falsely 

classified into the first is FP. The number of 
heartbeats, which are correctly classified into the rest 

of individuals is TN, and the number of falsely 

classified into the rest is FN. Sensitivity  is 

proportion of correctly classified heartbeats to the 

number of heartbeats of true in this category. 

 

Figure 10(a). 

 

Figure 10(b). 

Figure 10.  Simulation for the Recognition Rate of all Individual 
Categories. 

  (13) 

Precision  is proportion of correctly classified 

heartbeats to the number of heartbeats for being 
classified into this category. 

  (14) 

As shown in Figure 10, Sensitivity  and 

Precision  are counted for 88 individual categories. 

The classification ability of the LSTM recognition 
network for each category is expressed from different 

perspectives. 

Through analysis of the LSTM classification model 
that is applied on the ECG-ID database, the feasibility 

of the LSTM network for identifying healthy 
individuals is verified. Then comparative experiment 

results between the LSTM network and other 
classification models are shown in Table 2. 

Under the same condition of extracting low-level 

morphological features of the ECG signals, Table 2 
shows that the proposed LSTM recognition network 

can improve recognition accuracy because of the 
adequately learning individual information from 

manually extracted ECG signals features. For training 
time of ECG-ID database, LSTM recognition network 

is better than the SVM and BP neural network, but it 

takes longer than the KNN. However, the KNN 
algorithm principle is to calculate the distance 

between the test data and all training data. When the 
KNN algorithm is applied to the MIT-BIH database 

with large amounts of data, the training time will 
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Table 2.  Recognition Performance Comparison for Different Classification Models on the ECG-ID Database 

 KNN 
Gaussian kernel 

SVM 

Linear kernel 

SVM 

BP neural 

netw ork 

LSTM netw ork in 

the paper 

Heartbeat 

classification 

accuracy  

74.42% 80.47% 75.37% 77.08% 80.90% 

Identity  recognition 

accuracy  
93.18% 94.32% 94.32% 92.05% 95.45% 

Training time 8.36s 8206.19s 5025.59s 72.23s 61.16s 

 

increase sharply and occupy large memory space, so it 

can’t be applied to practical identity recognition. It’s 
worth noting that the BP and LSTM networks both 

exist parameters initialization, so actual accuracy will 
slightly float. To identify 48 arrhythmia individuals 

from the MIT-BIH database, the low-level 
morphological feature extraction method is described 

in Section 3.2, and the 210-dimension Lyapunov 
exponent sequence is extracted as deep-level chaotic 

features based on the Wolf algorithm (see Section 

3.3). The space reconstruction dimension  for the 

R-R interval sequences of the ECG signals is 8, and 

proper delay-time  is estimated 12. The number of 

iterations for the LSTM network is 250, so the 
recognition results of the different classifiers, which 

input two kinds of features are shown in Table 3. 

As shown in Table 3, when applying to the 
arrhythmia population database, the LSTM deep 

recognition model also obtains better recognition 
performance. Whether extracting low-level 

morphological features or deep-level chaotic features, 
accuracy of the LSTM network is relatively high, 

specifically as follows: 

When extracting low-level features, 800 heartbeats 

are taken as the training set and 500 heartbeats are the 
testing set based on the time series of each individual 

in turn. Compared with 100 and 60 heartbeats, 800 
and 500 heartbeats the LSTM network shows higher 

accuracy and more stable classification performance 
under the same parameters setting of classifiers. 

Classification performance of the proposed model is 
also optimal when occupying minimum storage space, 

so the model validity is proven. When extracting the 

deep-level features, the recognition performance of the 
proposed LSTM is better than other classification 

models as well. But overall accuracy is lower than 
low-level features accuracy. Although the Lyapunov 

exponent could implement deep expression of signals, 
the individual information distinctions for the MIT-

BIH database signals are not obvious. The 

combination of the Lyapunov exponent and LSTM 
neural network builds the chaotic time series 

recognition model to achieve higher accuracy than 
other general classification methods no matter how 

many heartbeats are selected. In conclusion, the 
robustness of the LSTM network model for different 

feature inputs can be verified from Table 3. 
Table 3.  Recognition Performance Comparison for Different Classification Models on the MIT-BIH Database 

 KNN 
Gaussian kernel 

SVM 

Linear kernel 

SVM 

BP neural 

netw ork 

LSTM netw ork in 

the paper 

Low -lev el 

morphological 

features 

Training set: 800 

heartbeats 

Testing set: 500 

heartbeats 

Heartbeat 

classification 

accuracy  

89.90% 89.52% 85.22% 90.38% 92.24% 

Identity  

recognition 

accuracy  

100% 100% 97.92% 100% 100% 

Training set: 100 

heartbeats 

Testing set: 60 

heartbeats 

Heartbeat 

classification 

accuracy  

81.28% 87.81% 83.99% 85.21% 90.24% 

Identity  

recognition 

accuracy  

91.67% 95.83% 93.75% 95.83% 100% 

Deep-lev el chaotic 

features 

Training set: 800 

heartbeats 

Testing set: 500 

heartbeats 

Heartbeat 

classification 

accuracy  

63.78% 68.31% 62.25% 68.10% 77.66% 

Identity  

recognition 

accuracy  

97.92% 97.92% 95.83% 97.92% 100% 

Training set: 150 

heartbeats 

Testing set: 100 

heartbeats 

Heartbeat 

classification 

accuracy  

66.67% 65.17% 62.29% 63.63% 72.44% 

Identity  

recognition 

accuracy  

100% 97.92% 95.83% 97.92% 100% 

m


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5 CONCLUSIONS 
THIS paper researches the identity recognition of 

the ECG signal based on the deep learning model. The 
deep LSTM neural network model is adopted for beat 

classification. With deeper learning of the stacked 
LSTM network model, nonlinear expression ability of 

the model is gradually enhancing. It not only learned 
individual information from ECG signals, but also 

perform effective sparse representation for signals. At 

the characteristic level, the Lyapunov exponent is 
introduced as the chaotic feature and is combined with 

low-level morphological features to be inputs for the 
LSTM recognition system. Then robustness of the 

recognition model is validated by the healthy and 
arrhythmia individual’s database. The simulation 

results show that recognition performance of the deep 

LSTM neural network model is better than any other 
classifiers. Heartbeat classification accuracy and 

identity recognition accuracy are both effectively 
improved. So, the model stability is verified under 

conditions of different databases and different types of 
input features. However, the chaotic features inputs 

for the LSTM network may occupy a large memory 

space. And compared to the low-level features, 
recognition accuracy of chaotic features needs to be 

improved, so they will be the next direction of future 
research. 
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