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The Linux operating system has been employed to execute numerous real-time applications. However, it is limited to support soft real-time systems by
two scheduling policies: First-In-First-Out and Round Robin. For real-time systems with critical constraints, the soft real-time support and these scheduling
policies are still insufficient. In this work, the Earliest Deadline First scheduling policy, which has been shown in theory to be an optimal one in uniprocessor
systems, is introduced as an extension of the Linux kernel. This policy is implemented into the real-time class, without the necessity of defining an additional
class. The Linux kernel affords capabilities of a hard real-time operating system by an RT-Preempt patch, enabling the use of Linux to implement hard real-
time systems. The integration is compliant with the POSIX real-time and thread standards, ensuring applications portability, employing the GLIBC library. In
order to validate the proposed implementation, a set of experiments is conducted, showing that a real-time system that cannot be feasibly scheduled using
existing policies, attains feasibility when it is scheduled using the integrated Earliest Deadline First policy
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1. INTRODUCTION

Nowadays Linux has positioned itself as one of the most in-
teresting operating systems for the academic community and
companies, for the development and execution of applications
in several fields, e.g. control, computation, space, and military,
to name a few [1, 2]. Like any operating system (OS), Linux
is integrated by a set of programs that acts as an intermediary
between the applications and the computer hardware, and that
manages all the available resources. An OS belongs to one of
two classes: a general purpose OS (GPOS) or a real-time OS
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(RTOS). The former aims to support the time-sharing applica-
tions and therefore allocates equitably the available resources to
the system tasks. Instead, an RTOS gives support to real-time
applications and incorporates policies that enable the compli-
ance with the timing constraints of the tasks. In an RTOS, the
tasks are commonly implemented as threads, which are tied to
processes. An RTOS contains also a kernel that provides basic
computer functions and takes control over the execution of the
threads and the processes. It responds to the system calls, offers
scheduling and timing services, as well as manages external in-
terrupts. A system call allows a thread or a process to invoke the
functions provided by the kernel.
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Linux has been increasingly employed as an RTOS due to its
stability in the execution of the applications, allowing an effi-
cient use of the computing resources. This is achieved largely
by the scheduler, which is a component of the kernel that se-
lects, on each scheduling instant, the next task to be executed
from the list of active tasks. A standard interface, which is
known as POSIX, an acronym for the Portable Operating Sys-
tem Interface, offers many advantages, such as portability and
standardization of the application development [3]. It is aimed
for software compatibility between UNIX-like OSs, defining an
Application Programming Interface (API). Many operating sys-
tems are POSIX compliant, e.g., AIX, HP-UX, OS X, FreeBSD,
Solaris, Android and Linux. POSIX has defined two extensions
for the development of real-time systems. The first one is known
as the IEEE Std 1003.1b-1993 extension, or simply POSIX.1b,
which defines priority based scheduling, semaphores, real-time
signals, among others. The second real-time extension is enti-
tled IEEE Std 1003.1c-1995, or POSIX.1c, and defines thread
creation, control, scheduling and synchronization.

The correctness of many systems and devices in our mod-
ern life depends not only on the effects or the results they pro-
duce, but also on the response time [4]. Such constraints set
up an essential part of a real-time system (RTS), which requires
a complete assignment of the resources and provides services
in a timely manner. An RTS is considered as a system that
interacts with an asynchronous environment to maintain an on-
going relationship, reacting opportunely to changes of the con-
ditions and remaining synchronized with respect to the envi-
ronment [5]. Such systems need to respond and to be exe-
cuted within predefined time constraints. An RTS includes a
set of tasks, which commonly are periodic due to a large num-
ber of control applications that require cyclical activities [6].
Every periodic task generates a sequence of activations called
jobs.

The RTSs should be classified into hard and soft ones. An
inherent characteristic of these systems is that the requirement
specifications include timing information in the form of dead-
lines [7, 8]. In a hard RTS, a task must complete the execution
before the associated deadline; otherwise a system is considered
as failed. A soft RTS is less restrictive; the tasks may continue
the execution beyond their respective deadlines up to a limit,
while the system tries to minimize the consequences of missed
deadlines. An example of this kind of systems is the people
recognition for security issues [9].

Almost all existing RTOSs, including Linux, provide two
priority-based scheduling policies: First-In First-Out (FIFO) and
Round Robin (RR). Although these policies offer some degree
of timing guarantees for the soft RTSs, they are not sufficient
for systems with hard real-time constraints [10]. The two most
known scheduling policies for hard RTSs are the Rate Monotonic
(RM) and the Earliest Deadline First (EDF) [6, 11, 12, 13]. The
RM algorithm, which assigns priorities inversely proportional
to the task periods, is an optimal static priority assignment pol-
icy [14]. It can be emulated through FIFO. Instead, the EDF
algorithm, which assigns the highest priority to the job with
the earliest deadline, is an optimal dynamic priority assignment
policy [7]. Unfortunately, EDF is not available in most of the
existing RTOSs.

There are two approaches to allow Linux to provide real-time
support: the hypervisor level [15, 16, 17, 18] and the OS sched-

uler level [19, 20, 21]. The first approach admits the coexis-
tence of both, an RTOS and a generic OS. The first one has a
higher priority over a non-RTOS. In contrast, the OS scheduler
level provides real-time capabilities using multiple scheduling
classes; each one has several scheduling policies, being the real-
time scheduling class of the highest priority. Several commercial
and open source projects use this approach. One of them is the
RT-Preempt [19], which includes free open source patches. The
correct choice of an RTOS is a fundamental aspect in the design
of an RTS.

In this work, an integration of the EDF policy into the Linux
kernel is achieved, employing the OS scheduler level approach
and the RT-Preempt patch. In the same manner, we extend the
API of the POSIX standard by enabling the use of the integrated
policy via the library GLIBC [22]. This makes the development
of hard RTSs possible, ensuring their portability.

The rest of the paper is organized as follows. In Section 2, the
most remarkable works that complement Linux as an RTOS are
surveyed. A theoretical background of RTSs and the notations
used are given in detail in Section 3. In Section 4, the structure of
the Linux scheduler is described internally in order to continue
with the implementation of the scheduling policy and the exper-
imental test in Section 5. Finally, in Section 6 some conclusions
and subjects for future work are given.

2. RELATED WORK

Many modern GPOSs offer some kind of soft real-time sup-
port, mainly targeted for multimedia applications. Unfortu-
nately, they lack a hard real-time support. One approach that
has been used frequently to provide hard real-time capabilities
is to modify the Linux kernel, avoiding any operating system op-
eration whose duration is not predictable [9, 20, 21]. However,
many of these proposals do not entirely comply with the POSIX
standard since they define their own API for the development of
RTSs. [10, 20, 21, 23]. In this section, we introduce some of
the most known Linux variations that provide RTS support.
SCHED_DEADLINE [10, 23, 25] is a proposal that employs

the scheduler level approach to implement the EDF algorithm
as a policy; however, it defines proper functions, which dif-
fer in the POSIX standard. The RT-Preempt is a Linux kernel
patch that offers low latency [19]. It provides real-time synchro-
nization protocols, such as the priority inheritance protocol to
limit the unpredictability caused by the management of shared
resources. The RT-Preempt offers full support to the POSIX
standard. Litmus-RT [20] is a patch that allows the fulfillment
of non-critical real-time capabilities on the Linux OS. It offers a
platform for the implementation of the scheduling policies and
the synchronization of the tasks under multiprocessor architec-
tures. This RTOS integrates an own system call interface and as
a result, POSIX API is not supported. It offers various real-time
scheduling algorithms implemented into the uniprocessor and
multiprocessor architectures. ChronOS [21] is based on the RT-
Peempt patch, providing hard RTOS capabilities. Furthermore,
ChronOS incorporates scheduling policies across the interfaces
that provide a set of APIs for the development of the RTSs.

Xenomai [16, 18], RTAI [15, 18] and RT-Linux [17] use a hy-
pervisor level approach allowing Linux to behave like an RTOS.

32 computer systems science & engineering



AMARO ET AL

They were developed with the purpose to execute an abstract
micro-kernel in an OS like Linux. When a micro-kernel is used,
an intermediate layer between the OS kernel and the hardware
is created. The first one is notified if a system call or an inter-
ruption is generated. Linux is considered as a regular process
within these RTOSs [15, 16, 17]. This solution turns out to be
too invasive with respect to the original OS.

Commercial RTOSs, such as QNX Neutrino [26], VxWorks
[27] and INTEGRITY [28], to mention a few, are also available
on the market. They offer various services as remote support,
POSIX-compliance, further available scheduling policies, APIs
documentation, etc.; however the costs of these products or the
necessity of custom requirements are out of reach in some cases.

The fact that the works [10, 20, 21, 23, 24] define own system
call interfaces for the communication between an RTOS and the
applications, is an obstacle to enable the RTSs portability. This
problem is solved in this work by ensuring compliance with
POSIX. Although some referred works [20, 21] allow a standard
compliance, they do not support hard RTSs. In this paper, the
running of such systems is also achieved.

3. TASK MODEL

Several reference models have been proposed for RTSs. In this
work, a periodic task model for RTSs is considered. In this
model, an application is comprised by a set τ of n static tasks.
Every task in τ gives rise to a potentially infinite sequence of ac-
tivations or jobs. In addition, each task i , 1 ≤ i ≤ n, is activated
at a regular or semi-regular time interval Ti , which represents
the minimum inter-arrival time between two consecutive jobs in
τi . The least common multiple of Ti is called the hyperperiod of
a periodic task set. The task execution time Ci , is the maximal
time required for the execution of each job in τi ; which denotes
the worst-case execution time (WCET). It is assumed that the pe-
riods and execution times of all tasks are known at every instant,
as well as the task period is equal to its deadline. A summary of
the notations is given below.

3.1 Notations

τ Task set.

i Task index, i = 1, 2, . . . , n.

j Activation index, j = 1, 2, . . . , J , where J is the number
of the last activation.

ri j Release time of the task i in the activation j .

Ci Execution time of the task i in the worst-case (WCET).

Di Relative deadline of the task i .

di j Absolute deadline of the task i in the activation j .

Ti Length of the activation period of the task i .

si j Start time of the task i in the activation j .

fi j Finish time of the task i in the activation j .

Figure 1 Main parameters of a task i .

The main parameters of a task are shown in Figure 1, where
the execution of a task i , represented by a tuple (Ci , Di , Ti )

is illustrated. The task i is released at ri j on activation j , and
executed in the time interval [si j, fi j ]. The time Ci , which is used
for the task execution, must be less than or equal to Di = Ti .

3.2 The RTS

An RTS reacts dynamically on changes in the environment,
whether they are caused by human behavior,either by a natural or
an artificial phenomenon. A response must occur within a range
of time according to the system constraints. The computer sys-
tem and the environment are two elements that act differently on
an RTS due to different time domains. An environment setting is
governed by the exact duration on the clock time; while the com-
puter system determines a sequence of the machine instructions,
which must be performed in a chronological order [29].

In the context of the applications, a task in an RTS is a set of
related jobs that provide some system function. Every job of a
task may be released periodically, sporadically, or aperiodically.
The majority of the constraints in an RTS are expressed by the
task release (arrival) times, execution times, and deadlines.

An essential part of an RTOS is the scheduler. It defines the
sequence of the jobs on the processor(s). A schedule is feasible if
every job completes its execution by its deadline. Furthermore,
a set of jobs is schedulable according to a policy if the scheduler
always generates a feasible schedule when this policy is used.
An optimal hard real-time scheduling policy always generates a
feasible schedule, providing that a given set of jobs has feasible
schedules [6, 11, 30].

The RM and the EDF rules are frequently used as scheduling
policies. They have been extensively studied in [6, 11, 12, 13,
14, 31]. Both policies are based on assigning priorities to the
system tasks according to respective deadlines, where a fresh re-
view of priority assignment was presented by Davis et al. [32].
Assuming that the deadline of a task is numerically equal to its
period length, the RM assigns static priorities inversely propor-
tional to the period of a task; the task with the shortest period has
the higher priority, and vice versa. The EDF assigns dynamic
priorities to each job of a task according to the nearest expiring
deadline [14].

For hard RTSs, it is essential to know if a task set is schedu-
lable or not. This problem can be resolved with a mathematical
condition, which is commonly called the feasibility test. It was
proved by Baruah et al. [30] that the feasibility test in uniproces-
sor RTSs is a co-NP-complete problem in the strong sense for
non-trivial computational models. In systems where the relative
priorities of tasks (as in RM) or jobs (as in EDF) do not vary, the
feasibility analysis may be less complex [7].
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There are two kinds of feasibility tests: exact (sufficient and
necessary) and inexact (sufficient but not necessary) ones [7]. If
a task set is scheduled with a given algorithm and satisfies the
exact test, then all the tasks will meet their deadlines. In contrast,
if a task set does not satisfy the inexact feasibility test, it is not
really known whether the tasks may complete their execution
according to their deadlines. Liu and Layland [14] demonstrated
that RM is an optimal policy for the static priority assignment.
Their inexact test, shown in (1), states that a set of n periodic
tasks is schedulable under RM if:

n∑
i=1

Ci

Ti
≤ n(21/n − 1). (1)

The authors proved that RM is able to schedule any peri-
odic task set τ with implicit deadlines (periods are equal to
the deadlines) if the total utilization of the processor satisfies
UT ≤ ln 2 ≈ 0.693, where UT is given as follows:

Uτ =
n∑

i=1

Ci

Ti
. (2)

Lehoczky et al. [33] proposed a necessary and sufficient
schedulability condition for the RM policy (exact test), which
considers the processor utilization by the periodic task set as a
function of time in a critical instant.

Let τ be a set of n tasks of the periods T1 ≤ T2 ≤ · · · ≤ Tn ,
respectively, in a uniprocessor RTS. The cumulative demand on
the processor by a set of tasks over the time interval [0, t] at a
critical instant is:

Wi (t) =
j∑

i=1

C j� t

Tj
�, (3)

where:

Li (t) = Wi (t)

t
,

Li = min{0<t≤Ti }
Li (t),

L = max{1≤i≤n} Li ,

Si = {kTk |k = 1, · · · , �Ti/Tj�; j = 1, . . . , i}.
Here Li is the utilization factor required to fulfill the deadline
of a task i , 1 ≤ i ≤ n, over the time range [0, t]; Wi is the
cumulative demand on the processor by a set of tasks τ1, . . . , τi ,
over the time range [0, t]; Si is the set of activation points of a
task i .

A task τi is schedulable under RM if and only if:

Li = min{t∈Si}
Li (t).

Moreover, a set of n tasks is schedulable under the RM rule if
and only if:

L = max{1≤i≤n} Li ≤ 1.

Liu and Layland [14] introduced an exact EDF schedulability
test for any periodic task set (4). A periodic task set is schedu-
lable under the EDF policy if and only if:

UT ≤ 1. (4)

Figure 2 The policies and classes defined in the Linux kernel.

The authors proved that EDF is an optimal dynamic algorithm
for uniprocessor architectures.

The availability of multiprocessor architectures, particularly
multi-core ones, has motivated the interest in the scheduling the-
ory for multi-processor RTSs [5], as well as the energy efficiency
with shared resources [34]. However, there are still many appli-
cations that require uniprocessor architectures, due to reasons of
predictability, application size, power consumption, to mention
a few. In addition, new computing paradigms, such as cyber-
physical systems, require the use of uniprocessor platforms [35,
36, 37, 38].

Among the existing uniprocessor real-time scheduling poli-
cies, a tendency resides in favor of the RM policy more than the
EDF. Nevertheless, it has been shown that EDF allows a bet-
ter exploitation of the available resources and significantly im-
proves the system performance, as Buttazzo mentioned in [6]:
“It is commonly believed that EDF introduces a larger runtime
overhead than RM, however, EDF introduces less runtime over-
head than RM, when context switches are taken into account.”
Unfortunately, EDF is barely available in existing RTOSs.

4. THE EDF POLICY INTEGRATION ON
THE LINUX KERNEL

This section discusses the integration of the EDF policy named
SCHED_EDF into the kernel. The integration was evaluated
using the kernel version 3.4.61 and the RT-Preempt patch 3.4.61-
RT77. The next subsection describes the architecture of the
scheduler and the components, in order to continue with the
implementation of the EDF policy.

4.1 The Linux Scheduler

On the Linux kernel, the policies are implemented through
classes into the scheduler, referring to a class as a structure
that groups the functions and variables used. Linux offers
two scheduling classes, as it is shown in Figure 2. One of
them is the fair_sched_class, which adopts two policies
(SCHED_NORMAL and SCHED_BATCH). The other one is the
rt_sched_class, which integrates two fixed priority poli-
cies (SCHED_FIFO and SCHED_RR) for the real-time tasks, as
it is defined by the POSIX standard [3].

Linux provides 140 priority levels for the system tasks,
which are managed by the two scheduler classes. The
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Figure 3 Run queues within the Linux scheduler.

rt_sched_class class defines priority levels ranging from
0 to 99, 0 being the highest priority level among all. This
class is used to assign priorities to soft real-time tasks. The
fair_sched_class class defines priority levels from 100 to
139, and it is used by general-purpose tasks [21].

The Linux scheduler organizes the active tasks in run queues,
implemented as red-black tree structures. Run queues are
grouped into the scheduler classes used by the system. On each
run, the tasks are sorted in a queue in order of their priority
levels, as shown in Figure 3. In the case of multi-core architec-
tures, each processor or core defines its own run queue structures.
The Linux scheduler assigns tasks to each core where they are
intended to execute during their lifetime, to avoid the overhead
caused by cache misses and synchronization. However, the tasks
could be moved to another core after running a load-balancing
algorithm.

Since version 2.6.23, the Linux scheduler has been designed
as an extensible module, allowing the incorporation of different
policies across the classes. However, it is not capable to ensure
that a hard RTS can be executed satisfying its timing restrictions,
because it is designed to act as a GPOS. Namely, preemption is
not permitted until the complete execution of the task. This
generates latency in the response times of the active tasks.

The user programs are commonly restricted by the processor
usage for long periods of time. The predictability in the OS
response time and latency is required to achieve an accurate RTS
execution. The accomplishment of this feature implicates that
the kernel has to be preempted at any time, if a higher priority
task requires to be executed.

4.2 RT-Preempt

The Linux kernel is designed in such a manner that it allows the
shared resources to be accessed concurrently by different tasks.
It implements some synchronization methods that are usually
performed through semaphores or mutexes. Nevertheless, there
are non-preemptive sections that make it unpredictable. A patch
called RT-Preempt [19] has been developed and submitted into
the kernel mainline. With some modifications in the kernel listed
above, it provides the features that an RTOS should have to
ensure the execution of the RTSs, modifying mainly the sections
that cause Linux to be unpredictable:

Table 1 RTOS supports featured in projects.
Project Hard POSIX GLIBC Thread References

RTSs policy
SCHED_DEADLINE + − − − [10, 23, 25]
Litmus-RT − − + + [20]
ChronOS − + + + [21]
Xenomai + + + − [16, 18]
RTAI + + − − [15, 18]
RT-Linux + + − − [17]
SCHED_EDF + + + +

• The primitives used to block the access to a resource are now
preemptive by employing rt-mutexes instead of spinlocks.
The last ones do not allow the kernel preemption once a
resource is acquired.

• The priority inheritance protocol is implemented for in-
kernel mutexes and not only for the user’s processes.

• The interrupt handlers are now treated as preemptive ker-
nel threads. In a GPOS, such processes are commonly per-
formed immediately, even if there are other higher priority
tasks in the system. These processes within Linux are de-
signed as non-preemptive ones.

• RT-Preempt incorporates two high-resolution timers, turn-
ing the API Linux timer into separate infrastructures: one to
provide kernel-level timers, and the other one for user pro-
grams, according to the POSIX standard. High-resolution
timers enable that applications have a higher accuracy.

With these adjustments, the RT-Preempt patch allows Linux
to be preempted in almost any instant of time. All these modifi-
cations are required for the immediate execution of tasks with a
higher priority.

4.3 The SCHED_EDF policy

In previous works [10, 23, 25], the EDF policy was imple-
mented creating a new scheduling class. In our case, con-
sidering the rt_sched_class, defined by POSIX, with the
SCHED_RR and SCHED_FIFO policies, the EDF policy has
been integrated into the real-time class to accomplish compli-
ance with the POSIX standard; otherwise, the definition of new
system calls would hinder the portability. Thus, integrating the
EDF policy into the rt_sched_class allows the use of the
system calls defined on the Linux API, ensuring the creation and
implementation of POSIX-compliant systems. It is an important
feature for RTS developers to get the portability of the applica-
tions. As the state of the art survey showed, no previous projects
accomplish simultaneously with the features indicated in Table
1.

The EDF policy is implemented into thert_sched_class,
as it is shown in Figure 4. In addition, the incorporation does not
interfere with the already defined code in the kernel, allowing the
leverage of the capabilities offered by the rt_sched_class.

As Figure 4 shows, a single structure holds the active tasks
within the real-time class. The tasks are scheduled under differ-
ent policies: SCHED_FIFO, SCHED_RR or SCHED_EDF. This
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Figure 4 Incorporation of the EDF policy rt_sched_class into the kernel.

architecture guarantees that any task associated with the EDF
policy is selected first even if other tasks with different policies
exist. Therefore, the tasks associated with the EDF policy have
the highest priority.

The integration of the EDF algorithm requires the incorpora-
tion of the relative and absolute deadline parameters. We added
two attributes to the general structure task_struct, to allow
the definition of the task deadlines:

struct task_struct {
...
struct sched_rt_entity rt;
#ifdef CONFIG_SCHED_EDF_POLICY
struct timespec rel_deadline;
struct timespec abs_deadline;
#endif
...

};

The variables rel_deadline and abs_deadline store
the deadlines, respectively. They are defined as timespec
type, which accepts the time values with a resolution up to
nanoseconds. In this way, real-time tasks can handle more re-
alistic situations in which the time precision is important. Al-
though the application developer specifies the relative deadline
of a task, the absolute deadline is calculated and mapped in-
ternally, according to the relative deadline, each time a task is
activated. This process is completely transparent for a user.
The variable sched_rel_deadline is integrated into the
sched_param structure, to allow the user to define the dead-
line of a task: relative and absolute

struct sched_param {
int sched_priority;
#ifdef CONFIG_SCHED_EDF_POLICY
struct timespec sched_rel_deadline;
#endif

};

A developer may schedule a process using the SCHED_EDF
policy, and define the process parameters through the
sched_setscheduler system call. This guarantees the
compliance with the POSIX standard. A state diagram of a task
is shown in Figure 5.

The Linux scheduler should be extended, particularly the real-
time class, to consider first EDF among all policies, also to
update the absolute deadlines of EDF-scheduled tasks, both at
every scheduling time. For instance, when a task is added to

the system, the enqueue_task_rt()1 function is invoked.
The insertion of a new task in the active task queue is done ac-
cording to the policy and the priority level assigned, remember-
ing that each priority level of the Linux system has a structure
that keeps the tasks sorted according to the policy. Similarly,
the check_preempt_curr_rt() function was modified.
It is invoked when a task is activated after being on standby,
either by an interrupt or by suspending for a certain time inter-
val, the task must be rescheduled and the task queue reordered
at the assigned priority level if it changed its priority. The
pick_next_rt_entity() function selects the next task to
be executed, according to the policies defined in the real-time
class. In addition, this function verifies if there are tasks that are
scheduled with the EDF policy, if that is the case, the first task of
the structure is selected because they are sorted by their absolute
deadline. If no other task of the EDF type exists, it continues to
check the other existing real-time policies.

Usually the tasks are initialized with certain parameters, such
as the scheduling policy and the task priority, among oth-
ers. In addition, the task parameters are modified at runtime
through the use of functions such as switched_to_rt() or
prio_changed_rt(). In these cases, it is necessary to ver-
ify that the task scheduled by the RTOS is in the correct task
queue, either in that class to which it now belongs, or at that pri-
ority level to which it changes. The set_curr_task_rt()
function was also modified; it is invoked at any time instant once
a task priority or a task parameter in the task_struct is as-
signed through the system call sched_setscheduler().
The major changes made in the kernel are presented in Figure 6.

It is important to note that despite the fact the new scheduling
policy is intended for uniprocessor systems, it works correctly in
multi-core platforms by selecting the use of a single core during
the kernel configuration process, before its compilation.

4.4 Support threads through GLIBC

In Linux, the applications are executed using two ways: kernel
and user modes [39]. In the first mode, the OS tasks, such as

1The new prototype trace_sched_edf_abs_deadline and modi-
fied functions enqueue_task_rt(), check_preempt_curr_rt(),
pick_next_rt_entity(), switched_to_rt(),
prio_changed_rt(), set_curr_task_rt() are described as
separate files in the repository: https://drive.google.com/drive/ fold-
ers/0ByXeZjrDUvExVUtnMWJyUVpvN1k?usp=sharing

36 computer systems science & engineering



AMARO ET AL

Figure 5 State diagram of a task during its life cycle.

Figure 6 A package diagram of the major changes in the code and header files.

the scheduler, can be executed. In the second one, only user
programs, as the text editor, are run. When a system call is in-
voked, it is executed in the kernel mode. Once completed, the
program continues to run in the user mode. System calls are
available by the use of an API, which carries out the communi-
cation between the user programs and the own OS functions, in
a flexible and transparent manner. This lets developers to focus
exclusively on the programming applications, without worrying
about the internal OS architecture. A GLIBC library [22] is an
API that enables the communication between the user programs
and the kernel, providing a certain level of compatibility with
the POSIX standard on the Linux environment (Figure 7). The
GLIBC API was chosen for the integration of RTSs employing
the new SCHED_EDF policy.

It was necessary to make certain adjustments in some code
sections within the library for the development of RTSs employ-
ing threads and taking advantage of the SCHED_EDF policy.
However, the GLIBC operation was not modified, only a few
adaptations were done.

In Figure 8 it is shown how the new scheduling policy
SCHED_EDF and the new parametersched_rel_deadline
were integrated into the sched_param structure of the GLIBC
library. The sched_param structure is:

struct sched_param {
int sched_priority;
struct timespec sched_rel_deadline;

};

4.5 Tracer: FTRACE

FTRACE [40] is a tool that generates and stores the scheduling
events to be analyzed thereafter. It is very helpful to verify the

correctness of the system execution, to evaluate the performance,
as well as for debugging. The event data are stored in a temporal
ring buffer. In order to evaluate the performance of the imple-
mented policy, a new event was integrated into the FTRACE,
to store the data when an EDF-scheduled task is activated and
its absolute deadline is updated. The last one was defined as
a function called trace_sched_edf_abs_deadline. Its
main purpose is to record the event in the ring buffer. Then the
event is allowed to be exported into any user-defined format. It
is important to mention that the events are implemented not as
functions in the FTRACE, but as macros, which are called pro-
totypes. Moreover, it should be mentioned that it is not the only
way to obtain traces, but it is the most efficient way since it does
not generate too much overhead.

After the definition, the prototype was integrated into the real-
time class code, specifically in those sections, where the absolute
deadlines of the tasks are updated. The use of the FTRACE tool
is complex, due to the fact that it is scarcely documented, and
perhaps it requires that the user has certain scripting skills. An-
other tool called TRACE-CMD eases the tracing process through
the use of intuitive commands, to alleviate this problem [41].

TRACE-CMD executes the user programs whereby the event
data are captured. The data produced is exported to a more under-
standable or friendly file format. In our integration, the tracing
data is converted to the KIWI format. The KIWI application
[42] allows the graphical inspection of the events generated by
FTRACE. A procedure for the generation and conversion of the
event data is given in Figure 9.

5. EXPERIMENTAL TEST

In this section, an experimental test of the EDF policy is dis-
cussed. The experiment was conducted on an Intel Pentium IV
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Figure 7 Communication between the user programs and the Linux kernel through GLIBC API.

Figure 8 A package diagram of the files modified in GLIBC.

Figure 9 Data collection for an end user.

Figure 10 Task set scheduled using RM.

Figure 11 Task set scheduled using EDF (two hyperperiods).

2.8 GHz computer with 1.5 GB RAM at 400 MHz, 20 GB HD
at 150Mpbs. It has only one core to provide a uniprocessor be-
havior. The test of the EDF and RM policies was effectuated
using two corresponding applications developed with the aim
to simulate realistic scenarios. Three independent threads were
created, with different deadlines and WCETs. The parameters
of the tasks used are shown in Table 2.

Calculating the total processor utilization UT we get:

Table 2 Parameters of the task set (time is given in ms).

Thread Ci Di Ti

1 290 700 700
2 50 600 600
3 190 400 400

Uτ = 290

700
+ 50

600
+ 190

400
,

Uτ = 0.972.

38 computer systems science & engineering



AMARO ET AL

The exact schedulability test introduced by Lehoczky [33] was
used to verify whether the task set is schedulable using the RM
scheduling policy:

S3 = {400, 600, 700},
W1 = C1 + C2 + C3 = 530 ≤ 400,

W2 = C1 + C2 + C3 = 720 ≤ 600,

W3 = C1 + 2C2 + 2C3 = 770 ≤ 700.

The test showed that Thread 1 is not capable to accomplish
the execution time before the corresponding deadline even in the
first activation. Threads 2 and 3 show the same behavior.

Figure 10 shows that the tasks are not schedulable under the
RM policy. This means that some deadlines are not accom-
plished, because the first job of Thread 1, which has the low-
est priority, misses the deadline. If the parameters cannot be
modified, the tasks would not be executed correctly under the
existing scheduling policies in RT-Preempt. However, since the
total processor utilization satisfies Ut ≤ 1, the task set can be
correctly scheduled using the EDF policy.

Figure 11 shows the execution chart of the task set using EDF.
The arrows in upward direction represent the activations and
deadlines of the threads. It is also observed that with the EDF
policy:

• All task jobs meet the respective deadlines.

• Non-real-time tasks (grouped in Idle) are processed only
when real-time tasks do not require to be executed.

• The schedule is similar on both hyperperiods, which are
separated by a vertical red line.

In the program, which performs the tests2, one can ob-
serve how the tasks were created using both SCHED_EDF and
SCHED_FIFO policies. It is noteworthy that the SCHED_FIFO
policy is used to resemble the behavior of RM.

The operations performed by the tasks are described below.
The clock_nanosleep() function was used to define the
periodic activation of a task:

void * inThread(...) {
struct timespec periodActivation,
nextActivation, now;
...
/*Start the execution of each thread
at the same time*/
nextActivation = initialTime;
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&nextActivation, NULL);
/**** Do some operations ****/
...
while (1) {
clock_gettime(CLOCK_MONOTONIC, &now);
timespec_add(&nextActivation,

&periodActivation)
/*The thread is set to sleep until
next activation time*/
clock_nanosleep(CLOCK_MONOTONIC,
TIMER_ABSTIME, &nextActivation, NULL);
/**** Do some operations ****/

2https://drive.google.com/drive/folders/ 0ByXeZjrDUvExVUtnMWJyU-
VpvN1k?usp=sharing

Table 3 Response time of real-time tasks with the RM and EDF policies (average
time in microseconds).

Policy context task preemptions
switch wakeup points

SCHED_FIFO (RM) 11.077 2.310 14
SCHED_EDF 12.344 3.364 7

...
}
pthread_exit(NULL);

}

In Table 3, some metrics obtained during the first hyperperiod
are presented. It shows that the required time to switch from one
task to another one (context switch) with EDF is larger than with
RM. Moreover, there is a double number of preemption points
using the RM policy. In addition, each time a task needs to be
activated, EDF uses more time than RM. Nonetheless, the pre-
emption number depends on the algorithm employed to schedule
the tasks. It is demonstrated by Buttazzo [6] that RM introduces
more preemptions than EDF. Therefore, even if SCHED_FIFO
requires less time to accomplish context switches, the times of
SCHED_EDF are minimized during its execution because it does
not produce many preemptions.

6. CONCLUSIONS AND FUTURE WORK

In this paper, it was shown that Linux is an appropriate OS to run
hard RTSs modifying the real-time scheduling class and provid-
ing its higher priority over other classes. The integration of the
EDF scheduling policy into the real-time class for uniproces-
sor RTSs is an aspect that we highlighted. Since EDF allows
a greater processor utilization than RM, its integration into the
Linux kernel allows the implementation of real-time systems that
otherwise could not be implemented using the existing schedul-
ing policies. In the conducted experiment, EDF showed a better
performance than RM. We included traces into the scheduler
class to ease the application debugging and thus, we provided a
compatibility with the FTRACE tracer. Another contribution of
this work is to integrate a new scheduling policy for developers
without defining a new class in the kernel, taking advantage of
the real-time class benefits and incorporating the policy com-
plying the POSIX Thread standard to achieve application porta-
bility. The scope of this work was widened enabling the use of
SCHED_EDF via the GLIBC library, so that no new interfaces
need to be adapted. A survey of the state of the art showed no
previous projects accomplished simultaneously with the features
indicated: hard RTS support, POSIX-compliance standard, no
adaptions in the GLIBC library, thread scheduling.

The extension of the EDF-scheduling scheme to multiproces-
sor systems is planned as future work; this will enlarge the sup-
port to hard RTSs that require strong computational resources.
We are also interested in integrating a shared resource protocol,
allowing task models be more complex and realistic.
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