
IntelligentAutomationAndSoftComputing,2020 

Copyright © 2020, TSI® Press 
Vol.26,no.2,353–365 

https://doi.org/10.31209/2019.100000159 

 
 

 
 
 
 
 
 
 
 
 
 

CONTACT  Waheed Iqbal waheed.iqbal@pucit.edu.pk 

© 2020 TSI® Press 

 

Dynamic Horizontal and Vertical Scaling for Multi-tier Web Applications 
 
Abid Nisar1, Waheed Iqbal1, Fawaz Bokhari1, Faisal Bukhari1, Khaled 
Almustafa2 
1Punjab University  College of Information Technology (PUCIT), University  of the Punjab, Lahore, Pakistan 
2Prince Sultan University , Riyadh, KSA 

 

 
 

KEY WORDS:  Cloud computing, auto-scaling, multi-tier, web applications, vertical database scaling, 

hor izontal web scaling. 
 

1 INTRODUCTION 
CLOUD computing has emerged as a promising 

technology for the provision of low cost, on-demand, 
and pay-as-you-go services to enterprises, application 

service providers, and individual users. Web 
applications are widely hosted on the cloud to avail 

these benefits. Nowadays, most of the large scale web 
applications follow multi-tier architecture. In a typical 

multi-tier architecture, a web server and database 
server are deployed independently and they both 

interact with each other to maximize the performance 

and scalability. Usually, a multi-tier web application is 
hosted on the cloud using an Infrastructure-as-a-

Service (IaaS) model, which allows a significant 
control on the resources to control and manage. A 

traditional approach for deploying a multi-tier web 
application on IaaS is to provide and use Virtual 

Machines (VMs) for web and database server tiers 

separately. 
Cloud computing offers availability and reliability 

level and service level agreements Shah, S. C. (2017); 
Abdullah et al. (2018). However, there are limited 

guarantees offered by the cloud providers for the 
performance of the applications hosted on the cloud. 

Mostly, the owners of the applications have to manage 
the performance of their applications. Response time 

is one of the most important performance attributes for 

the web application. However, it is challenging to 
maintain and offer response time guarantees to the 

user of the web applications mainly due to the 
workload variability, performance varying cloud 

resources Adam et al. (2016); Ou et al. (2012), and 
unexpected user growth. 

In order to offer a better quality of services (QoS), 

these cloud-hosted web applications need to maintain 
specific response time guarantees , which can be 

achieved by dynamic detection of bottlenecks and 
their effective resolution automatically. However, 

providing such response time could pose a great 
challenge to the cloud service providers mainly due to 

the inherent nature of multi-tier applications, which 
are typically complex and bottlenecks may occur on 

multiple locations depending upon the specific 

workload patterns at any given time interval. 
Most of the Public Cloud service providers offer 

services to automatically scale web applications. 
However, these services do not support multi-tier 

applications to automatically scale all tiers 
dynamically on changing workload patterns. For 

example; Amazon Web Services (AWS) 

 
ABSTRACT 

The adaptive resource provisioning of cloud-hosted applications is enabled to 
provide a better quality of services to the users of applications. Most of the 
cloud-hosted applications follow the multi-tier architecture model. However, it is 
challenging to adaptively provision the resources of multi-tier applications. In 
this paper, we propose an auto-scaling method to dynamically scale resources 
for multi-tier web applications. The proposed method exploits the horizontal 
scaling at the web server tier and vertical scaling at the database tier 
dynamically to maintain response time guarantees. We evaluated our proposed 
method on Amazon Web Services using a real web application. The extensive 
experimental results show the e ffectiveness of our proposed method in terms of 
performance and cost when compared with current practices of static and 
dynamic resources over-provisioning methods. 
 



354 NISAR ET AL. 

 

Amazon.com, Inc. (2015) is a public cloud service 

provider, and whose Elastic Compute Cloud (EC2) 
Auto-scaling service, Amazon Inc. (2015) enables 

users to configure all their tiers to a horizontally scale 
base using user-defined policies and then users have to 

ensure connectivity configurations among tiers by 
themselves. In horizontal scaling, the application is 

scaled by adding more machines. Specifically, for a 

multi-tier web application, using EC2 Auto-scaling 
service, one can develop a custom auto-scaling service 

to scale the database and web tiers horizontally. The 
horizontal database scaling is quite challenging mainly 

due to the use of the master-slave architecture, which 
provides limited scaling only on read queries and 

introduces the additional overhead of data 
synchronization from master to slaves. However, 

horizontal scaling for the web server is appropriate as 

the multiple web servers does not have any 
dependency with each other and can interdependently 

serve the incoming workload. Vertical scaling is 
another technique, which is appealing for database 

services as it allows adding more power like CPU and 
RAM to allocate the machine dynamically. Therefore, 

using vertical scaling for the database server reduces 

data synchronization concerns and is a better solution 
compared to the horizontal scaling. 

Currently, the multi-tier web applications are auto-
scaled using machine learning Amiri & Mohammad-

Khanli (2017); Gujarati et al. (2017); Bu et al. (2009) 
and heuristics Iqbal et al. (2011a); Han et al. (2014) 

based methods. These methods perform horizontal 

scaling on web tiers and mostly over-provision the 
database tier. There have been limited studies to 

investigate the combination of horizontal and vertical 
scaling together for multi-tier web applications. For 

example; Juan et al. Perez et al. (2018) studies  the 
vertical and horizontal auto-scaling methods to reduce 

the application latency. However, this work does not 
provide a method to automatically scale both tiers 

using a combination of horizontal and vertical scaling 

together. Whereas, we advocate to use both the 
horizontal and vertical auto-scaling together for using 

multi-tier applications. Some of the existing work 
combines reactive and predictive auto-scaling methods 

and call them hybrid auto-scaling. A reactive auto-
scaling method provision resource is based on a 

specific event, for example; on a specific CPU or 

response time threshold. Whereas, the predictive auto-
scaling method initiates the resource provision with 

the anticipation of future workload needs. Anshuman 
et al., Biswas et al. (2017) propose an auto-scaling 

method, which initiates a horizontal scaling of web 
applications using a combination of reactive and 

predictive strategies. However, this work does not 

explore the use of vertical and horizontal scaling 
together. 

In this paper, we propose and evaluate a new 
hybrid auto-scaling method to dynamically allocate 

the resources to a multi-tier web application hosted on 

the AWS to minimize violations of a specific response 

time requirement with minimal cost. Our proposed 
system to include the horizontally scale web server 

tier and vertical scale database tier dynamically offers 
better response time and overcomes the database 

horizontal scaling limitations. We evaluate our 
proposed auto-scaling using different configurations 

and compared it with traditional approaches including 

static and over-provisioning techniques to deploy the 
multi-tier web applications. In the static deployment, 

fixed infrastructure resources are allocated to the 
application, which cannot be scaled automatically. 

Whereas, in the overprovisioning technique, powerful 
resources are allocated to the application to avoid any 

saturation. To the best of our knowledge, this is the 
first study to use hybrid auto-scaling methods for 

multi-tier web applications hosted on the AWS to 

minimize violations of response time requirements 
with minimal cost. The main contributions of this 

paper include: 

 A new hybrid auto-scaling method is 

proposed for dynamically scaling web server 
tier horizontally and database tier vertically. 

 The proposed method is implemented on the 
AWS cloud. 

 An extensive set of experiments are 
performed using a benchmark multi-tier web 

application and different settings of the 

proposed method. 

 The proposed solution is compared with 

static and overprovisioning resource 
allocation methods. 

There are a few limitations to this work. The web 
server and database are considered to be hosted on 

separate machines to work the proposed solutions 
effectively. Moreover, the proposed solution is 

designed explicitly for the two-tier web applications. 

The rest of the paper is organized as follows: 
Related work is presented in Section 2. Our proposed 

hybrid auto-scaling method is explained in Section 3. 
Experimental design is presented in Section 4. 

Experimental results are given in Section 5. Finally, 
conclusion and future work are discussed in Section 6. 

2 RELATED WORK 
THERE have been several research efforts to 

manage multi-tier web application resources 
automatically. For example; Urgaonkar et al. in 

Urgaonkar et al. (2005) described a queuing network-
based analytical model to learn the dynamics of each 

tier of the web application and dynamically allocate 
resources to prevent performance issues. Bonvin et al., 

Nicolas et al. (2011) provided a cost-effective solution 

for the dynamic provisioning of cloud resources to the 
multi-tier web applications in order to satisfy the 

response time and availability guarantees using 
horizontal scaling. 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMPU TING  355 

 

Most of the research in dynamic resource 

provisioning of web applications , Villela et al. (2007); 
Bodik et al. (2009); Dejun et al. (2011) have been 

focused on the provision of more resources as the 
workloads increase in order to maintain the 

applications performance. Some of the researchers 
have used machine learning techniques to learn 

workload patterns of multi-tier web applications to 

provision resources automatically. For example; Singh 
et al. in Singh et al. (2010) have presented a technique 

to model dynamic workloads for multi-tier Web 
applications using k-means clustering on the service 

time feature that collect logs at each tier. The method 
uses queuing theory to model the system’s reaction to 

the workload and identifies the number of Amazon 
EC2 instances required that helps to maintain the 

performance of the web application under the given 

workload. Gemma Reig et al. Reig & Guitart (2012) 
proposed a system to predict future demand of the 

CPU by combining machine learning and statistical 
techniques to maintain the QoS in dynamic workloads 

for web applications. 
Daniel Villela et al. Villela et al. (2007) have 

proposed a model for scaling of only the application 

tier in a typical multi-tier application. The authors 
have analyzed the actual trace of arriving requests on 

the application tier of an e-commerce website and 
derived methods to approximate the resource 

allocation to reduce cost by modeling servers of 
application tier as the M/G/1/PS queuing system. 

Similarly, Peter et al. in Bodik et al. (2009), proposed 

a statistical machine learning based model that claims 
to address the shortcomings of various models used in 

existing data-centers. The authors have argued that by 
using analysis, control and modeling techniques of 

statistical machine learning, one can fix the 
shortcomings common in a data-center. Jiang Dejun et 

al., Dejun et al. (2011), have studied the resource 
heterogeneity of cloud infrastructure, load balancing 

and tier selection for dynamic resource provisioning of 

the cloud-hosted multi-tier web applications. The 
authors have shown that identical provisioned 

resources perform significantly different in 
performance. Therefore, balancing an equal amount of 

load among each provisioned resource will lead to 
poor resource utilization and performance, even if the 

resources look identical. Secondly, the dynamic 

provisioning of resources need to show careful 
identification of the tier to avoid any possible SLA 

violations, so that the newly added instance can be 
properly utilized. 

In Yazdanov & Fetzer (2014), the authors have 
purposed a vertical scaling strategy using the 

reinforcement learning method for a local testbed 

cloud by controlling allocations of the CPU and 
memory to the virtual machine hosting only using the 

application tiers. Similarly, in Iqbal et al. (2015), the 
authors have performed the horizontal scaling of a 

multi-tier web application hosted on the Amazon Web 

Service (AWS) using coarse-grained access log 

monitoring techniques. Hector Fernandex et al., 
Fernandez et al. (2014a) purposed an auto-scaling 

system that exploits resource heterogeneity, and 
provides load balancing according to the capacity of 

resources and define multiple levels of QoS 
agreements (metal classification) to balance the SLA 

fulfillment and provisioning cost. They have defined a 

system to profile every resource to measure the 
capacity and provide weighted load balancing. F. 

Seracini et al. in Seracini et al. (2014) exploited the 
resource planner (EcoWare) along with some 

modifications that takes the responsibility of 
identifying the correct amount of resources by 

notifying the resource planner when the SLA violation 
occurs. Whenever the system detects the need of an 

increase in the provisioned resources, it invokes the 

resource planner algorithm that first checks the 
availability of the server’s in the free server’s pool and 

increases the number of allocated servers until the 
SLA is satisfied. Hector Fernandez et al. in Fernandez 

et al. (2014b) argued that there are three main reasons 
that limit the use of the sophisticated techniques 

proposed in various academic researches that provide 

much less gain than the effort required, and 
implementation is difficult and show unrealistic 

evaluations, because of the fabricated workloads. The 
authors claimed that they investigate real problems 

and they propose simple solutions that provide better 
performance without increasing the complexity 

overhead. Their proposed techniques set different 

threshold levels for the prediction of performance 
degradation that may occur in the future, so that 

proper resource requirement can be calculated. Also, 
to handle the resource heterogeneity, it provides 

dynamic weights for the load balancing. 
In Qu et al. (2016), the authors proposed a cost-

effective resource scaling algorithm for the web 
applications using heterogeneous AWS spot instances. 

The main contribution of the paper was to use 

appropriate policies to exploit the spot instances to 
reduce the cost of web applications. Authors in 

Grimaldi et al. (2017) proposed and evaluated a fuzzy 
approach to manage the allocated virtual machines to 

an application running on the AWS cloud. The work 
only exploits horizontal scaling. Recently auto-scaling 

applications are addressed by many researchers. For 

example; the authors in Krieger et al. (2017) provide 
the auto-scaling method for bioinformatics and 

biomedical applications. In Satoh (2016) the authors 
provide a system to adaptively manage the resources 

for mobile applications. The authors in 
Khoshkbarforoushha et al. (2016) proposed and 

evaluated the dynamic resource management system 

for the big data stream analytics applications. 
A comprehensive review of the auto-scaling 

strategies is conducted in Lorido-Botran et al. (2014), 
this review divides the auto-scaling strategies into five 

categories to analyze pros and cons of each strategy. 



356 NISAR ET AL. 

 

This work also highlights that distribution and 

replication of databases, prunes additional issues and a 
few work efforts are conducted to deal with the issues 

of database scaling. In Papadopoulos et al. (2016), the 
authors presented a framework to evaluate the auto-

scaling strategies using simulations. The authors used 
six different auto-scaling strategies to evaluate their 

proposed framework. Anju and Inderveer Bala & 

Chana (2016) proposed and evaluated a proactive load 
balancing approach based on the VM migrations using 

simulations. 
There have been limited studies to investigate the 

combination of horizontal and vertical scaling together 
for the multi-tier web applications. For example;  

recent work done by Juan et al., Perez´ et al. (2018) 
study the hybrid auto-scaling combining the vertical 

and horizontal for multi-tier web applications. 

However, this work does not provide a method to 
automatically scale both tiers using a combination of 

horizontal and vertical scaling together. 
It is worth mentioning that none of the above-

mentioned works explore a possibility to combine the 
horizontal and vertical scaling together to provision 

resources to different tiers of a multi-tier web 

application hosted on a public cloud. The research 
work reported in this paper is a s ignificant extension 

of our preliminary work Nisar et al. (2015). This paper 
presents a comprehensive evaluation using the 

improved methodology and a new set of experiments 
to evaluate the performance and cost-effectiveness of 

our proposed hybrid auto-scaling method with the 

comparison to existing industry practicing methods. 

3 PROPOSED HYBRID AUTO-SCALING OF 
MULTI-TIER WEB APPLICATIONS  

IN this section, we explain our proposed hybrid 

auto-scaling approach for multi-tier web applications 
hosted on the Amazon Web Service (AWS) cloud 

architecture. We consider a simple two-tier web 

application consisting of a web server (web tier) and a 
database server (database tier) to dynamic 

provisioning of the AWS resources on varying 
workloads. We assume that each tier is deployed on a 

separate virtual machine (instance). Our proposed 
approach, scale-out (horizontal scaling) web tier and 

scale-up (vertical scaling) database tier is used 
whenever a bottleneck on a specific tier is detected. 

The bottleneck on a specific tier is detected using a 

black-box approach similar to Iqbal et al. (2011b), 
which monitors the application response time and 

CPU utilization to identify the bottleneck. Whenever 
the CPU utilization or response time reaches a specific 

threshold, the system announces a bottleneck point. 

Let W denote a set of n virtual machine instances 

provisioned to the web server tier. Where Wj ∈ W is 

the specific jth 
provisioned virtual instance in the web 

server tier. Each jth 
web server instance is associated 

with the specific properties as <Wtypej ,Wcpuj ,Wcpuj,k utl 

>, where: 

W
type

j = type of j
th 

web tier instance. 
W

cpu
j = total CPU cores of the j

th 
web tier instance. 

W
cpu

j,k 
utl 

= the CPU utilization of the j
th 

web tier 
instance at the k

th 
time interval. 

For the database tier, let D denote a set of virtual 
machine instances available for provisioning at any 

time interval. Where Di ∈ D, represents the currently 

provisioned virtual instance. 
The provisioned database tier instance is characterized 

as <Dtypei,, Dcpui, Dcpui,k utl >, where: 

D
type

i= type of thel
th 

database tier instance. 
D

cpu
i = total CPU cores of the i

th 
database tier instance. 

D
cpu

i,k 
utl 

= current CPU utilization of the i
th 

database 
tier instance at the k

th 
time interval. 

3.1 Web Tier Horizontal Auto-scaling 
Algorithm 1 explains the web tier auto-scaling 

method. The web tier of the application is deployed on 

an EC2 instance. We configure the AWS auto-scaling 
service in such a way that it increases the number of 

virtual machines allocated to the web tier whenever 
the average CPU utilization of allocated EC2 instances 

crosses the user defined upper CPU utilization 

threshold (Cu) for specific p consecutive last time 

intervals. We define t as the unit of the time interval to 
wait before profiling virtual instances. Similarly, we 

define a policy in the the AWS auto-scaling service to 
decrease the number of allocated virtual machines 

whenever the average CPU utilization of all allocated 

EC2 instances stay less than a user-defined lower CPU 

threshold (Ul) for specific p consecutive last time 

intervals. 
These parameters can be varied to test different 

settings. For example, setting the higher value of Cu 

will slow down the scale up decision as it will keep 

waiting for the CPU utilization to reach the higher 
level. However, setting the higher value of Cl will 

enable the system to quickly reduce the allocated 

resources as the system will start to scale down as 
soon as the CPU utilization reaches to the lower level 

of the CPU utilization. In our experimental evaluation, 
we used upper CPU utilization threshold Cu = 70%, 

lower CPU utilization threshold Cl = 30%, last 
profiling time intervals count p = 30, and time interval 

t = 20 seconds for the web tier horizontal auto-scaling. 

3.2 Database Tier Vertical Auto-scaling 
We explain our proposed algorithm to the vertical 

scale database tier automatically in Algorithm 2. We 
pre-defined a set of database instances D from which 

one of the instance Di ∈ D, where 1 ≤ i ≥ max, can be 
provision as a database tier dynamically. The instance 

D1 is the weakest instance where Dmax is the most 
powerful instance available in D in terms of the CPU, 

memory, I/O, and the bandwidth resources. 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMPU TING  357 

 

 

 

We develop a database vertical scaling service in 

such a way, that dynamically upgrades the database 
instance whenever the average CPU utilization of the 

allocated instances crosses the user defined upper 

CPU utilization threshold (Cu) for a specific p 
consecutive last time interval. Similarly, the proposed 

vertical scaling service downgraded the allocated 

virtual machine whenever the average CPU utilization 
of the allocated virtual instance stays less than a user-

defined lower CPU threshold (Cl) for a specific p 
consecutive last time interval. The algorithm also 

accepts an input namely scale mode (S m). This setting 

can be either RAPID or GRADUAL. If S m = RAPID 
then whenever the upper CPU utilization threshold 

(Cu) observed the system automatically will allocate 

the most powerful available instance Dmax to the 

database tier. However, if S m = GRADUAL then the 

database tier is upgraded stepwise to the next level. 

For scale down, if S m = RAPID is used then the 

database tier dynamically is downgraded to the 

minimum possible allocation. Similarly, if S m = 

GRADUAL then the database tier was downgraded 
stepwise to the previous level. 

In our experimental evaluation, we used different 
types of EC2 and RDS instances for the database 

vertical scaling. We used Cu = 70%, Cl = 20%, p = 30, 

and t = 20 seconds. The reason we choose Cu = 70 is to 

provide sufficient time to the system for handling 
unexpected workloads, which increases the CPU 

usage and also it is a reasonable threshold for efficient 
utilization of the server resources Allspaw (2008). 

Where Cl = 20 is used to scale down the resources as it 
indicates the resources are underutilized and the 

system can bear to release some resources. The 

reasons to use p = 30 is to capture the relatively long 

term behavior of the resources. However, t = 20 

seconds is used to define the interval duration to 
monitor and profile the application performance, the 

lower this value will allow the auto-scaler to quickly 
identify the need of scaling and higher value of this 

will slow down the auto-scaling decision. We perform 
different experiments using both possible values of the 

scale mode S m. 

4 EXPERIMENTAL DESIGN 
IN this section, we explain the experimental 

benchmark web application, synthetic workload 

generation method, and experiments performed to 
evaluate our proposed hybrid auto-scaling approach. 

4.1 Benchmark Multi-tier Web Application 
We have used the RUBiS OW2 Consortium 

(1999), an open-source web application, which 
provides an auction facility of items to include 

bidding, selling, and browsing of items similar to 

eBay, and as a benchmark application to evaluate 
hybrid auto-scaling methods. The RUBiS application 

provides the buyer, visitor, and seller as three different 
user roles to interact with the application. The users 

with either the buyer or seller role needs to register 
with the application before using it. However, the 

users with a visitor’s  role can use the application 

mainly to browse the available items without 
registration. 



358 NISAR ET AL. 

 

The RUBiS is widely used in web application 

autonomous management research. We have used the 
PHP implementation of the RUBiS with the MySQL 

database in our experimental evaluation. 

4.2 Workload Generation 
We have used the Apache JMeter Apache Software 

Foundation (1999) to generate synthetic workloads for 

the RUBiS benchmark web application in each of the 

experiments. The Apache JMeter Apache Software 
Foundation (1999); Halili (2008) is an open-source 

tool written in Java to generate a synthetic workload 
for the web applications to test the performance and 

behavior of the application under varying workloads. 
Our synthetic workload generation emulates a specific 

number of concurrent user sessions per second for the 

RUBiS web application in a step-up fashion. Each 
user session issues a read requests to Categories, 

Regions, Items, Home, Register, and Sell pages of the 
RUBiS. We have configured the JMeter with 750 

number of threads (users) ramping in a period of 1200 
seconds. 

We have performed six experiments based on this 
workload for the RUBiS. Experiment 1 profiles the 

systems behavior under the static allocation. 

Experiment 2 profiles the systems behavior under the 
over-provisioning of the database tier and a dynamic 

scaling of the web tier. In Experiments 3, 4, 5, and 6, 
we profile our proposed hybrid auto-scaling scheme 

under the different scale mode and instance types. We 
generated the workload for each experiment for a total 

of 70 minutes, which contains the ramp-up period of 

the first 55 minutes and then the workload starts 
decreasing rapidly until the end of each experiment. 

4.3 Experiment Details 
Figure 1 explains the deployment of our proposed 

hybrid auto-scaling for a multi-tier web application 
using the Amazon Web Services (AWS). In a typical 

scenario, the workload is received by the Elastic Load 

Balancing (ELB) that distributes it to the allocated 
web tier instances. Then the web tier instances may 

query the provisioned instance of the database tier to 
generate the response. The diagram shows only the 

RDS instances, however, we also evaluate the 
proposed methodology using a different type of the 

EC2 instances for the database tier. We performed six 

different experiments to evaluate the performance and 
cost of our proposed hybrid auto-scaling method. 

Table 1 summarizes these experiments and Table 2 
describes the resource allocation of the different 

instances used during the experiments. 
In Experiment 1, the static allocation (St-Al), we 

have installed the Apache web server on the Amazon 
EC2 instance of the type m3.medium and deployed the 

RUBiS benchmark web application (web tier) on it. 

We have used the Amazon RDS instance of the type 
db.m3.medium (M) configured with the MySQL and 

deployed the RUBiS data (DB tier) on it. We did not 

enable any kind of dynamic scaling for both tiers in 

Experiment 1. 

 

Figure 1.  The Proposed Hybrid Auto-scaling Combining the 
Horizontal and Vertical Scaling for the Multi-tier Web 
Applications using the Amazon Web Services. 

In Experiment 2, for the over-provisioning 
database tier (Op-RDS), we enabled the horizontal 

scaling on the web tier and over-provisioned the 

database tier using the Amazon RDS instance of the 
type db.m3.2xlarge (2XL). 

 
Table 1. Summary of the Conducted Experiments. 

Experiment Description 

1: St-Al The static allocation is using one 

Amazon EC2 instance of the type 

m3.medium for the Web server 
tier and one RDS instance of the 

type db.m3.medium for the 
database tier. 

2: Op-RDS The horizontal auto scaling is 
enabled for the web server tier 

and the over-provisioned database 
tier using a powerful Amazon 

RDS instance of the type 

db.m3.2xlarge. 

3: Gr-RDS The horizontal auto scaling is 

enabled for the web server tier 
and the vertical scaling using the 

RDS instances with the S m = 

GRADUAL setting for the 
database tier. 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMPU TING  359 

 

Experiment Description 

4: Ra-RDS The horizontal auto scaling is 

enabled for the web server tier 
and the vertical scaling using the 

RDS instances with the S m = the 
RAPID setting for the database 

tier. 

5:Gr-EC2 The horizontal auto scaling is 
enabled for the web server tier 

and the vertical scaling using the 
EC2 instances with the S m = the 

GRADUAL for the database tier. 

6:Gr-EC2-Pb The horizontal auto scaling is 
enabled for the web server tier 

and vertical scaling using the EC2 
instances with the S m = the 

GRADUAL and an extra pre-
booted next level instance ready 

to quickly upgrade the database 

tier. 

 
In Experiment 3, using both the gradual scaling 

database tier and the RDS instance (Gr-RDS), we 

enabled the horizontal scaling on the web tier and 
enabled the vertical scaling on the database tier. For 

the vertical database scaling, we use the S m = 
GRADUAL setting in the proposed database scaling 

algorithm. It enables the auto-scaling service to use 
the instance type’s db.m3.medium CPU and threshold 

(Cu) is observed, the system automatically upgrades 
the database tier to the next level. Whenever the lower 

CPU threshold (Cl) is observed, the service 

automatically downgraded the database tier to the 
previous level. 

In Experiment 4, the rapid scaling database tier 
using the RDS instance (Ra-RDS) is used. We enabled 

the horizontal scaling on the web tier and enabled the 
vertical scaling on the database tier. For the vertical 

database scaling, we use the S m = RAPID setting in the 

proposed database scaling algorithm. It enables the 
auto-scaling service to use either the db.m3.medium 

(M) or the db.m3.2xlarge (2XL) type of RDS instance 
dynamically for the database tier. Initially, the 

db.m3.medium is provisioned to the database tier and 
whenever the upper CPU threshold (Cu) is observed, 

the auto-scaling service automatically upgrades the 

database tier to the maximum level of (2XL). 

Similarity, whenever the lower CPU threshold (Cl) is 

observed, the auto-scaling service automatically 
downgraded the database tier to the minimum 

allocation of level(M). 
Experiment 5, the gradual scaling database tier 

using the EC2 instance (Gr-EC2), is similar to 
Experiment 3; however, we used the EC2 instances 

instead of the RDS instances to dynamically upscale 

the database tier. The database auto-scaling service 
can dynamically switch instance types using one of 

the EC2 instances of the type m3.medium (M), the 
m3.large (L), the m3.xlarge (XL), and the m3.2xlarge 

(2XL). Initially, the m3.medium is provisioned to the 
database tier and whenever the upper CPU threshold 

(Cu) is observed, the auto-scaling service 
automatically upgrades the database tier to the next 

level. Similarity, whenever the lower CPU threshold 

(Cl) is observed, the auto-scaling service automatically 
downgraded the database tier to the previous level 

Experiment 6, the gradual scaling database tier 
using the pre-booted EC2 instance (Gr-EC2-Pb), is 

similar to Experiment 5, however, we always keep an 
extra pre-booted next level EC2 instance ready to be 

quickly upgraded the database tier. 

5 EXPERIMENTAL RESULTS 

5.1 Experiment 1: Static Allocation (St-Al) 
THIS section explains the results we obtained in 

Experiment 1. Figure 2 shows the average throughput 
(requests/second) and the average response time of the 

application during Experiment 1. The web and 

database tiers are statically allocated using the 
m3.medium and the db.m3.medium type of instances 

respectively at the beginning of the experiment. After 
the 22

nd 
minute of the experiment, the response time of 

the application starts growing dramatically and crosses 
acceptable response time threshold. However, the 

response time starts decreasing after the 62
nd 

minute as 
the amount of the workload has started to be reduced 

by the workload generator. 

This experiment provides the baseline performance 
and depicts the systems behavior under the traditional 

deployment of a multi-tier web application. Once the 
CPU resources of either the web tier or database tier 

saturate, then the throughput of the application stops 
growing, the response time starts increasing, and the 

number of requests processed by the servers starts 

decreasing. 
 

 

  



360 NISAR ET AL. 

 

Table 2. The Instance Type and Resource Allocation of the Instances used in the Experiments. 

Instance Type vCPU Memory (GiB) Network (Perf) Cost /Hour 

m3.medium 1 3.75 Moderate 0.067 

db.m3.medium (M) 1 3.75 Moderate 0.09 

db.m3.large (L) 2 7.5 Moderate 0.785 

db.m3.xlarge (XL) 4 15 High 0.37 

db.m3.2xlarge (2XL) 8 30 High 0.74 

m3.medium (M) 1 3.75 Moderate 0.067 

m3.large (L) 2 7.5 Moderate 0.133 

m3.xlarge (XL) 4 15 High 0.266 

m3.2xlarge (2XL) 8 30 High 0.532 

 

Figure 2.  The Average Response Time, Throughput, and 
Rejections in Experiment 1. 

5.2 Experiment 2: Over-provisioning the 
Database Tier (Op-RDS) 

Figure 3 shows the average response time, the 

average throughput, the average rejections, and the 

dynamic provisioning of the web tier instances during 
Experiment 2. The number of instances allocated to 

the web tier is dynamically managed using the 
approach explained in 3.1. The database tier is over-

provisioned by using the db.m3.2xlarge type of 
instance. During this experiment, the average response 

time never violates the response time threshold and 

the throughput increases gradually until the 55
th 

minute of the experiment. After this, the throughput 

decreases due to the workload and the generator starts 
reducing the number of user requests after the 55

th 

minute. 
This experiment provides baseline performance 

with overprovisioned resources to ensure the system 

performs well on unexpected workloads. One can 
argue that this approach provides better performance 

than the rest of the schemes, however, adopting this 
scheme, which is over-provisioning of the database 

tier would be expensive for the application owners and 
therefore is not a cost-effective solution. 

 

 

Figure 3.  The Average Response Time, Throughput, 
Rejections, and Dynamic Allocation of Instances to the Web 

Tier in Experiment 2. The Web Tier Horizontal Scales on the 
CPU and Saturation of the Allocated Instances. The Database 
Tier is Over-provisioned by using the db.m3.2xlarge RDS 
Instance. 

5.3 Experiment 3: The Gradual Scaling 
Database Tier using the RDS Instances (Gr-
RDS) 

Figure 4 shows the average response time, the 

average throughput, the average rejections, and the 

provisioning of the web and database tier during 
Experiment 3. The number of instances allocated 

using the GRADUAL configuration for the varying 
workload. It can be seen from the graph that our 

proposed hybrid auto-scaling method appropriately 
brings down the response time by automatically 

adjusting the web and database tier resources. 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMPU TING  361 

 

 

Figure 4. The Average Response Time, Throughput, Rejections, 
and Dynamic Allocation of the Web Tier and the Database Tier 
in Experiment 3. The Bottom Graph’s y2 Title used to Show the 
Database Tier Allocation during the Experiment. The Bottom 
Graph also shows the Dynamic Addition of the Web Tier and 
the Dynamic Switching of the Database Tier Instance. 

5.4 Experiment 4: The Rapid Scaling Database 
Tier using the RDS Instance (Ra-RDS) 

Figure 5 shows the average response time, the 
average throughput, the average rejections, and the 

provisioning of the web and database tier during 
Experiment 4. The number of instances allocated to 

the web tier is dynamically managed using the 

approach explained in Section 3.1. The database tier 
instance type is dynamically managed using the 

approach explained in Section 3.2 with the S m = 
RAPID configuration. It can be seen that the database 

scaling strategy rapidly changes the RDS instance 
from the db.m3.medium (M) to the db.m3.2xlarge 

(2XL). This is an effective strategy to rapidly upgrade 
the database allocation to accommodate huge 

workload variations effectively. 

5.5 Experiment 5: The Gradual Scaling 
Database Tier using the EC2 Instance (Gr-
EC2) 

Experiment 5 is similar to Experiment 3 except we 
used the EC2 instances instead of the RDS instances 

for the vertical scaling of the database tier. The 
number of instances allocated to the web tier is 

dynamically managed using the approach described in 

Section 3.1. The database tier instance type is 
dynamically managed using the approach explained in 

Section 3.2 with the S m = GRADUAL configuration. 
The experiment results in Figure 6 show the 

effectiveness of our proposed hybrid auto-scaling 

method using the GRADUAL configuration for the 

varying workload. It can be seen from the graph that 
our proposed hybrid auto-scaling method 

appropriately brings down the response time by 
automatically adjusting the web and database tier 

resources. The number of overall processed requests 
are compared more to Experiment 3, however, during 

the operation of database scaling the number of 

rejections increase. 

 

Figure 5.  The Average Response Time, Throughput, 
Rejections, and Dynamic Allocation of the Web Tier and the 
Database Tier in Experiment 4. 

 

Figure 6.  The Average Response Time, Throughput, 
Rejections, and Dynamic Allocation of the Web Tier and the 
Database Tier in Experiment 5. 



362 NISAR ET AL. 

 

5.6 Experiment 6: The Gradual Scaling 
Database Tier using the Pre-booted EC2 

Instance (GR-EC2-PB) 
Figure 7 shows the average response time, the 

average throughput, the average rejections, and the 

provisioning of the web and database tier during 

Experiment 6. The number of instances allocated to 
the web tier is dynamically managed using the 

approach explained in Section 3.1. The database tier 
configured on the Amazon EC2 instance is 

dynamically managed using the database vertical 
scaling approach explained in Section 3.2. However, 

instead of booting the next level instance for the 
database tier, we always keep an extra pre-booted EC2 

instance of the next level to reduce the time to launch 

the new instance. It can be observed from Figure 7 
that using the pre-booted EC2 instance dramatically 

reduces the time of switching among the instances 

approximately one minute along with a slight increase 

in rejections.  

5.7 Experimental Summary 
We summarized the experimental results in Table 

3. It shows that the total number of requests processed 

(Processed); the total number of requests unprocessed 
or rejected (Unprocessed), the percentage of requests 

missing the acceptable response time threshold (SLA 

misses), the number of web tier scale operations (Web 
scales), number of database tier scale operations (DB 

Scales), and the total cost (Cost) for each experiment. 
We measured the cost of each experiment by summing 

up the cost of the resources used during each of the 
experiments. The total requests generated by the 

workload generator in each of the experiments were 

8.26 million. 

 
Table 3.  The Experimental Results Summary. 

Experiment Processed 
(millions) 

Unprocessed 
(millions) 

SLA misses 
(%) 

Web scales 
(#) 

DB scales 
(#) 

Cost 
(USD) 

1: St-Al 1.760 6.500 37.71 0 0 $0.314 

2: Op-RDS 6.685 1.575 05.80 8 0 $1.167 

3: Gr-RDS 5.512 2.748 06.81 8 6 $0.784 

4: Ra-RDS 6.468 1.792 06.20 8 2 $1.007 

5: Gr-EC2 7.472 0.788 11.11 8 6 $0.732 

6: Gr-EC2-Pb 7.459 0.801 09.85 8 6 $0.917 

 

 

Figure 7.  The Average Response Time, Throughput, 
Rejections, and Dynamic Allocation of the Web Tier and 
Database Tier in Experiment 6. The Bottom Graph’s y2 Title 
used to Show the Database Tier Allocation during the 
Experiment. 

It appears from the table that the over-provisioning 

of the database tier (Experiment 2) outperformed the 

other experiments in terms of performance; however, 
this is not a cost-effective solution and also shows a 

larger number of unprocessed requests. The proposed 

hybrid auto-scaling method with gradual scaling using 

both of the RDS and EC2 instances (Experiment 3 and 
4) reduced the cost significantly. The maximum 

number of requests is also processed using the gradual 
setting with the EC2 instances (Experiment 5). 

To compare the results obtained using the proposed 
auto-scaling method (Experiments 3, 4, 5, and 6) we 

used Experiment 1 and Experiment 2 as baseline 

methods. Figure 8(a) shows the relative percentage of 
processed requests, unprocessed requests, SLA 

missing requests, and cost in comparison with 
Experiment 1 (static allocation) and Figure 8(b) shows 

the comparison with Experiment 2 (over-provisioned 
resources). The relative percentages for each of the 

evaluation metrics for the proposed methods are 

computed by considering the baseline method, which 
yields 100%. Figure 8(a) shows that the proposed 

method using all different settings outperform the 
static allocation results significantly for the processed  

requests, unprocessed requests, and the SLA-missing 
requests. However, the cost of the static allocation is 

significantly lower. Figure 8(b) shows that the 
proposed method using the gradual scaling with the 

EC2 instances (Experiment 5 and 6) outperforms the 

number of processed requests, number of unprocessed 
requests, and cost comparing to Experiment 2. 

However, results obtained in Experiments 5 and 6 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMPU TING  363 

 

show higher SLA-missing requests compared to 

Experiment 2. 
The proposed hybrid auto-scaling method can help 

owners of the multi-tier web applications to use either 
the RDS instances or the EC2 instances to vertically 

scale the database tier; however, the application can 
still horizontally scale the web server tier. We strongly 

believe that the proposed method provides significant 

cost benefits to the multi-tier application owners with 
an acceptable performance compared to the traditional 

static and over-provisioning methods. Our extensive 
evaluation of using different settings of the proposed 

method allows users to enable the appropriate settings 
to achieve specific goals. For example, if an 

application owner wants to minimize the 
unprocessed/rejected requests with the minimal cost, 

then the most feasible setting for the owner is to 

enable the gradual scaling with the EC2 instances, 
similar to Experiment 5. 

6 CONCLUSION AND FUTURE WORK 
IN this paper, a new hybrid auto-scaling method to 

dynamically provision resources to the multi-tier web 
applications hosted on the Amazon public cloud was 

proposed and evaluated. We showed that the proposed 
auto-scaling method dynamically scales the web 

server tier horizontally and scales the database tier 
vertically in order to provide acceptable response time 

on varying workloads to be cost effective. We have 

demonstrated that our experimental evaluation 
validates the effectiveness of our proposed method 

compared to the current practices of static and 
overprovisioning of the database tier. To the best of 

our knowledge, our proposed method is one of the 
first attempts to propose and evaluate a hybrid auto-

scaling method for the multi-tier web applications 

hosted on public clouds, which dynamically uses 
horizontal and vertical scaling for different tiers. 

Figure 8.  The Experimental Results Comparison, Processed Requests, Unprocessed Requests, SLA Missing Requests, and Cost are 
Computed Relative to the Baseline. 

Currently, we are extending our hybrid auto-

scaling method to support the generic n-tier 
application architectures and also incorporate 

proactive scaling decisions to minimize the percentage 
of the SLA missing requests. 

7 REFERENCES  
Abdullah, M., Khana, S., Alenezi, M., Almustafa, K., 

& Iqbal, W. (2018). Application Centric Virtual 
Machine Placements to Minimize Bandwidth 

Utilization in Datacenters. Intelligent Automation 
and Soft Computing, 1–14. 

doi:10.31209/2018.100000047 
Adam, O. Y., Lee, Y. C., & Zomaya, A. Y. (2016). 

Constructing performance predictable clusters 

with performance-varying resources of clouds. 
IEEE Transactions on Computers, 65, 2709–2724. 

Allspaw, J. (2008). The art of capacity planning: 
scaling web resources. ” O’Reilly Media, Inc.”. 

Amazon Inc. (2015). Amazon Web Services auto 

scaling. Available at https: //aws.amazon.com/auto 
scaling/ [Online; accessed 6-Nov-2015]. 

Amazon.com, Inc. (2015). Amazon Web Services 
(AWS). Available at https: //aws.amazon.com/ 

[Online; accessed 6-Nov-2015]. 

Amiri, M., & Mohammad-Khanli, L. (2017). Survey 
on prediction models of applications for resources 

provisioning in cloud. Journal of Network and 
Computer Applications, 82, 93–113. 

Apache Software Foundation (1999).Apache JMeter. 
http://jmeter. apache.org/. 

Bala, A., & Chana, I. (2016). Prediction-based 
proactive load balancing approach through VM 

migration. Engineering with Computers, 32, 581–

592. 
Biswas, A., Majumdar, S., Nandy, B., & El-Haraki, A. 

(2017). A hybrid auto-scaling technique for clouds 
processing applications with service level 

agreements. Journal of Cloud Computing, 6, 29. 



364 NISAR ET AL. 

 

Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., 

& Patterson, D. (2009). Statistical machine 
learning makes automatic control practical for 

internet datacenters. In HotCloud’09: Proceedings 
of the Workshop on Hot Topics in Cloud 

Computing. 
Bu, X., Rao, J., & Xu, C.-Z. (2009). A reinforcement 

learning approach to online web systems auto-

configuration. In Proceedings of the 2009 29th 
IEEE International Conference on Distributed 

Computing Systems ICDCS ’09 (pp. 2–11). IEEE 
Computer Society. 

Dejun, J., Pierre, G., & Chi, C.-H. (2011). Resource 
provisioning of Web applications in heterogeneous 

clouds. In Proceedings of the 2nd USENIX 
Conference on Web Application Development . 

Fernandez, H., Pierre, G., & Kielmann, T. (2014a). 

Autoscaling Web Applications in Heterogeneous 
Cloud Infrastructures. In IEEE (Ed.), IEEE 

International Conference on Cloud Engineering . 
Boston, MA, Etats-Unis.´ 

Fernandez, H., Stratan, C., & Pierre, G. (2014b). 
Robust Performance Control for Web Applications 

in the Cloud. In 4th International Conference on 

Cloud Computing and Services Science. 
Barcelona, Espagne. Best paper award. 

Grimaldi, D., Pescape, A., Salvi, A., Persico, V. et al. 
(2017). A fuzzy approach based on heterogeneous 

metrics for scaling out public clouds. IEEE 
Transactions on Parallel and Distributed Systems. 

Gujarati, A., Elnikety, S., He, Y., McKinley, K. S., & 

Brandenburg, B. B. (2017). Swayam: distributed 
auto scaling to meet slas of machine learning 

inference services with resource efficiency. In 
Proceedings of the 18th ACM/IFIP/USENIX 

Middleware Conference (pp. 109–120). ACM. 
Halili, E. H. (2008). Apache JMeter: A practical 

beginner’s guide to automated testing and 
performance measurement for your websites. 

Packet Publishing Ltd. 

Han, R., Ghanem, M. M., Guo, L., Guo, Y., & 
Osmond, M. (2014). Enabling cost-aware and 

adaptive elasticity of multi-tier cloud applications. 
Future Generation Computer Systems, 32, 82–98. 

Iqbal, W., Dailey, M., & Carrera, D. (2015). 
Unsupervised learning of dynamic resource 

provisioning policies for cloud-hosted multi-tier 

web applications. In Systems Journal, IEEE (pp. 
1–12). IEEE. 

Iqbal, W., Dailey, M. N., Carrera, D., & Janecek, P. 
(2011a). Adaptive resource provisioning for read 

intensive multi-tier applications in the cloud. 
Future Generation Computer Systems, 27, 871–

879. 

Iqbal, W., Dailey, M. N., Carrera, D., & Janecek, P. 
(2011b). Adaptive resource provisioning for read 

intensive multi-tier applications in the cloud. 
Future Generation Computer Systems, 27, 871–

879. 

Khoshkbarforoushha, A., Khosravian, A., & Ranjan, 

R. (2016). Elasticity management of streaming 
data analytics flows on clouds. Journal of 

Computer and System Sciences, In Press, –. 
Krieger, M. T., Torreno, O., Trelles, O., & 

Kranzlmuller, D. (2017). Building¨ an open source 
cloud environment with auto-scaling resources for 

executing bioinformatics and biomedical 

workflows. Future Generation Computer Systems, 
67, 329–340. 

Lorido-Botran, T., Miguel-Alonso, J., & Lozano, J. A. 
(2014). A review of auto-scaling techniques for 

elastic applications in cloud environments. Journal 
of Grid Computing, 12, 559–592. 

Nicolas, B., Thanasis G., P., & Karl, A. (2011). 
Automatic SLA-driven provisioning for cloud 

applications. In Proceedings of the 2011 

International Symposium Cluster, Cloud and Grid 
Computing. Newport Beach, CA, USA: IEEE 

Computer Society. 
Nisar, A., Iqbal, W., Bokhari, F. S., & Bukhari, F. 

(2015). Hybrid auto-scaling of multi-tier web 
applications: A case of using amazon public cloud. 

In 4th International Conference on Internet 

Applications, Protocols and Services (pp. 274–
279). Cyberjaya, Malaysia. 

Ou, Z., Zhuang, H., Nurminen, J. K., Yla-J¨ a¨aski, 
A., & Hui, P. (2012). Exploiting hardware 

heterogeneity within the same instance type of 
amazon ec2. In HotCloud. 

OW2 Consortium (1999). RUBiS: An auction site 

prototype. http://rubis. ow2.org/. 
Papadopoulos, A. V., Ali-Eldin, A., Årzen, K.-E., 

Tordsson, J., & Elmroth, E.´ (2016). Peas: A 
performance evaluation framework for auto-

scaling strategies in cloud applications. ACM 
Transactions on Modeling and Performance 

Evaluation of Computing Systems (TOMPECS), 1, 
15. 

Perez, J. F., Chen, L. Y., Villari, M., & Ranjan, R. 

(2018). Holistic workload´ scaling: A new 
approach to compute acceleration in the cloud. 

IEEE Cloud Computing, 5, 20–30. 
Qu, C., Calheiros, R. N., & Buyya, R. (2016). A 

reliable and cost-efficient auto scaling system for 
web applications using heterogeneous spot 

instances. Journal of Network and Computer 

Applications, 65, 167–180. 
Reig, G., & Guitart, J. (2012). On the anticipation of 

resource demands to fulfill the qos of saas web 
applications. In ACM/IEEE 13th International 

Conference on Grid Computing (pp. 147–154). 
ACM/IEEE ACM/IEEE. 

Satoh, I. (2016). Self-adaptively auto-scaling for 

mobile cloud applications. Procedia Computer 
Science, 94, 9–16. 

Seracini, F., Menarini, M., Krueger, I., Baresi, L., 
Guinea, S., & Quattrocchi, G. (2014). A 

comprehensive resource management solution for 



INTEL L IGE NTA UTO M ATIO N A NDS OFTC OM PUTIN G  365 

 

web-based systems. In 11th International 

Conference on Autonomic Computing (ICAC 14) 
(pp. 233–239). Philadelphia, PA: USENIX 

Association. 
Shah, S. C. (2017). Recent advances in mobile grid 

and cloud computing. Intelligent Automation & 
Soft Computing, 1-13. 

Singh, R., Sharma, U., Cecchet, E., & Shenoy, P. 

(2010). Autonomic mix-aware provisioning for 
non-stationary data center workloads. In ICAC 

’10: Proceedings of the 7th IEEE International 
Conference on Autonomic Computing and 

Communication. Washington, DC, USA: IEEE 
Computer Society. 

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., 
& Tantawi, A. (2005). An analytical model for 

multi-tier internet services and its applications. In 

SIGMETRICS ’05: Proceedings of the 2005 ACM 
SIGMETRICS International Conference on 

Measurement and Modeling of Computer Systems 
(pp. 291–302). ACM volume 33. 

Villela, D., Pradhan, P., & Rubenstein, D. (2007). 
Provisioning servers in the application tier for e-

commerce systems. ACM Transaction on Internet 

Technology, 7. 
Yazdanov, L., & Fetzer, C. (2014). Lightweight 

automatic resource scaling for multi-tier web 
applications. In 7th IEEE International 

Conference on Cloud Computing . IEEE. 

8 NOTES ON CONTRIBUTORS 
Abid Nisar is the head of Software 

Development at Analytics, Private 

Limited, Lahore Pakistan. He has 
12 years of experience building 

large scale software systems. Abid 
completed his MPhil in Computer 

Science from PUCIT, University of the Punjab, 
Lahore, Pakistan in 2015. His research interests are in 

cloud computing, machine learning, software 

architectures, and databases. 
 

Waheed Iqbal is an assistant 
professor at Punjab University 

College of Information 
Technology, University of the 

Punjab, Lahore, Pakistan. He also 

worked as a Postdoc researcher 
with the Department of Computer 

Science and Engineering, Qatar 
University during 2017--2018. His research interests 

include cloud computing, distribute systems, machine 
learning, and large scale system performance 

evaluation. He received his Ph.D. degree from the 

Asian Institute of Technology, Thailand. He received 
dual Masters degrees in Computer Science and 

Information Technology from the Asian Institute of 
Technology and the Technical University of Catalonia 

(UPC), Barcelona, Spain, respectively.  

 

Fawaz Bokhari is an assistant 
professor at the University of 

the Punjab - College of 
Information Technology 

(P.U.C.I.T). He is a Fulbright 
scholar and was awarded this 

scholarship in 2007 for his 

Ph.D. studies in United States. 
He received his Ph.D. in 

Computer Science from the University of Texas at 
Arlington in 2012. His research interes ts include 

network protocols design (Layer 2,3 & 4 of the 
TCP/IP stack) for wireless and wired networks, 

resource provisioning of IoT based applications in the 
cloud, and TCP and routing for datacenters. 

 

Faisal Bukhari received 
M.Sc. in Statistics from the 

Institute of Statistics, 
University of the Punjab (PU), 

Lahore, Pakistan. He received 
M.Sc. in Computer Science 

from Punjab University 

College of Information 
Technology (PUCIT), PU. He also received a M.S. 

and Ph.D. in Computer Science from the Asian 
Institute of Technology (AIT), Thailand. Currently, he 

is an Assistant Professor and running the Imaging and 
Data Science Lab at PUCIT. His research interests 

include computer vision, image processing, data 

science, and machine learning.  
 

Khaled Almustafa Received 
a B.E.Sc. in Electrical 

Engineering, M.E.Sc. and 
Ph.D. in Wireless 

Communication from the 
University of Western 

Ontario, London, Ontario, 

Canada in 2003, 2004 and 
2007 respectively. He is 

currently working as an Associate Professor at Prince 
Sultan University (PSU) in the Department of 

Information Systems (IS) at the College of Computer 
Science and Information Systems (CCIS), Riyadh, 

K.S.A. He served as a General Supervisor for the 

Information Technology and Computer Services 
Center (ITCS) at PSU, Chairman of the Department of 

Communication and Networks Engineering (CME), 
and the Vice Dean for the College of Engineering at 

PSU. Currently he is the Director of the Research and 
Initiatives Center at PSU. His research interests 

include error performance evaluation of MIMO 

communication systems in partially known channels, 
adaptive modulation, and channel security, text 

recognition models, control systems with renewable 
energy applications as well as features selections and 

data pre-possessing. 



 

 

 


