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This paper presents a fault detection method based on Dynamic Independent Component Analysis (DICA) with new statistics. These new statistics are
statistical moments and first characteristic function that surrogate the norm operator to calculate the fault detection statistics to determine the
control limit of the independent components (ICs). The estimation of first characteristic function by its series is modified such that the effect of
series remainder on estimation is reduced. The advantage of using first characteristic function and moments, over second characteristic function
and cumulants, as fault detection statistics is also presented. It is shown that the proposed method can detect a class of faults that the former
methods cannot; in particular faults with small amplitude ICs that have either different probability density function or identical probability density
function of the ICs, but different low order moments of the ICs compared with the normal performance. Simulation results are used to show the
effectiveness of the proposed method.
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1. INTRODUCTION

Many industrial plants encompass a large number of control
loops and sensors are employed to measure the variable in each
individual loop. The real measured variables are sampled period-
ically and the collected data is used for investigation the remote
monitoring system [1] and fault detection strategies. However,
after a short period of time the large data sets are assembled
that need to be analyzed, and processing these large data sets
in a short time requires powerful computational facilities which
may not be available in all industrial site. Consequently, it is
crucial to use strategies with low computational cost and fast
to extract the important data from such large data sets and the
statistical approaches for data analysis and classification can be
used to achieve this objective. Require to these approaches to
be sensitive, because the number of large scale systems increase
by proposed the method of filtering of sensor reading in sensor
networks such as [2].
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In plants such as chemical industries and nuclear power plants,
where faults can lead to biological and human tragedies, fault
detection at the early stages, before they develop into major de-
fects, is crucial. Being detected at the early stages, problems can
be solved by replacing exhausted components and consequently
major failures can be prevented. Moreover, fault detection at
the early stages prevents failure extension and hence reduces
the need for more costly repairs, improves the system reliability
and reduces the system downtime [3, 4, 5, 6, and 7]. However,
fault detection and root cause diagnosis are challenging tasks.
In most industrial plants, the waste exchange lines are installed
to preclude raw material loss. This leads to systems with highly
interactive loops; in particular, when the buffer tanks are by-
passed to save energy. In such systems, the influence of a fault,
occurred in one of the loops, propagates through all the loops
and makes it is impossible for the operator to identify the root
cause of the fault. Therefore, fault detection and root cause di-
agnosis at the early stages, when the fault amplitude is small, is
of critical importance.
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Thornhill and Horch reviewed and categorized the suggested
methods in plant-wide disturbance detection and diagnosis [8].
Decomposition is one of the proposed strategies which includes
three methods: Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), and Non-Negative Matrix Fac-
torization (NNMF). PCA has been widely used to solve the stated
problems. This approach projects the data space onto a lower
dimensional subspace such that the correlation between the pro-
jected variables is minimized. It also creates some new unrelated
variables by which faults root cause can be detected. The PCA
method is well adapted to the Gaussian latent variables. It is
worth mentioning that in Gaussian distribution, uncorrelation
leads to independence. However, Martin and Morris showed
that latent variables of most real systems do not follow a Gaus-
sian distribution [9]. The other method to dimension reduction
are proposed by Seungdo in[10].

Lee et al. introduced a new statistical process monitoring
approach using ICA [11]. In the ICA method, statistical de-
pendence between latent variables is minimized and it is shown
that it reveals more useful information from the observation data
in comparison with PCA. However, in fault detection methods
based on the ICA, the system is assumed to be static. Lee et al.
extended the approach and proposed Dynamic ICA (DICA) to
overcome this disadvantage [12]. The idea behind this method
is adopted from [13, 14]. The drawback of this approach is the
drastic increase in dimensions as a result of expanding data vec-
tor to augmented matrix. Teimoortashloo et al. constructed the
new observation matrices to improve the drawbacks of dealing
with high dimensional systems, such as reduction in the running
time, in the number of arithmetic operations, and in the error of
orthogonalization estimation, as well as the overall improvement
of capability of fault detection [15]. Another assumption in fault
detection methods using ICA/DICA is that the variables do not
follow a Gaussian distribution. Ge and Song combined PCA
and ICA and proposed a new approach to deal with Gaussian
and non-Gaussian latent variable [16]. Ge and Song proposed
Maximum-likelihood mixture factor analysis model for process
monitoring [17]. Ge et al. Improved kernel PCA-based monitor-
ing approach for nonlinear processes [18]. Brys et al. showed
some of the weak points of ICA-based fault detection; one of
which is the assumption that the offline part observations have
no outliers, although this does not always true[19]. In particular
circumstances, if a fault occurs in the offline part, it is assumed as
normal performance and hence remains undetected in the online
part. Therefore, outlier rejection method is proposed by [20].
They also showed that using square of 2-norm for calculating
the control limit, which produces elliptical control limit, is not
suitable if ICA/DICA method leads to a joint distribution that the
mutual independent components have rectangular-shape. Thus
they suggested adjusted outlier (AO) approach that can produce
a rectangular-shape control limit.

Ge et al. proposed Batch process monitoring based on the
support vector data description method [21]. Miao et al. devel-
oped a new nonlinear fault detection method based on locally
linear embedding [22]. Ge and Song proposed a distribution-
free method for process monitoring [23]. Ge et al. reviewed
on data-based process monitoring [24]. Mu-Chen et al. used
Durbin Watson index to choose the dominant ICs and support
vector data description as fault detection statistics [25]. Huang
and Yan proposed DPCA-DICA and Bayesian Inference to put

variable into a block on the basis of the variable normality and
then used Jarque-Bera test [26]. Zvokelj et al. combined en-
semble empirical mode decomposition with ICA to decompose
signal to difference time scales [29].

Statistical moments and cumulants have been widely used in
signal processing, blind system identification and blind source
separation [30]. Statistical moments and cumulants as well as
first and second characteristic function, moment generating func-
tion, and cumulants generating function are well documented in
the literature [30, 31, 32, 33 and 13]. In signal processing, if
probability density function (pdf) to be existed and their dis-
tribution to be continued, finding the moments can be lead to
finding their pdf, and the moments can be calculated from the
moment generating function [13]. The characteristic function is
also a moment generating function [31]. Utilizing characteristic
function is more appropriate than distribution functions as it can
be estimated by smaller sample size [34]. Moreover, character-
istic function always exists but moment generating function does
not necessarily exist [31]. In fact, it is argued that when the sam-
ple size is small, analyzing the model by two first moments and a
selection of higher order moments yields better results, in terms
of stability and robustness, rather than approaches in which the
use of full set of higher order moments is suggested [35, 36].
While increasing the number of moments leads to better approx-
imation of distribution function, in practice moments higher than
the fourth order are rarely used or needed; that is due to the fact
that higher-order moments are sensitive to outliers [13].

The main contributions of this paper can be summarized as
follows. The new statistics are introduced in order to detect
a class of faults with the small amplitude ICs that the former
methods fail to detect. These new statistics are the lower sta-
tistical moments and first characteristic function that surrogate
the 2-norm or AO operators to calculate the control limit of the
independent components (ICs). The fault detection occurs when
the moments or value of the first characteristic function of ICs,
at certain frequency, are out of the normal performance interval.
This means that the pdf of ICs or some moments differ from
those of the normal performance.

1.1 Motivating example

To clarify the benefits of the proposed method over the former
ones, see Figure 1. This figure shows the joint distribution of
the two IC vectors. The red dots are normal operation ICs and
the green squares are faulty ICs. Using 2-norm or AO approach
leads to an elliptical control limit or a rectangular-shape control
limit, respectively, and neither of them can detect the fault (see
black dashed circle or blue dashed rectangular in Figure 1). It
is worth mentioning that the fault detection occurs when the 2-
norm or AO operator of ICs are out of the normal performance
interval, control limit. On the other hand, low order moments of
ICs detect this fault because the density of ICs increases in the
left hand side of joint distribution plot.

The rest of the paper is organized as follows. Section two
presents a brief review of DICA and fault detection using DICA.
New statistics to determine the control limit are introduced in
section three, and section four describes the proposed algorithm.
Simulation results and conclusion are included in sections five
and six, respectively.
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Figure 1 Benefit of proposed method over the former ones. The red dots are
normal operation ICs and the green squares are faulty ICs. The black dashed
circle and blue dashed rectangular are square of 2-norm and AO control limit.

2. FAULT DETECTION

This section provides a brief review of the DICA algorithm and
DICA-based fault detection method.

2.1 The ICA algorithm

In the ICA algorithm, the idea is to find m ICs (sr r = 1, . . . ,m
as elements of random vector s(k) ∈ Rm×1) as source from the
m observed variables (xr r = 1, . . . ,m as element of random
vector x(k) ∈ Rm×1) that are sampled from the sensors. The
number of variables can be bigger than the ICs, and vice versa.
In general, in fault detection methods, the number of variable
and ICs are assumed to be equal. In this method, N vectors of
s(k) ∈ Rm×1 and x(k) ∈ Rm×1, respectively, are constructed
matrices x ∈ Rm×N and S ∈ Rm×N (N is number of samples of
each variable). The ICA algorithm searches to find the mixing
matrix A ∈ Rm×m and the ICs matrix S ∈ Rm×N , which are
unknown matrices, from the known matrix x ∈ Rm×N , where

X = AS. (1)

The observed variables are typically mean centered. By center-
ing the observed variables, i.e., subtracting their sample mean
simplifies the theory and algorithms. It is made in the rest of this
manuscript. Equation

(1) can be written as S = W.X, where W = A−1. Matrix
x is whitened using Q ∈ Rm×m where Q = �−

1
2 UT , � ∈

Rm×m , is a diagonal matrix with the eigenvalues of matrix Rx =
E(x(k)xT (k)) as its diagonal elements(x(k) is the random vector
at sample k with covariance Rx where E represents expectations
see [11]). U ∈ Rm×m is a matrix constructed by eigenvectors of
Rx ∈ Rm×m as its columns. The whitening matrix Z is obtained
by:

Z = QX = QAS = BS (2)

Where B = QA. Whitening the matrix X means that its com-
ponents to be uncorrelated and their variances to be equaled to
unity. In other words, the covariance matrix of X to be equaled

the identity matrix. The whitening is a good idea to reduce the
complexity of the ICA algorithm because it reduces the number
of elements that should be estimated (see [13]). It is easy to show
that B−1 = BT. Therefore, the problem of finding a full rank
matrix A is reduced to finding an orthogonal matrix B ∈ Rm×m .
Equation (2) is a matrix equation with two unknown matrices, S
and B, which can be rewritten as S = BT Z, with two constrains:
first, B ∈ Rm×m is orthonormal matrix and second, the statis-
tical dependence between elements of vector s(k) ∈ Rm×1 are
minimized.

Fast ICA, which employs fixed point optimization algorithm,
was used by [11, 12] for fault detection is as follows:

1. Choose m and Set counter i = 1

2. Choose a random initial vector bi ∈ Rm×1 with unit norm
(bi is a i th column of matrix B ∈ Rm×m ).

3. Calculate bi ← E{zĠ(bT
i z)} − E{G̈(bT

i z)}bi where Ġ
and G̈ are the first and second derivative of G. Function
G(bT

i z) is defined as tanh(bT
i z) or − exp(−(bT

i z2)/2) or
etc. Determination of G is discussed in [37].

4. Orthogonalize bi using the Gram-Schmidt method:

bi ← bi −
i−1∑
j=1

(bT
j bi )b j

5. Normalize bi as:

bi ← bi

||bi ||
6. If bi does not converge, go back to step 3.

7. If bi converges, it is i th column of B. Then, if i < m
set i = i + 1 and go back to step 2. bi . Is converged if
dot product of old and new values of bi is equal around 1.
To summarize, the matrix B is determined by the above-
mentioned method. The independent component matrix, s,
then is calculated as s = BT Z, and finally the de-mixing
matrix, w ∈ Rm×m , is calculated as W = BT Q.

2.2 Fault detection based on the DICA

The fault detection algorithm proposed by Lee et al. has two
parts, in rest of this paper this method is called former method
[11, 12]. An Offline part in which the normal operating data is
obtained by an offline training; and an online part, which an on-
line monitoring is performed to detect deviation from the normal
operating data. It is worth mentioning that in fault detection, the
main idea of ICA is blind source separation to diagnosis the root
cause of fault.

2.2.1 The offline part

The offline part includes the following steps:

Step1: The observation matrix X ∈ Rm(N+1) is obtained from
the assembled data and in order to carry out DICA, the time lag l
(proposed as l = 2 by [12]) is chosen and the augmented matrix
xL (XL ∈ R(l+1)m×N ) is constructed by augmenting columns
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X(k + 1), . . . ,X(k+l) to column X(k) for k = 1, . . . , N . Then
the augmented matrix is normalized using the mean and standard
deviation of each row.

Step 2: The normalized matrix must be whitened to obtain matrix
Z ∈ R(l+1)m×N (see Equation (2)).

Step 3: The ICA algorithm is carried out to calculate the
matrix B ∈ Rm(l+1)×m(l+1) and de-mixing matrix W ∈
Rm(l+1)×m(l+1).

Step 4: Rearrange and divide matrix W ∈ Rm(l+1)×m(l+1) into
two parts: the dominant part,Wd ∈ Rd×m(l+1), and the excluded

part, We ∈ R(m(l+1)−d×m(l+1)), i.e. W =
[

Wd
We

]
. d is number

of rows of dominant part of W (see [11]). Note that the norm of
rows of matrix W is used for this division; higher norm construct
Wd and lower norm construct We. Rearrange and divide matrix
B ∈ Rm(l+1)×m(l+1) into two matrices Bd ∈ Rm(l+1)×d and Be ∈
Rm(l+1)×(m(l+1)−d) corresponding to Wd and We, respectively,
i.e. B = Bd Be or calculate by Bd = (WdQ−1)T and Be =
(WeQ−1)T . Then the IC matrix space can be decomposed into
two subspaces; the dominant part, Sd ∈ Rd×N , and the excluded

part Se ∈ R(m(l+1)−d)×N and can be written as S =
[

Sd
Se

]
where

sd = wdXL and Se =WeXL.

Step 5: Three fault detection statistics are calculated to monitor
the process:
The systematic dominant part I 2

d (k) = sT
e (k)sd(k) k = 1, . . . , N

The systematic excluded part I 2
e (k) = sT

e (k)se(k) k = 1, . . . , N
The non-systematic part S P E(k) = eT(k)e(k) k = 1, . . . , N
where e(k) = xL(k)− x̂L(k) and x̂L(k) = Q−1BdWdxL(k).

Step 6: Confidence limits of the three statistics are calculated
by KDE (99% or 95%) to determine the control limit. KDE is
a technique that appropriately determines the control limits via
these statistics, while it simultaneously satisfies the confidence
bounds. A univariate kernel estimator with kernel k is defined as
f̂ (x) = 1

Nh

∑N
i=1 k

( x−xi
h

)
, where h is a contant value namely

window width, x is the considered data point, xi is the obser-
vation and k is kernel function that usually choses as Gaussian
density function [11].

2.2.2 The online part

The online part consists of the following steps:

Step1: For a new observation data vector (new samples of each
variable) the augmented vector xnewL(k) ∈ R(l+1)m×1 is con-
structed by augmenting columns Xnew(k+1), . . . ,XXnew(k+1)
to column Xnew(k). Then it is normalized by the offline part
mean and standard deviation of each row as in step 1 of the
offline part.

Step 2: The dominant and excluded parts of ICs are calculated
by offline Wd and We as:

sdn(k) =WdxnewL(k)

sen(k) =WexnewL(k)

Step 3: As in step 5 of the offline part three fault detection
statistics are calculated as:

The systematic dominant part I 2
dn(k) = sT

dn(k)sdn(k)

The systematic excluded part I 2
en(k) = sT

en(k)sen(k)

The non-systematic part S P En(k) = eT
n (k)en(k)where en(k) =

xnewL(k)− x̂newL(k) and x̂newL(k) = Q−1BdWdxnewL(k).
If these new statistics are out of the control limit, a fault has

occurred.

Step 4: Root causes of the faults are detected by using the con-
tribution value. Contribution value reveals the ICs that most
influence the fault detection statistics.

3. NEW FAULT DETECTION STATISTICS
TO DETERMINE THE CONTROL LIMIT

In the former fault detection methods, control limit is a vector
norm (2-norm) of ICs which creates a geometrical shape such
that to embed the normal values of ICs acquired in the offline
part [11]. Operation condition in the online part is then defined
in accordance with this shape. The square of 2-norm value of ICs
vectors being outside of this shape in the online part indicates that
a fault/faults has/have occurred. This means that these methods
cannot detect faults if the square of 2-norm of the ICs vectors
in the online part is inside the control limit shape, see Figure 1.
In other words, faults that lead to short amplitude ICs remain
undetected until they increase to a crucial level and hence the
norm of ICs vector exceeds the control limit shape, which can
be too late for any further action.

To overcome this drawback, this paper presents a new ap-
proach, which the new fault detection statistics are used to define
the control limit. In the proposed method, faults will be detected
if the pdf, providing that its change can be estimated by low or-
der moments of the first characteristic function, or the low order
moments differ from those in the normal operating data.

3.1 Characteristic function

Consider a scalar random variable s with the pdf f (s) (usually
the pdf is unknown) and there is available, a set of m(l+1) sam-
ples s1, . . . , sr . . . , sm(l+1) from s that construct the vector s(k).
According to Hyvarinen et al., the first characteristic function
can be defined as the continues Fourier transform of pdf [13]:

φ(ω) = E{e jsω} =
∫ +∞
−∞

e jsω f (s)ds =
∞∑

i=0

μ′i
( jω)i

i
(3)

And the second characteristic function can be expressed as fol-
lows (see [31]):

ψ(ω) = log(E{e jsω}) = −
∞∑

n=1

1

n

(
−
∞∑

i=1

μ′i
( jω)i

i

)n

=
∞∑

i=0

κi
( jω)i

i
(4)

Where, μ′i is the i th moment and κi is the i th cumulant. In
principle, the first characteristic function, φ(ω), is presented as
a Taylor series and the second characteritic function, ψ(ω), is
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presented as a power series in which each term is a Taylor series.
μ′i is defined as:

μ′i = E{si } =
∫ +∞
−∞

si f (s)ds (5)

However, deu to the fact that the pdf is difficult to obtain in
practice, the moment are often estimated by the sample mean as
[38]:

μ′i = E{sn} = 1

m(l + 1)

m(l+1)∑
r=1

sn
r (6)

Which sr is the r th sample of scalar random variable s. Accord-
ing to Kendall and Stuart, nevertheless, the cumulants as well as
the moments cannot be calculated directly by a summation op-
erator [31]. Thus, it is necessary to, first, calculate the moments
and then substituted the calculated moments in Equation (7) to
acquire the cumulants. Providing that the mean of s is nonzero,
first cumulant (mean), second cumulant (variance), third cumu-
lant (skewness), and fourth cumulant (kurtosis) can be calculated
as follows [13]:

κ1 = μ′1
κ2 = μ′2 − μ′12

κ3 = μ′3 − 3μ′2μ
′
1 + 2μ′1

3

κ4 = μ′4 − 4μ′3μ
′
1 − 3μ′2

2 + 12μ′2μ
′
1

2 − 6μ′1
4 (7)

It is easy to show that if the i th moment of scalar random variable
s is shown by μ′1 then the i th moment of scalar random variable
ls is calculated by liμ′1. Where is a constant. It means that if
the scale of samples decreases (l < 1) the higher order moments
will decrease more than the lower order moments. While if the
i th cumulant of scalar random variable s is shown by κi then the
cumulant of scalar random variable ls is calculated by κi , too.
It means that if the scale of samples decreases the higher order
moments will not decrease more than the lower order moments.

3.2 Comparison between the first and the sec-
ond Characteristic function as fault detec-
tion statistics

In this paper, the first characteristic function is used as fault de-
tection statistics to determine the control limit. More precisely,
the first characteristic function is estimated by the first four terms
of the series given in Equation (3), and then it is used to deter-
mine a new control limit. The first characteristic function is
chosen because its series (providing all terms of series be able
to estimated) has an infinite radius of convergence, whereas the
radius of convergence of the second characteristic function se-
ries is finite (even if all terms of series be able to estimated).
Furthermore, the propagation of error in estimation the series
terms of second characteristic function is bigger than the error
of series terms of first characteristic function. Moreover, the
error of series remainder can be reduced by changing the scale
of all ICs in first characteristic function, while it is not true in
second characteristic function.

Radius of convergence of the first and second characteristic
function

According to Equation (3), the first characteristic function is ex-
panded as a Taylor series of exponential function. The radius of
convergence in exponential function is infinite. While according
to Equation (4), the second characteristic function is expanded
as a power series of the logarithm function in which each term
is a Taylor series with infinite convergence radius. As a result,
the second characteristic function can be written as:

ψ(ω) = log(E{e jsω}) = log

( ∞∑
i=0

μ′1
( jω)i

i

)

= log

(
1+

∞∑
i=1

μ′1
( jω)i

i

)
(8)

Since μ′0 = 1, see [31]. It converges if∣∣∣∣∣
∞∑

i=1

μ′1
( jω)i

i

∣∣∣∣∣ < 1 (9)

Inequality (9) shows that Equation (8) may diverge for certain
values of s and ω.

The propagation of error

Propagation of error is inevitable in indirect measurement. Ac-
cording to Equation (7), cumulants are calculated by using the
moments and hence the cumulant computation suffers from prop-
agation of error. In Appendix A shows that propagation of error
in estimation the cumulants is bigger than the error of moments.

Thus, estimation of the first characteristic function has smaller
error in comparison with the second characteristic function due
to propagation of error. Furthermore, Appendix A shows the
moments can be estimated more precisely in comparison with
cumulants and hence, the moments are preferable.

Reduce the error of series remainder in first characteristic
function

The error of series remainder can be reduced by changing the
scale of all ICs in first characteristic function, while it is not
true in second characteristic function. In the rest of this section
the proposed method to reduce the error of series remainder is
explained.

Estimation of the first characteristic function series only by
its first four moments introduces a new type of error which is a
direct result of the remainder, sum of the terms of order higher
than four, of the series. Equation (3) can be rewritten as:

ψ(ω) =
4∑

i=0

μ′1
( jω)i

i
+ R(ω) (10)

Where R(ω) is the remainder of series. It is shown in the Ap-
pendix B that 0.125ω4s4

max is a supremum for the summation
of high order moments. Therefore changing the scale of all ICs
matrix elements to values smaller than one can be used to re-
duce the remainder of first characteristic function (It is worth
mentioning that the moments are affected by changing the scale
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of ICs values but the cumulants are not affected). This change
is also useful in establishment of the inequalities (B-3) and (B-
4) in the Appendix B, since it can satisfy the conditions of the
inequalities. Thus,

snew(k) = asold(k) for k = 1, 2, . . . , N (11)

Where

a = 1

λsmax offline
(12)

λ > 1 is a real value. Changing the scale result in smax new < 1
and hence decreases the value of 0.125ω4s4

max new as quartic.
Consequently, remainder (error) decreases as quartic. How-
ever, it can be seen in the last paragraph of section 3.1, that
decline in lower order moments is smaller than that of higher
order moments (decline in the first, second, and third moments
are proportional, quadratic, and cubic, respectively). Thus the
first characteristic function is more influenced by the lower order
moments as the scale declines.

It should be mentioned that choosing a large λ, helps the con-
straints of inequalities (B-3) and (B-4) to be satisfied. But choos-
ing a large λ yields to an increase in calculation error, round-off
error, and a decline in the weights of the third and fourth mo-
ments in characteristic function estimation. Choosing a large ω,
on the other hand, results in a dramatic increases in the supre-
mum magnitude. It may also cause the constraints of inequalities
(B-3) and (B-4) not to be satisfied. But choosing a small ω in-
creases the calculation error, round-off error and decreases the
weights of the third and fourth moments in characteristic func-
tion estimation. In practice, fault frequency, if known, would be
a reasonable choice for ω and then λ can be chosen such that:

ω < λ (13)

The inequality (13) is a result of substituting Equation (12) in
Equation (11) and satisfying the constraints of inequalities (B-3)
and (B-4). Notice that choosing a λmuch bigger thanω increase
the round of error. Therefore, λ should be chosen close to ω.

4. THE PROPOSED ALGORITHM

In this section the proposed fault detection algorithm is dis-
cussed.

4.1 The offline part

Step1: The observation matrix X ∈ Rm×(N+l) is obtained by
the observed data. Then, the time lag l is chosen and the aug-
mented matrix XL(XL ∈ R(l+1)m×N ) is constructed by aug-
menting columns X (k + 1), . . . , X (x + l) to column X (k) for
k = 1, . . . , N . Then the augmented matrix normalized by the
mean and standard deviation of each row.

Step2: Compute the whitening matrix Z ∈ Rm(l+1)×N (see
Equation (2)) from normalized augmented matrix.

Step3: Compute matrices B ∈ Rm(l+1)×m(l+1), W ∈
Rm(l+1)×m(l+1) and S ∈ Rm(l+1)×N using the ICA algorithm
and find Smax offline, the largest absolute elements of matrix S.

Step4: Choose ω0 and λ which satisfies ω0 < λ and close to-
gether and calculate a by Equation (12).

Step5: Rearrange and divide matrix W ∈ Rm(l+1)×m(l+1) into
two parts: the dominant part,Wd ∈ Rd×m(l+1), and the excluded

part, We ∈ R(m(l+1)−d)×m(l+1), i.e. W =
[

Wd
We

]
. d is number

of rows of dominant part of W (see [11]). Note that the norm of
rows of matrix W is used for this division; higher norm construct
Wd and lower norm construct We. Rearrange and divide matrix
B ∈ Rm(l+1)×m(l+1) into two matrices Bd ∈ Rm(l+1)×d and
Be ∈ Rm(l+1)×(m(l+1)−d) as:{

Bd = (Wd Q−1)T

Be = (We Q−1)T
(14)

Then the IC matrix space can be decomposed into two subspaces;
the dominant part, SNew d ∈ Rd×N , and the excluded part

SNew e ∈ R(m(l+1)−d)×N and can be written as S =
[

SNew d
SNew e

]
Where sNew d = aWdXL and SNew e = aWeXL.

Step6: chose k = 1 and evaluate the following fifteen fault
detection statistics to monitor the process:

Calculate the first, second, third, and fourth moment statistics
and the first characteristic function statistic at frequency ω0 for
the elements of ICs vector sNew d (k), Iφdω0(k) and Iμ′id (k) i =
1, 2, 3, 4, as follows:

Iμ′id (k) = |μ′id (k)| i = 1, . . . , 4 (15)

Iφdω0(k) = |1− |φdω0(k)|| (16)

Where

μ′id (k) =
1

d

d∑
r=1

(snewd (k)r )
i i = 1, . . . , 4 (17)

|φdω0(k)| =
∣∣∣∣1+ jμ′1d

(k)ω0 + μ′2d
(k)
( jω0)

2

2

+ μ′3d
(k)
( jω0)

3

3
+ μ′4d

(k)
( jω0)

4

4

∣∣∣∣ (18)

Which sNewd (k), is the r th element of vector sNewd(k)

Calculate the first, second, third, and fourth moment statis-
tics and first characteristic function statistic at frequency ω0
for the elements of ICs vector sNewe(k), Iφeω0 (k) and Iμ′ie (k)
i=1,2,3,4, as follows:

Iμ′ie (k) = |μ′ie (k)| i = 1, . . . , 4 (19)

Iφeω0(k) = |1− |φeω0(k)|| (20)

Where

μ′ie (k) =
1

m(l + 1)− d

m(l+1)−d∑
r=1

(snewe(k)r )
i i = 1, . . . , 4

(21)

|φeω0(k)| =
∣∣∣∣1+ jμ′1e(k)ω0 + μ′2e

(k)
( jω0)

2

2
+ μ′3e

(k)
( jω0)

3

3

+ μ′4e
(k)
( jω0)

4

4

∣∣∣∣
(22)
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Which sNewe(k)r is the r th element of vector sNewe(k).
Similar to the aforementioned procedure, the first four mo-

ment statistics and the first characteristic functions statistic at
frequency ω0 for the elements of vector e(k), Iφnsω0(k) and
Iμ′ins (k) i = 1, 2, 3, 4, need to be calculated (For the non-
systematic part) as:

Iμ′ins (k) = |μ′ins(k)| i = 1, . . . , 4 (23)

Iφnsω0(k) = |1− |φnsω0(k)|| (24)

Where

μ′ins (k) =
1

m(l + 1)

m(l+1)∑
r=1

(e(k)r )
i i = 1, . . . , 4 (25)

|φnsω0(k)| =
∣∣∣∣1+ jμ′1ns(k)ω0 + μ′2ns(k)

( jω0)
2

2

μ′3ns(k)
( jω0)

3

3
+ μ′4ns(k)

( jω0)
4

4

∣∣∣∣ (26)

where e(k) = xL(k) − x̂L(k) and x̂L(k) = Q−1BdWdxL(k)
and e(k)r is the r th element of vector e(k).

if k < N set k = k + 1 and go back to step 6.

Step7: Calculate confidence limits of the fifteen fault detection
statistics by KDE (99% or 95%) to acquire the control limit.

4.2 The online part

Step1: Construct the new augmented observation vector and it
is normalized by the offline part mean and standard deviation of
each row as in step 1 of the offline part to obtain xonline(k).

Step2: Compute vectors sonline(k) and seonline(k) by prior Wd

and We as:

sdon(k) = aWdxonline(k) (27)

seon(k) = aWexonline(k) (28)

Step3: Compute the fifteen fault detection statistics as in step 6
of the offline part for the new vector of ICs as:

• Calculate the first, second, third, and fourth moment statis-
tics and the first characteristic function statistic at frequency
ω0 for the elements of ICs vector sdon(k), Iφondω0 and
Iμ′i ond(k) i = 1, 2, 3, 4, as follows:

Iμ′iond
(k) = |μ′i ond(k)| i = 1, . . . , 4 (29)

Iφondω0(k) = |1− |φond ω0(k)|| (30)

Where

μ′i ond(k) =
1

d

d∑
r=1

(sdon(k)r )
i i = 1, . . . , 4 (31)

|φond ω0(k)| =
∣∣∣∣1+ jμ′1 ond(k)ω0 + μ′2 ond(k)

( jω0)
2

2

+ μ′3 ond(k)
( jω0)

3

3
+ μ′4ond(k)

( jω0)
4

4

∣∣∣∣
(32)

Which sdon(k)r is the r th element of vector sdon(k).

• Calculate the first, second, third, and fourth moment statis-
tics and first characteristic function statistic at frequency
for the elements of ICs vector seon(k), Iφoneω0(k) and
Iμ′ione(k) i = 1, . . . , 4

Iμ′i one(k) = |μ′i one(k)| i = 1, . . . , 4 (33)

Iφoneω0(k) = |1− |φoneω0(k)|| (34)

Where

μ′i one(k) =
1

m(l + 1)− d

m(l+1)−d∑
r=1

(seon(k)r )
i

i = 1, . . . , 4 (35)

|φoneω0(k)| =
∣∣∣∣1+ jμ′1 one(k)ω0 + μ′2 one(k)

( jω0)
2

2

+ μ′3 one(k)
( jω0)

3

3
+ μ′4 one(k)

( jω0)
4

4

∣∣∣∣
(36)

Which seon(k)r is the r th element of vector seon(k).

• Similar to the aforementioned procedure, the first four mo-
ment statistics and the first characteristic functions statis-
tic at frequency ω0 for the elements of vector eon(k),
Iφonms ω0(k) and Iμ′i omns(k) i = 1, 2, 3, 4, need to be
calculated (For the non-systematic part) as:

Iμ′i onns(k) = |μ′ionns(k)| i = 1, . . . , 4 (37)

Iφonnsω0(k) = |1− |φonnsω0(k)|| (38)

Where

μ′i onns(k) =
1

m(l + 1)

m(l+1)∑
r=1

(eon(k)r )
i i = 1, . . . , 4

(39)

|φonnsω0(k)| =
∣∣∣∣1+ jμ′1 onns(k)ω0 + μ′2 onns(k)

( jω0)
2

2

+ μ′3 onns(k)
( jω0)

3

3
+ μ′4 onns(k)

( jω0)
4

4

∣∣∣∣
(40)

where eon(k) = xonline(k) − x̂online(k) and x̂online(k) =
Q−1BdWdxonline(k) and eon(k)r is the r th element of vec-
tor eon(k).

If these new fault detection statistics are out of the control
limit, a fault has occurred.

Step4: Detect the root cause of the fault by calculating contri-
bution’s values of each sample in fault detection statistics.

4.3 Root cause diagnosis

Root cause diagnosis is as important as fault detection and needs
to be done before the fault spreads through all loops and develops
to a crucial level. In the ICA-based fault detection methods, the
dependence between the ICs, in each vector, is minimized. As
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a result, the ICs which lead to increase in the fault detection
statistics can be identified. In other words, contribution of the
ICs in the value of statistics, by which the fault is being detected,
can be determined which ICs is root cause of the fault. In other
words:

1. If the first moments detect the fault in sample k, the ICs
with bigger absolute value in sample is the root cause of
the fault.

2. If the second moments detect the fault in sample k, the ICs
that have bigger squared value in sample k is the root cause
of the fault.

3. If the third moments detect the fault in sample k, the ICs
with bigger cubed value in sample k is the root cause of the
fault.

4. If the forth moments detects the fault in sample k, the ICs
with bigger ICs to the power of four value in sample k is
the root cause of the fault.

5. If the first characteristic function detects the fault in sample
k, the ICs sample that have bigger value in Equations (18)
or (22) in sample k is root cause of the fault.

Notice that all absolutely integrable functions of two random
variables became independent if these two random variables are
independent, also expectation have linearity property.

Next step, after finding the ICs that is the root cause of the fault,
is to find the loop which made the ICs. It is of crucial importance
to find the loop without disturbing the system normal operation.
Knowledge of the system properties is the key to answer this
question. For example, the loop can be found if the operator can
detect a characteristic, such as frequency, that shows which loop
made which ICs in the offline part.

4.4 Analysis of the simultaneous application of
the moments and the first characteristic
function

The first characteristic function statistic is not sufficient for fault
detection because:

• The faults will be detected when the first characteristic func-
tion statistic in the online part differs from that of the offline
part. In certain circumstances, however, increase in some
terms and decrease in other terms of the first characteristic
function cancel out each other’s effect on the first charac-
teristic function and hence the first characteristic function
statistic does not change significantly. As a result, the faults
cannot be detected.

• The first characteristic function statistic is a function of fre-
quency ω. Hence, the first characteristic function statistic
changes if the value of ω changes. In other words, two
completely different Fourier transform functions can have
identical values in some frequencies. Thus, faults will not
be detected when, at one chosen frequency, the first char-
acteristic function in the online part is equal to that of the
offline part.

The first four moment statistics are not sufficient for fault detec-
tion because:

1. The moments-based fault detection methods fail to detect
the occurrence of the faults if all four moments are inside
the control limit. To improve the effectiveness of the fault
detection methods in such situations, the first characteristic
function along with the first four moments can be used as
statistics to determine the control limit. The reason is that,
according to Equations (18) and (22), the first characteristic
function will not reach its maximum if all four first moments
are at their maximum values. Therefore, the maximum
value of the first characteristic function in the offline part is
defined as new constraint to determine the control limit.

4.5 Limitation of the proposed method

While the proposed method is powerful in detecting a class of
faults which the former methods cannot detect, it has two limi-
tations:

2. If the faulty ICs vector in the online part have elements with
values greater than λsmax o f f line , it is possible that con-
straints of inequalities (B-3) and (B-4) not being satisfied.
As a result, the effects of higher order moments overweight
the effects of lower order moments in first characteristic
function estimation and hence fault detection may fail. In
such circumstances, the effectiveness of the method can
be improved by choosing a small frequency ω0. However,
that leads to small elements in the ICs vector and therefore
reduces the calculation accuracy.

3. Applying the proposed method in a short time requires more
powerful computational facilities.

5. SIMULATION RESULTS

The former and proposed fault detection methods are applied to
two systems and the simulation results are used to validate the
algorithm.

5.1 The simple system

The proposed fault detection method based on DICA with new
statistics, described in section 4, is applied to the system sug-
gested by [39] and the simulation results are used to validate the
algorithm.

The system is comprised of two interfering loops and hence
faults propagation is inevitable. Each loop consists of a plant and
a PI controller. To model the sensor fault, a block with a limited
time output is added to the lower loop. In DICA-based fault
detection methods, oscillations that occur in both offline and on-
line parts cannot be detected by fault detection statistics. It, in
basically, means that faults that occur in the offline part, outliers,
cannot be detected in the online part because it is assumed as nor-
mal condition. To show such a situation, two sinusoidal signals
are added to the feedback signals. Both signals are of amplitude
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1 and their frequencies are set to 0.7Hz for the lower loop and
to 5Hz for the upper loop. Also a white noise with power of
approximately 0.001 is added to the upper loop. Step signals
of amplitude 10 are chosen as input signals. The simulation is
run for 200 seconds with sample time of 0.05 which means 4000
samples (200/0.05) are accumulated. The first 2000 samples are
discarded as they represent the transient response and the last 5
samples are excluded to make the augmented observation matrix.
Thus, about 2000 samples are shown in the figures. About half
of these samples are chosen as the offline part signals which are
shown with red dots in Figures 2, 3, 4, 5 and the rest is chosen as
the online part signals represented by blue dots in these figures.
Occurrence of two faults is assumed; sensor fault and actuator
fault. The sensor fault amplitude is chosen to be 0.025 of the
feedback signal tolerance amplitude. This fault occurs between
155 and 160 seconds which corresponds to samples from 1100 to
1200; notice that the first 2000 samples are omitted. In order to
model the actuator fault, a random exponential pdf fault is used
as an additive distortion to the control signal in the upper loop.
The amplitude of this fault is chosen about 0.02 of the control
signal. This fault occurs between 170 and 175 seconds which
corresponds to samples 1400 to 1500. Lag time of one (l = 1)
is chosen to construct the augmented matrix. The observation
matrix is constructed by both controllers and system outputs. In
Figures 2, 3, 4 and 5 only dominant ICs are shown.

5.1.1 Performance of first characteristic function and its
terms in comparison with square of 2-norm as statis-
tics to determine the control limit

In this section performance of the proposed method is compared
with that of the former method in which square of 2-norm is
used to determine the control limit. In Figure 2, parts a, b, c, and
d show, respectively, the first, second, third and fourth moment
statistics of the ICs and Part e shows the first characteristic func-
tion statistic of the ICs. The values of ω0 and λ are chosen as
1 and 10, respectively. Part f presents the square of 2-norm of
ICs as the former statistic. Parts g and h are two control signals
sampled from system and Part i shows the joint distribution of
the dominant ICs in the online part. In this part the normal op-
eration ICs are shown by red dots and the faulty ICs are shown
by green squares. Fault(s) will be detected if amplitude of each
statistic exceeds the value of corresponding statistic in the nor-
mal condition that made control limit. It means fault/faults will
be detected if some samples of either of statistics, the first four
moment statistics and the first characteristic function statistic in
the proposed method, or square of 2-norm in the former method,
are bigger than the same statistics in the offline part obtained
from normal operation condition. A dashed line represents the
maximum value of statistics in the online part.

The first, second and the fourth moment statistics, Part a, b
and d , although not easily, detect the sensor fault but fail to
detect the actuator fault. Whereas, the third moment statistic,
Part c, detects both sensor and actuator faults. Also, the first
characteristic function statistic only detects the sensor fault, Part
e. On the other hand, it is clear that the former method detects
none of those faults, see Part f . Part i clearly shows that the
faulty ICs, green squares, are located among the normal ICs
shown by red dots. Also it is noticeable that the faults do not have
a significant influence on the first and second control signals; see

Parts g and h. In other words, the faults cannot be detected by
monitoring the signals that are not processed by the proposed
fault detection method. The Simulation results emphasis that
the proposed method is a more effective fault detection method
than the former method.

5.1.2 The root cause diagnosis

Simulation results are used to verify the ability of the proposed
method in root cause diagnosis. For better visibility, the ampli-
tudes of both faults are increased by 200%, the actuator fault is
shifted by 10 seconds. In other words, the actuator fault is as-
sumed to occur between 180 and 185 seconds which correspond
to samples from 1600 to 1700.

The results are shown in Figure 3. In this Figure, Parts a, d ,
g, j and m are, respectively, the first four moments statistics and
the first characteristic function statistic of the ICs. Parts b, e, h, k
and n are, respectively, contribution values of the first dominant
part of ICs, corresponding to the control signal of upper loop
that has higher frequency, in the first four moments statistics and
the first characteristic function statistic. Also Parts c, f , i , l and
o are, respectively, contribution values of the second dominant
part of ICs, corresponding to the control signal of lower loop
that has lower frequency, in the first four moments statistics and
the first characteristic function statistic.

It is clear that the sensor fault that occurs in the lower loop is
detected by all five statistics about sample 1200, see Parts a, d , g,
j and m. And the root cause of this fault is detected in the second
dominant part of ICs, see Parts c, f , i , l and o. Comparing the
offline parts of c and b shows that the second dominant part of
ICs has a lower frequency than the first dominant part of ICs.
Since, it is known, from the system characteristics, that the lower
loop has a lower frequency, it can be concluded that the second
dominant part of ICs corresponds to the lower loop; hence the
sensor fault is occurred in the lower loop.

Also the actuator fault that occurs in the upper loop is detected
by all five statistics about sample 1650, see Parts a, d , g, j and
m; although, the occurrence of this fault is not clear in the Part
j . Parts b, e, h, k and n clearly show that the root cause of the
actuator fault is in the first dominant part of ICs. Comparing the
offline parts of c and b shows that the first dominant part of ICs
has a higher frequency than the second dominant part of ICs.
The system characteristics show that the upper loop has a higher
frequency; as a result, the first dominant part of ICs corresponds
to the upper loop. Therefore the actuator fault is occurred in the
upper loop.

5.1.3 Comparison between the first and second charac-
teristic functions

In this section the effects of using the first characteristic function
statistic and the first four moment statistics on the performance
of the fault detection algorithm is compared with that of the
second characteristic function statistic and the first four cumulant
statistics. Absolute value of 1− |ψω0(k)| and absolute value of
first four cumulants are, respectively, called second characteristic
function statistic and cumulant statistics, see Equations (15) and
(16). The amplitude of the sensor fault and the actuator fault
are, respectively, decreased to 0.001 of the tolerance amplitude
of the feedback signal and to 0.0003 of the control signal. Also,
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Figure 2 Comparison between the proposed control limit indices and the former control limit. In Parts a, b, c, d, e, f , g and h the offline part samples are shown with
red dots and the online part samples represented by blue dots. In Part i , the normal operation ICs are shown by red dots and the faulty ICs are shown by green squares.

λ is set to 2.
In Figure 4, Parts a, c, e, and g are, respectively, the first,

second, third, and fourth moment statistics of ICs and Part i
presents the first characteristic function statistic of the ICs. Parts
b, d , f , and h are absolute values of the first, second, third and
fourth cumulant of ICs, respectively and Part j shows the second
characteristic function of ICs.

Parts a and b are identical. However, in Part c the amplitude
of the faulty statistics is slightly bigger than the statistics in Part
d and exceeds the corresponding statistics maximum in the of-
fline part (dashed line). Comparing Parts e and g with f and h,
respectively, shows that the difference in the amplitude of faulty
statistics becomes more obvious as the order of moments and
cumulants increases. It is obvious that by using the moments
as the statistics to determine the control limits, fault detection
method is able to identify both faults, whereas by using the cu-
mulant as the statistic to determine the control limit, the fault
detection method only detects the sensor fault. Thus it is obvi-
ous that detecting faults by moments yields much better result
than by cumulants. Moreover, comparison between Parts i and
j reveals the benefit of using the first characteristic function over
the second characteristic function.

5.1.4 Effect of frequency ω0 and λ on the first character-
istic function statistic to determine the control limit

In this section, the effect of frequency ω0 and λ on the perfor-
mance of first characteristic function statistics is investigated. In

Figure 5, the values of frequency ω0 in first column, parts a, e,
i and m, is chosen 0.33 and in second column, parts b, f , j and
n, is chosen 1 and in third column, parts c, g, k and o, is chosen
10 and in forth column, parts d , h, l and p, is chosen 100. the
values of in first row, parts a, b, c and d , is chosen 2 and in sec-
ond row, parts e, f , g and h, is chosen 20 and in third row, parts
i , j , k and l, is chosen 200 and in forth row, parts m, n, o and
p, is chosen 500. Figure 5 clearly illustrates that the first char-
acteristic function statistic values change when the faults occur.
It can be seen, moving in each row from left to right in Figure
5, that with a fixed λ, choosing a bigger ω0 leads to a bigger
change in amplitude of first characteristic function statistics and
hence a smaller round of error. Also Figure 5, parts c, d and h,
shows that choosing λ and ω0 in a way that inequality ω0 < λ is
not satisfied, yield to first characteristic function estimation with
amplitude greater than 1 which is an invalid estimation because

0 < |φ(w)| = ∣∣ ∫ +∞
−∞

e js ω f (s)ds
∣∣ ≤ ∫ +∞

−∞
|e jsω|| f (s)|ds = 1

⇔ −1 ≤ φ(ω) ≤ 1.

(41)

On the other hand, moving upward in each column of figure 5,
choosing a smaller λ while keeping the ω0 fixed, results in a
bigger change in amplitude of the first characteristic function
statistics and thus a decrease in the round of error. A brief re-
view of Figure 5 emphasizes that choosing λ bigger but close
to ω0, leads to more observable changes in the amplitude of
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Figure 3 The root cause detection of the fault in each statistics of the control limit. In Parts a, b, c, d, e, f , g, h, i , j , k, l, m, n and o the offline part samples are shown
with red dots and the online part samples represented by blue dots.

first characteristic function statistics and hence smaller round of
error.

In summary, firstω0 need to be selected, not too large value to
lead to a decrease in the value of moments statistics as λ should
be a supremum forω0. Then λ should be chosen bigger than but
close to ω0 to decrease the round of error.

5.2 The Couple tank system

A simple nonlinear model of the coupled tank is provided in Ko
et al. as [40]:

d H1

dt
= Qi1

A1
− α1

A1

√
H1 − α3

A1
sgn(H1 − H2)

√
|H1 − H2|

(42)

d H2

dt
= Qi2

A2
− α2

A2

√
H2 − α3

A2
sgn(H2 − H1)

√
|H1 − H2|

(43)

Where H1, H2 are the height of fluid in tank 1 and 2, respec-
tively. Qi1 and Qi2 are the pump flow rate into tank 1 and 2,
respectively. α1, α2 and α3 are constants. A1, A2 are the cross
sectional area of tank 1 and 2, respectively. Equations (42) and
(43) make a system with two interfering loops, thus the fault
propagates through the loops. In order to decrease the error, a
lag controller is designed for each loop; GC1 = s+0.9

s+0.002 and

GC2 = s+0.8
s+0.001 for tank 1 and 2, respectively.

Two sinusoidal signals are added to output signals in order to
model the waves on the surface. The amplitude of the sinusoidal
signal is 0.03 and its frequency is 0.2Hz in the control loop of
tank 1. The amplitude of sinusoidal signal in the control loop of
tank 2 is 0.8 and its frequency is 0.5Hz. Also, a white noise with
the power of 0.0002 is added to each loop. Step input signals
with amplitude 17 and 15 are chosen as desired height of fluid
in tank 1 and 2, respectively. α1 = 10.78, α2 = 11.03 and
α3 = 11.03 are set and A1 = 3m2, A2 = 32m2 are chosen.

The simulation runs for 200 seconds with a sample time of
0.05 which means 4000 samples (200/0.05) are accumulated.

vol 33 no 1 January 2018 15



A DYNAMIC INDEPENDENT COMPONENT ANALYSIS APPROACH TO FAULT DETECTION WITH NEW STATISTICS

Figure 4 Comparison between the first and second characteristic functions and their terms. In Parts a, b, c, d, e, f , g, h, i and j the offline part samples are shown
with red dots and the online part samples represented by blue dots.

The first 2000 samples are neglected as they represent the tran-
sient response and the last 5 samples are excluded to make the
augmented observation matrix. Thus, less than 2000 samples
are shown in the Figures 7 and 8.

5.2.1 Comparison Results

To model the stochastic fault of level sensor in tank 2, three ran-
dom numbers are added to the feedback signal of tank 2 control
loop. The first, second and third sensor fault occurs between
samples 1150 to 1180 with exponential distribution, 1500 to
1530 with uniform distribution and 1850 to 1880 with Gama
distribution, respectively. First 1000 samples are chosen as the
offline part signals which are shown with red dots in Figures 7
and 8, representing the system normal performance. The rest of
the samples is chosen as the online part and is represented by
blue dots in these figures. KDE (%99) is used to calculate the
confidence bound of control limit which is shown by dashed line

in Figure 7, parts a, b, c, d, e and f. The values of l = 2 is cho-
sen in both the former and the proposed fault detection methods.
The observation matrix is constructed by error signals.

Figure 7 part f shows the 2-norm fault detection statistics in
the online and the offline part, obtained from the former fault
detection method. It is clear that the square of 2-norm value of
faulty IC vectors, blue dots between samples 1850 to 1880, do
not exceed from normal performance area, the dashed line, in
the former fault detection method. Figure 7, parts a, b, c, and
d show, respectively, the first, second, third and fourth moment
statistics of the ICs and Part e shows the first characteristic func-
tion statistic of the ICs. The values of ω0 and λ are chosen as 1
and 2, respectively.

The first moment statistic, Part a, only detects the first fault.
The second and the fourth moment statistics, Parts b and d, de-
tect the first and second faults. Whereas, the first characteristic
function statistic and third moment statistic detect all three sen-
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Figure 5 Effect of frequency and λ on the first characteristic function as the statistic of the control limit. In Parts a to o the offline part samples are shown with red
dots and the online part samples represented by blue dots.

Figure 6 The couple tanks System.

sor faults, Parts c and e. It is worth mentioning that the proposed
method detect the faults if any of the five proposed statistics
detect the fault.

This simulation is run 30 times without any changes in the
parameters and the proposed method detects 84 faults from 90
faults that occurred, whereas the former method detects 76 faults
from 90 faults that occurred.

The simulation results emphasis that the proposed method is
a more effective fault detection method than the former method.

5.2.2 The root cause diagnosis

Simulation results are used to verify the ability of the proposed
method in root cause diagnosis. For better visibility, the ampli-
tudes of all faults are increased by 250%. The results are shown
in Figure 8.

In this Figure, Parts a, b, c, d and e are, respectively, the
first four moments statistics and the first characteristic function
statistic of the ICs, and all of them detected the three faults. Part f
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Figure 7 Comparison between the proposed control limit indices and the former control limit (square of 2-norm). The offline part samples are shown with red dots
and the online part samples represented by blue dots.

indicates the fault signals. Part g and h are, respectively, absolute
values of the first and second dominant parts of ICs. It is clear
that absolute values of second ICs have increased in samples
where fault is being detected, see part h. As a result, the second
ICs are the cause of increase in the fault detection statistics.
Basically if it can be identified that tank2 has oscillations with
higher frequency in the offline part, one can detect the root cause
as the graph in part h has higher frequency.

6. CONCLUSIONS

This paper has introduced a fault detection method using the
DICA with new statistics to determine the control limit. The
benefit of the proposed algorithm is the increase in fault detection
ability by estimating the first characteristic function and four first
moments to determine the control limit indices. It has shown that
the proposed method can detect a class of faults that their pdf,
providing that its change can be estimated by low order moments
of the first characteristic function,or lower moments are different
from those of the normal ICs. In contrast to the ICA-based fault
detection methods which use square of 2-norm as statistic to
determine the control limit, the proposed approach can efficiently
detect faulty samples although they are among normal samples.
Simulation results are used to verify the effectiveness of the
proposed methodology.

7. APPENDIX

7.1 Appendix A

Propagation of error is calculated by the method described in [41,
42]. A common formula among engineers and experimental sci-
entists to calculate propagation of error, the variance formula (see
[43]) is Equation (A-1). For a function of i uncorrelated quan-

tities, κ = f (μ′1, μ
′
2, . . . , μ

′
i ), or by neglecting the coloration

between quantities the propagation of error can be calculated as:

	κi =
√(

∂ f

∂μ′1
	μ′1

)2

+
(
∂ f

∂μ′2
	μ′2

)
+ · · · +

(
∂ f

∂μ′1
	μ′i

)
(A-1)

Where	κi is propagation of error in i th cumulant (κi ) and	μ′i
is error in i th moment (μ′i ) (	μ′i consist of the error due to calcu-
lation of moment and the error due to measurement of signals),
providing	μ′i and 	μ′j i 	= j are uncorrelated.

The Equation (7) shows that in calculation of κi , always the
first term of right hand side of equation isμ′i . Therefore in Equa-

tion (A-1) the term under root is always begin with
(
∂ f
∂μ′i
	μ′i

)2

and the other terms are nonnegative. Hence

	κi =
√
(	μ′i )2 + a2

Where a2 is positive term. Therefore	κi ≥ 	μ′i .
This shows that propagation of errors in cumulants are bigger

than the errors of moment when i > 1. It is worth mention-
ing that there is not any propagation of error in estimation of
moments because they are computed directly.

7.2 Appendix B

By rearranging Equations (10) and substitutingφ(ω) from Equa-
tion (3) the remainder can be calculated as follows [31]:

R(ω) = φ(ω)−
4∑

i=0

μ′i
( jω)i

i
=

∫ +∞
−∞

(
e jsω −

4∑
i=0

( j sω)i

i

)

f (s)ds

=
∫ +∞
−∞

(
cos(sω)+ j sin(sω)−

4∑
i=0

( j sω)i

i

)
f (s)ds
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Figure 8 Root cause detection of the fault in each statistics of the control limit.

Equation (B-1) can be rewriting as:

R(ω) =
∫ +∞
−∞

(( ∞∑
i=0

( j sω)2i

2i
+
∞∑

i=1

( j sω)2i−1

(2i − 1)

)

−
( 2∑

i=0

( j sω)2i

2i
+

2∑
i=1

( j sω)2i−1

(2i − 1)

))
f (s)ds

=
∫ +∞
−∞

(( ∞∑
i=3

( j sω)2i

2i
+
∞∑

i=3

( j sω)2i−1

(2i − 1)

))
f (s)ds

=
∫ +∞
−∞

( ∞∑
i=3

(−1)i
(sω)2i

2i

)
f (s)ds

+ j
∫ +∞
−∞

( ∞∑
i=3

(−1)i−1 (sω)
2i−1

(2i − 1)

)
f (s)ds

⇒ |R(ω)| ≤
∣∣∣∣∣
∫ +∞
−∞

( ∞∑
i=3

(−1)i
(sω)2i

2i

)
f (s)ds

∣∣∣∣∣
+

∣∣∣∣∣ j
∫ +∞
−∞

( ∞∑
i=3

(−1)i−1 (sω)
2i−1

(2i − 1)

)
f (s)ds

∣∣∣∣∣
≤

∫ +∞
−∞

∣∣∣∣∣
( ∞∑

i=3

(−1)i
(sω)2i

2i

)
f (s)ds

∣∣∣∣∣
+

∫ +∞
−∞

∣∣∣∣∣ j

( ∞∑
i=3

(−1)i−1 (sω)
2i−1

(2i − 1)

)∣∣∣∣∣ f (s)ds

Considering inequalities (B-3) and (B-4):∣∣∣∣∣
∞∑

i=3

(−1)i
(sω)2i

2i

∣∣∣∣∣ ≤
∣∣∣∣−

(
(sω)4

4

∂2(cos sω)

∂(sω)2
+ (sω)

4

4

)∣∣∣∣
≤ 2

(sω)4

4
if sω < 1

(B-3)∣∣∣∣∣
∞∑

i=3

(−1)i
(sω)2i−1

2i − 1

∣∣∣∣∣ ≤
∣∣∣∣−

(
(sω)4

4

∂2(sin sω)

∂(sω)2

)∣∣∣∣
≤ 2

(sω)4

4
if sω < 1 (B-4)

Equation (B-2) can be expressed as:

|R(ω)| ≤
∫ +∞
−∞

((
2
(sω)4

4

)
+

(
(sω)4

4

))
f (s)ds

≤ 3
∫ +∞
−∞

(sω)4

4
f (s)ds

Substituting smax, the biggest s found in the offline part, in Equa-
tion (B-5) results in:

|R(ω)| ≤ 3
∫ +∞
−∞

(sω)4

4
f (s)ds

≤ 3

4
ω4s4

max

∫ +∞
−∞

f (s)ds = 0.125ω4s4
max
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Consequently, Inequality (B-6) shows that 0.125ω4s4
max is a

supremum for the summatory of high order moments.
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