
Comput Syst Sci & Eng (2018) 4: 251–258
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

OpenFlow Based Dynamic Flow
Scheduling with Multipath for Data
Center Networks
Haisheng Yu1, Heng Qi1, Keqiu Li1, Jianhui Zhang1,Peng Xiao2, Xun Wang1

1School of Computer Science and Technology, Dalian University of Technology, Dalian, China
2School of Information Science & Engineering, Dalian Polytech University, Dalian, China

The routing mechanism in Data Center networks can affect network performance and latency significantly. Hash-based method, such as ECMP (Equal-Cost
Multi-Path), has been widely used in Data Center networks to fulfill the requirement of load balance. However, ECMP statically maps one flow to a path
by a hash method, which results in some paths overloaded while others remain underutilized. Some dynamic flow scheduling schemes choose the most
underutilized link as the next hop to better utilize the network bandwidth, while these schemes lacks of utilizing the global state of the network. To achieve
high bandwidth utilization and low latency, we present a dynamic flow scheduling mechanism based on OpenFlow protocol which enables monitoring the
global network information by a centralized controller. Depending on the network statistics obtained by the OpenFlow controller, the routing algorithm
chooses the best path for the flow. Because there are two kinds of flows in a Data Center, short-lived flows and long-lived flows, we proposed two different
algorithms for them. The implementation uses pox as OpenFlow controller and mininet as the network emulator. The evaluation results demonstrate that
our dynamic flow scheduling algorithm is effective and can achieve high link utilization

Keywords: Data Center; Software-defined Networking; ECMP; DLB; FC-DLB

1. INTRODUCTION

Today many private enterprises and universities have deployed
their Data Centers to run a variety of interactive cloud-based
services and applications with different requirements, such as
search engine, multimedia content delivery, social networking,
e-commerce, data analysis, scientific computing, and etc.[1-4].
To satisfy these requirements, the Data Centers must provide
high performance network to connect tens of thousands of hosts.
Many novel topologies, including Fat-Tree [4,5] and VL2 [6],
have been proposed to enhance network performance by pro-
viding multiple routing paths. These topologies are built up in
certain manners with hierarchical and scalable multi-layer struc-
tures, and widely adopt many multipath routing algorithms, such
as ECMP (Equal-Cost Multi-Path) [7] and VLB (Valiant Load
Balancing) [8]. Both ECMP and VLB are static flow scheduling
techniques and focus on scheduling the flows in order to improve
the overall network bandwidth utilization. In ECMP, it statically
maps one flow to one of these multiple paths by hash. VLB is

known as randomly balancing to choose the next-hop. Both
of them cause the congestion through the oversubscribed links.
For example, ECMP may lead to hash collision when mapping
a flow to a path, which will cause some links highly overloaded
while other links underutilized. These static flow scheduling
mechanisms do not take the current network condition into con-
sideration when scheduling the flows.

To the best of our knowledge, the existing advanced protocols
for addressing the problem of multiple routing paths: (1)Trans-
port layer solutions such as MPTCP; and (2) ECMP, such as Hed-
era [9] and Planck [10]; and (3) some dynamic flow scheduling
algorithms. In what follows, we will present and analyze these
schemes, respectively.

Multipath TCP (MPTCP) [11, 12] is a major modification to
TCP that allows multiple paths to be used simultaneously by a
single transport connection. Changing TCP to use multiple paths
is not a new idea; it was originally proposed more than 15 years
ago. MPTCP draws on the experience gathered in previous work,
and goes further to solve issues of fairness when competing with

vol 33 no 4 July 2018 251



OPENFLOW BASED DYNAMIC FLOW SCHEDULING WITH MULTIPATH FOR DATA CENTER NETWORKS

regular TCP and deployment issues as a result of middle-boxes in
today’s Internet. MPTCP can react faster but require widespread
adoption and are difficult to enforce in multitenant datacenters
where customers often deploy customized VMs [13].

A variety of load balancing schemes aim to address the prob-
lems of ECMP. Centralized schemes, such as Hedera and Planck,
collect network state and reroute elephant flows when collisions
occur. These approaches are fundamentally reactive to conges-
tion and are very coarse-grained due to the large time constraints
of their control loops [9] or require extra network infrastructure
[10]. In-network reactive distributed load balancing schemes,
e.g., CONGA [14] and Juniper VCF [15], can be effective but
require specialized networking hardware.

Many algorithms that are designed to satisfy the requirements
of high performance and large-scale computing systems [16].
Recently, some dynamic flow scheduling algorithms are pro-
posed to balance the network load when the flows go through the
multiple paths on the multi-rooted tree topologies, especially on
the Fat-Tree topology[17,18]. However, the flows are routed by
the partial network information in these schemes, without con-
sidering the global network information. As given in [19] , the
path of a flow is an arbitrary choice that it considers the links
upward to the core switch rather than the link conditions from
the core switch to the destination host.

OpenFlow protocol [20-23] is an innovative networking tech-
nology that can efficiently obtain the network statistics from the
network devices. It offers a global view of the network, rely-
ing on which can dynamically develop a forwarding policy for
a flow in the Data Center. That means it is available to dynami-
cally schedule the flows by using the global state of the network
and the OpenFlow protocol.

Based on the OpenFlow framework, we present a dynamic
flow scheduling mechanism for the flow transmission in the Data
Center network to maximize aggregate network utilization—
bisection bandwidth—and to do so with minimal scheduler over-
head or impact on active flows. In our scheme, the centralized
controller will choose an appropriate path for each flow, depend-
ing on the flow size and the available bandwidth of the links in
a path. Some challenges must be addressed in deploying our
mechanism. We collects flow information from OpenFlow Con-
troller, computes non-conflicting paths for flows, and instructs
switches to re-route traffic accordingly. First, we must collect
the statistics of the network efficiently, because collecting the
information will bring additional overhead. Second, when com-
puting the path for a flow, we must consider the different flow
sizes. As presented in [6], more than 80% of the flows in a Data
Center are short-lived flows with less than 100KB per size while
less than 20% long-lived flows take up more than half of the
bandwidth, which causes link congestion and starves the short-
lived flows. So it is necessary to schedule the long-lived flows
and the short-lived flows at the same time.

To address these problem, we implement different dynamic
scheduling mechanisms for the short-lived flows and long-lived
flows. When a flow comes, the centralized controller calculates
a route path for the flow with a default dynamic scheduling al-
gorithm. When a long-lived flow is detected, the centralized
controller recalculates its route path by another algorithm de-
signed for the long-lived flows.

Our routing mechanism combines the DLB algorithm for

short-lived flows and our proposed algorithm for the long-lived
flows. In our routing mechanism, the flows are classified accord-
ing to their flow size. We call our routing mechanism Flow Clas-
sified DLB (FC-DLB). In our routing mechanism, we choose
the DLB algorithm as the default routing algorithm, because
the DLB algorithm is the same simple as ECMP but better than
ECMP. More than that, the DLB algorithm is a load balancing
method which is based on the link situation and can reduce the
probability of occurrence of link congestion.

The rest of this paper is organized as followed. Section 2
presents the background and related work on multipath routing
mechanism in Data Center. Section 3 presents our network ar-
chitecture and multipath routing algorithm. Section 4 shows the
implementation and our evaluation to discusses the results. We
conclude the paper in Section 5.

2. BACKGROUD & RELATED WORK

Recently, many researches are focused on Data Center architec-
ture, such as Fat-Tree [3], VL2 [6], Bcube [24], Dcell [25] and
etc. All of them are densely interconnected network topologies
that take the form of a multi-rooted tree with high speed links.
Fat-Tree is built on commodity switches that can increase the
aggregate bandwidth. The advantage of the Fat-Tree is that all
devices are identical, enabling us to leverage cheap commodity
products in the architecture.

Most of the current Data Center use Spanning Tree or ECMP
for routing. In Spanning Tree, it is optimized to select a single
path for each source-destination pair, like that all traffics traverse
in a single tree which results in many unused links. This algo-
rithm does not work well with multi-rooted tree Data Centers.
To take better advantage of these topologies characteristics, and
make full use of the multiple paths, ECMP is adopted wildly.
ECMP randomly routes flows through the available equal cost
paths based on the hash value of certain fields of a packet. This
kind of traffic distribution in ECMP attempts to balance the load
in terms of the number of flows on different paths rather than
on the bit rate. As there are different sizes of flows in the Data
Center network, ECMP, this uniform distribution in accordance
with the number of flows, may lead to congestion on some links,
while others remain underutilized.

Hedera [9] is a dynamic flow scheduling mechanism for Data
Center Networks which uses multi-rooted tree topology. Hedera
routes short-lived flows with ECMP while long-lived flows with
a dynamic approach. When detecting a long-lived flow, Hedera
estimates the natural demand of the flow,and calculates a suitable
path for the flow. The dynamic and central scheduling scheme is
only for long-lived flow. Hedera can achieve the goal of maxi-
mizing aggregate network utilization by dynamically scheduling
the long-lived flows but ignoring the short-lived flows’ demand.
For example, a short-lived flow may be scheduled on a fully
loaded link, and is thus brought excessive delay.

This centralized scheduling is dependent on the state of the
global information of the network. In order to obtain global
information more efficiently, Hedera implements its scheme on
an OpenFlow testbed in which the switches all run OpenFlow
protocol. OpenFlow defines a programmable protocol designed
to manage and perform per-flow routing through a centralized

252 computer systems science & engineering



H. YU ET AL

controller. The controller can add and delete forwarding entries
on the switches at fine-gained time scales. Not only to determine
how flows traverse the network, but also the controller is able to
gather global network view by sending appropriate commands
to the switches.

Some other researches have also been presented on flow
scheduling by making use of the OpenFlow framework. In [19],
an OpenFlow based dynamic load balancing algorithm(DLB) is
proposed to split the flows cross the multiple paths in a Fat-Tree
topology instead of the traditional ECMP technology. But the
routing algorithm only considers the condition of the path up-
ward to the core switch, and ignoring the condition of the path
downward to the destination host.

The design of the routing scheme in [26] focuses on re-routing
the large flows to other path of the candidates when congestion
or link failure happens. The scheme monitors the network and
collects statistics from all OpenFlow switches. Based on these
statistics, the centralized controller computes all the possible
shortest path, and chooses the best path for the flow. The con-
troller also inspects congestion and the link failure periodically
in the links. Once the congestion or link failure happens, the
controller will re-route the flow to an available path. This is a
generally applicable method that is designed for no special Data
Center topology, so it does not utilizes the features of multi-root
tree topology, such as Fat-Tree.

3. DYNAMIC ROUTING ARCHITECTURE

In this section, we propose the architecture for our routing frame-
work and describe its functional modules. The architecture of
our routing framework consists of three components: the moni-
toring component, a module that monitors the network and obtain
the global information of the network; the routing component,
a module that calculates the routes for flows depending on the
statistics of network collected by the monitoring component; the
centralized controller module that aggregates the statistics from
the monitoring module and installs the routes onto the network
switches. All the functional modules are integrated in the cen-
tralized controller.

Figure 1 OpenFlow-based dynamic routing control framework.

3.1 Monitoring Module

The monitoring module is designed to collect statistics from
all OpenFlow switches, including ports statistics, flows statis-
tics. To obtain the statistics of the ports and specific flows, the
monitoring module periodically inquires switches through the
OpenFlow API. The switches will respond the monitoring mod-
ule with bytes counts for the ports and the flows. The monitoring
component will store the statistics, and conclude some meaning-
ful results (e.g., the link utilization and the transmission rate of
every flow) for routing module using.

To make our routing mechanism feasible, the monitoring mod-
ule needs to collect two types of statistics: all the physical ports’
statistics on every switch and the all the flows’ statistics in the
network. The physical port statistics include received bytes and
transmitted bytes. We use the port statistics to compute the
link utilization (a link connects two ports from two switches).
A flow’s statistics include the flow’s transmitted bytes, and ac-
cording to this, we can decide whether the flow is a long-lived
flow. If a flow grows beyond a threshold, 10% of the bandwidth
in our implementation, we consider it a long-lived flow.

Both the ports’ statistics and the flows’ statistics are updated
periodically. The monitoring cycle must be decided by the size
of the network. If the monitoring cycle is too small, it will bring
us too much overhead; if the monitoring cycle is too large, it will
not reflect the situation of the network in time.

Figure 2 A k=4 Fat-Tree network.

3.2 Routing Module

The routing module is responsible for computing routing paths
using the statistics provided by the monitoring module. We de-
sign our routing algorithms mainly according to two aspects: the
Data Center traffic characteristics and the feature of the Fat-Tree
topology. As we all know, Fat-Tree is a 3-layer topology that
consisted of many pods. Thus, there will be three different types
of flows according to the source and the destination host attached
to the switches. Fig 2 shows us a 4-ary Fat-Tree network.

• The source and the destination hosts are connected to the
same switch in a pod

• The source and the destination hosts are connected to the
different edge switches but in the same pod.

• The source and the destination hosts are connected to the
different edge switches in the different pods.

vol 33 no 4 July 2018 253



OPENFLOW BASED DYNAMIC FLOW SCHEDULING WITH MULTIPATH FOR DATA CENTER NETWORKS

The most important difference among the three types of flows is
that when they are transmitted, they will reach different layers
that they need access to.

Another characteristic of routing in Fat-Tree topology is that
all flows in the network from the source hosts will be transmitted
upward until reaching the highest layers and then the path to the
destination hosts is deterministic. In other word, when we route
a flow, we need to choose a path among all available paths, and
it is the same as that we select a switch among all available
switches that in the highest layer the flow need to access.

The other aspect considered in the design of our routing mech-
anisms is the traffic characteristics. There are various sizes of
flows in the Data Center traffic. Most of them are short-lived
flows and the others are long-lived flows. Different sizes of flows
may have different requirements to achieve different goals.

Our routing mechanism is based on the global view of the net-
work and the real-time network statistics, which will bring extra
overheads for collecting these statistics. So when we schedule
the short-lived flows, we do not expect too many overheads and
we can reduce the flows’ completion times. We hope that these
large numbers of short-lived flows can be scheduled immediately
so we implement a local optimal algorithm for these short-lived
flows. When scheduling the other long-lived flows, we expect to
achieve the goal of avoiding link congestion, so that before we
select a path for a long-lived flows, we must know the utilization
ratio of every link in that path. Then we choose the most suit-
able path for that long-lived flow on the basis of the utilization
ratio of every link in the paths. But there arises another question
that the flow size is unpredictable, how to determine a flow is
short-lived flow or a long-lived flow. Until now, the flow sizes
are in fact not known a priori. Our solution is that at the begin-
ning, we treat all the flows as the short-lived flows, because of
the large number of them. As the flows are transmitted in the
network, we monitor the flows’ transmitted bytes. Once a flow’s
transmitted bytes exceed a threshold, the flow will be regarded
as a long-lived flow.

When a host sends a flow to another one in the Data Center,
the source host will forward the packets of this flow to the edge
switch connected to it. When the first packet of this flow arrives
at the edge switch, the switch will forward the packet to the
centralized controller because of no match with its installed flow
entries. After receiving the packet, the centralized controller will
let the routing module to handle the packet.

Firstly, the routing module will get the source address and the
destination address by analyzing the header field of the packet.
Then the routing module will know the highest layer network
topology. Secondly, the routing module route the flow using
the default algorithm(at the beginning all the flows are routed as
short-lived flows). Once a long-lived flow is detected, the other
algorithm is triggered, and long-lived flow will be re-routed.

3.3 Centralized Control Module

The centralized control module is designed to connect all the
switches in the network. The centralized control is the basic
module in the architecture. It is charged with the task of aggre-
gating the information from the monitoring module. It receives
the route information from the routing module and install the

route on the switches that are needed.
The control module requires two types of information of the

network, all the links’ utilization and the long-lived flows’ statis-
tics. It aggregates all the links’ utilization from the monitoring
module. The port statistics request is send by the centralized
control module to the OpenFlow switches. Depending on these
ports statistics, the control module calculates every link’s utiliza-
tion. When the centralized control module receives a request for
the links’ utilization from the routing module, it will reply to the
routing module with the results. The long-lived flows’ statistics
are also aggregated by the control module. When a long-lived
flow is detected by the monitoring module, the control module
will store the long-lived flow information and send a re-routing
request to the routing module. Then the routing module will
re-compute the route for the long-lived flow to find a better path
for this flow.

4. DESIGN DECISIONS AND CHAL-
LENGES

In this section, we propose design decisions and challenges of
FC-DLB.

4.1 Per-packet Multipathing vs Per-flow Multi-
pathing

Multipathing sets up multiple forwarding paths between source
and destination. It allows a given packet to pick a path from the
set of available multiple paths. However, this will introduces the
problem of determining how to use these multiple paths for for-
warding the packets between source-destination pairs efficiently.

Using per-packet multipathing,each packet in a given flow can
potentially be sent on a different path independently. Per-packet
multipathing is generally more expensive and harder to imple-
ment in connection-oriented networks due to packet reordering
overhead that can occur at the destination due to differences in
the path latencies. On the other hand, when using per-flow mul-
tipathing, each flow can potentially be sent on a different path,
but all packets from a given flow remain on a single path to
preserve packet ordering in the flow. Per-flow multipathing is
usually a preferred multipathing scheme, particularly for data-
center networks, because 99% of traffic inside a Data Center
uses Transport Control Protocol (TCP), a connection-oriented
protocol. ECMP is used mainly on the flow level while VLB
can be applied on both the packet and flow levels.

4.2 Reactive vs Proactive Load Balancing

In Reactive Load Balancing, the first packet of flow is sent to
controller for processing. Controller evaluates packet and sends
flow message to switch insert a flow table entry for the packet.
Subsequent packets (in flow) match the entry until idle or hard
timeout. Reactive Load Balancing has the problem of source of
DOS on controller (packet-in event). Busty behavior can create
transient congestion that must be reacted to before switch buffers
overflow to prevent loss. This requirement renders most of the

254 computer systems science & engineering



H. YU ET AL

centralized reactive schemes ineffective as they are often too
slow to react to any but the largest network events, e.g., link fail-
ures. Furthermore, centralized schemes can hurt performance
when rerouting flows using stale information.

Distributed reactive schemes like MPTCP[11] and CONGA
[14] can respond to congestion at faster timescales, but have
a high barrier to deployment. Furthermore, distributed reac-
tive schemes must take great care to avoid oscillations. Presto
takes a proactive, correct-by-design approach to congestion man-
agement. That is, if small, near-uniform portions of traffic are
equally balanced over a symmetric network topology, then the
load-balancing can remain agnostic to congestion and leave con-
gestion control to the higher layers of the networking stack.

In Proactive Load Balancing, Controllers pre-populate flow
elements in the switch before packets arrive, so Proactive flows
eliminates any latency induced by consulting a controller on
every flow. There are zero set-up time for new flows. Loss
of connection between switch and controller does not disrupt
network traffic. Proactive Load Balancing Requires smarter ap-
proaches than just reacting to network events (global knowledge,
discovery, updates and etc.)

To avoid the shortcomings of Proactive Load Balancing and
Proactive Load Balancing, we use two different algorithms to
route short-lived flows and long-lived flows respectively. We
choose the DLB algorithm as the default routing algorithm to
route the short-lived flows, and propose a routing algorithm for
the long-lived flows.

The DLB algorithm does not consider the link condition of
the downward path when routing for a flow, so the path may be
not the best one for the long-lived flow. Our routing algorithm
will consider all the links’ utilization of all the available paths
and choose a better path.

Figure 3 An example to show the drawback of DLB.

Fig 3 shows us an example topology with four switches and
two hosts, and a flow is from H1 to H2. The percentages in the
Fig 3 are the unutilized bandwidth ratio of every link. According
to DLB algorithm, the next hop of A will be B, so the path chosen
by DLB is A-B-D. But the unutilized ratio of link B-D is just
30%. The path A-B-D is worse than path A-C-D because path
A-C-D can provide a higher bandwidth on the whole path. So
the DLB algorithm could miss a better path, sometimes DLB
may even find a terrible path, for example, when the link B-D is
congested. The main reason is that the DLB algorithm does not
consider the whole path’s situation.

A path is composed of several links. There must be a link
which has the minimal available bandwidth among all the links
of a path. We call the link the bottleneck link of the path. The
bottleneck link determines the maximum available bandwidth of
this path.

When a long-lived flow is detected, the routing module calcu-
lates all the paths between the source and the destination host.
Then the routing module will compare the available bandwidth
of every path’s bottleneck link and find the maximum. If the
maximum bottleneck link’s available bandwidth is greater than
the flow’s share of the link’s bandwidth, the best path for the
long-lived flow is found. The routing module updates the flow
tables of all the switches in the new path and completes the re-
routing of the long-lived flow.

For a long-lived flow f in a k-ary Fat-Tree network, P =
{p1, p2, · · ·, pk} presents the set of equal cost paths for f.
For every path pi in P , pi consist of several links, pi =
{li1, li2, · · ·, lin }, n = 2 or 4. When n = 4, the source host
and the destination host of the flow are from different pods; if
n=2, the flow’s source and destination hosts are in the same pod
but different edge switches. The unutilized bandwidth of link li j

is presented as ui j , j=1,2,· · ·, n. The unutilized bandwidth of
the bottleneck link in pi is defined as

B(pi ) = min ui j , j = 1, 2, · · · , n (1)

Figure 4 Flow chart of the routing mechanism in the routing module.

B(pi) presents the transmission capacity that path pi could
provide. We find the maximum B(pi) among all the equal cost
paths in P. If the maximum B(pi) is greater than the current
bandwidth the flow f has occupied, the route of flow f will be
changed. The flow f will be moved to the path with the maximum
B(pi). If the maximum B(pi) is not greater than the current
bandwidth and the flow f has occupied, the route of flow f will
remain the same.

In our routing mechanism, we choose the DLB algorithm as
the default routing algorithm, because the DLB algorithm is as
simple as ECMP but better than ECMP. More than that, the DLB
algorithm is a load balancing method which is based on the link
situation and can reduce the probability of occurrence of link

vol 33 no 4 July 2018 255



OPENFLOW BASED DYNAMIC FLOW SCHEDULING WITH MULTIPATH FOR DATA CENTER NETWORKS

congestion. Our routing mechanism combines the DLB algo-
rithm for short-lived flows and our proposed algorithm for the
long-lived flows. In our routing mechanism, the flows are classi-
fied according to their flow size. We call our routing mechanism
Flow Classified DLB (FC-DLB).

5. IMPLEMENTATION

As shown in Fig 5, We implement our scheduling scheme on
mininet, a high-fidelity network emulation platform based on
Linux container. The Mininet is running on a single machine
with dual quad-core Intel Xeon E5-2603 1.80GHz processors
and 32-GB of RAM. We use mininet to model Data Center net-
work behavior by building up a 4-ary Fat-Tree topology. The
4-ary Fat-Tree topology consists of 16 hosts connected by 20
switches. The 4-ary Fat-Tree network is controlled by the Pox
OpenFlow controller with the RiplPox extension installed to sup-
port ECMP. Our routing algorithm is running at the Pox con-
troller. We also implement ECMP routing algorithm and DLB
algorithm in the Pox controller for the purpose of performance
comparison with ours.

Current data packet forwarding requires switches in a data
network to have matching rules to specify what direction to send
an incoming packet, e.g., determining at each switch which port
of the switch to transmit the packet through. Software Defined
Networking architectures allows these matching rules to be com-
puted and installed from a logically centralized controller. Under
OpenFlow protocol, the matching rules are based on 12-tuples
(OpenFlow allows matching rules to be installed based on 12
header fields). Matching of field in OpenFlow can be either an
explicit match or a wildcard match. A wildcard match means
the switch does not care what the value is in some specified field.
An explicit match is a binary match, i.e., it matches or it does
not. Even though OpenFlow protocol supports installing rules
with very fined-grained matching of the packet header fields, the
overall flexibility is limited by the available storage in switches.

We use OpenFlow protocol switches to build a FAT-TREE
topology Data Center. With OpenFlow protocol, network link
information and flow statistics can be collected from OpenFlow
controller. We schedule two jobs to collect statistics at fixed
period. The first job get traffic information from each port of
the switch at every T1 time interval. The traffic information is
defined as {swD, portNum, x}, and x means the bytes been trans-
mitted in T1 time, and the bandwidth utilization is calculated by
x. The second job get network statistics at every T2 time interval
and extract statistical information based on the number of bytes
which has been transmitted, so as to determine the size of the
up-coming flow.

To reduce short-lived flows’ transmission time, our FC-DLB
policy can reduce the probability of colliding on multiple equal-
cost paths. Following are the steps:

a. When a flow access the TOR switch, the controllers get the
source and destination of the flow, and then calculate which
layer this flow need to go.

b. Select the appropriate link for the flow from bottom to top.
According to the worst-case adaptation algorithm, the link
with the lowest bandwidth utilization will be selected as the

path for the flow to upwards.

c. Once the data flow reaches the highest level, according
to the characteristics of FAT-TREE topology, the path for
the flow from the top downing to the destination has been
uniquely determined .

d. Add the selected path to the switch’s flow table.

Figure 5 Implementation of FC-DLB.

To reduce long-lived flows’ transmission time, we select glob-
ally optimal path to reduce the flows on the link to avoid con-
gestion. Following are the steps:

a. When the crontab job notice that the transmitted data of a
flow has reached a certain threshold, the flow is defined as
a long-lived flow;

b. When a flow is determined to be a long-lived flow, FC-DLB
acquires the source and destination of the flow, and then
calculate all the paths from the source to the destination;

c. All of the alternate paths are composed by an equal number
of links, and each path has a most bandwidth utilized link
which is the bottleneck of the path. Based on the principle
of max-min fairness, FC-DLB select the lowest bandwidth
utilization path to forward the long-lived flow.

d. Delete the original flow table entries of the long-lived flow
in the switch, and add the calculated path to the appropriate
switches.

In a k=4 fat-tree Data Center network, all switches are
OpenFlow-enabled and each link bandwidth is 1000MBPS. As
shown in FIG. 2, host H1 send a flow f1 to host H2, then the
controller have to calculate the forwarding rule for f1 if there
is no corresponding rule to forward f1 in Top-Of-Rack switch
E1 which connected to H1. After parsing the address of H1 and
H2, the controllers knows that f1 has to arrive the core layer and
then go to H2. When f1 arrived E1, the link with most available
bandwidth will be selected to transmit f1 until it arrived a core
switch.

256 computer systems science & engineering



H. YU ET AL

Figure 6 Comparison of ECMP, DLB and FC-DLB for average bisection band-
width.

We use Iperf to generate TCP flows between the end hosts.
To build up the testing environment similar to real ones, we used
three types of traffic patterns according to the following styles:

(1) All to all: Every host sends data to every other hosts in
the network, so there will be data flows between every two
hosts in the network.

(2) Hotspot: A small number of hosts can receive data with
high probability compared to other hosts in the network.

(3) Random: A host sends data to other hosts in the network
with uniform probability.

Every traffic pattern in our implement is a mix of long-lived and
short-lived flows. The portion of the long-lived flows is about
10%–30%.

We use bwm-ng to monitor the all the physical ports on all
the OpenFlow switches every second, to observe all the ports’
forwarding situation.

6. EVALUATION

In this section, we evaluate the performance of our routing strat-
egy. We have two other algorithms as comparison. One is
the ECMP algorithm, the other is the DLB algorithm. Fig 6.
shows us the average bisection bandwidth for three communica-
tion patterns under three routing algorithms. As we can see, our
routing mechanism outperforms ECMP and DLB, especially in
the All_to_All pattern. Our FC-DLB keeps the highest average
bisection bandwidth among all three communication patterns.
DLB perform better than ECMP, but in Hotspot and Random pat-
terns their performance is approximated. Even if in the Hotspot
pattern, our FC-DLB also performs better than the other two al-
gorithms. The result indicates that our mechanism performs best
in the communication pattern with uniform flow distribution and
large number of flows.

Figure 7 shows us the average link utilization ratio for
All_to_All communication pattern. Our routing mechanism
keeps the highest average link utilization of all three routing
algorithms. At the beginning, the DLB and the FC-DLB both
can reach 0.6, whereas the ECMP just reaches 0.4, because the
DLB and the FC-DLB use the same algorithm before long-lived
flows are detected. The average link utilization ratio decreases

during the transmitting period because the number of completed
flows is increasing. ECMP performs the worst, and the DLB is
between the other two algorithms.

Figure 7 Comparison of ECMP, DLB and FC_DLB for average link utilization.

Figure 8 shows us the traffic load distribution on different pods
in a 4-ary Fat-Tree topology network in the All_to_All pattern.
FC-DLB and DLB significantly outperform ECMP algorithm.
On every pod, our FC-DLB achieve the highest traffic load, and
the ECMP achieve the lowest, and DLB is between them.

Figure 8 Comparison of three algorithm in term of traffic load on every pod in
a k=4 fat-tree network.

7. CONCLUSION

In this paper, we propose an OpenFlow based dynamic flow
scheduling mechanism FC-DLB for Data Center network with
Fat-Tree topology. With FC-DLB, flows in a Data Center can
be dynamically controlled and the forwarding strategies of the
streams can be dynamically adjusted according to the size of the
flow.

The routing scheme is made depending on the global view of
the network obtained by a centralized OpenFlow controller. The
scheduling mechanism uses two different algorithms to route
short-lived flows and long-lived flows respectively. We choose
the DLB algorithm as the default routing algorithm to route the
short-lived flows, and propose a routing algorithm for the long-
lived flows. We dynamically change the long-lived flows’ route,
to move long-lived flows from highly-utilized path to less utilized
path. Our routing mechanism can improve the link utilization

vol 33 no 4 July 2018 257



OPENFLOW BASED DYNAMIC FLOW SCHEDULING WITH MULTIPATH FOR DATA CENTER NETWORKS

and make more use of the bandwidth than ECMP and the DLB
algorithm.

To validate FC-DLB, we implement a prototype which has
three modules, such as monitoring module (include two sub mod-
ules, network information acquisition module, and long-lived
flow detecting module), routing module and centralized control
module. Extensive simulation experiments have been conducted
to evaluate the efficiency of the proposed FC-DLB scheme. The
results manifest that this scheme considerably outperforms the
state-of-the-art scheme in terms of bisection bandwidth and traf-
fic load, average link utilization.

ACKNOWLEDGMENT

This work is supported by the State Key Program of National
Natural Science of China(Grant No. 61432002), NSFC Grant
Nos. 61772112 and 61672379, and the Dalian High-level Talent
Innovation Program (No. 2015R049).

REFERENCES

1. M Wang, H Zhou, J Chen. Achieving a scalable and secure soft-
ware defined network by identifiers separating and mapping[J].
Computer Systems Science And Engineering, 2017, 32(2): 159–
169.

2. J Hajlaoui, M Omri, D Benslimane. A QoS-aware approach for dis-
covering and selecting configurable IaaS Cloud services[J]. Com-
puter Systems Science And Engineering, 2017, 32(4).

3. M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
DataCenter Network Architecture. ACM SIGCOMM, 2008.

4. T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding
Datacenter Traffic Characteristics. SIGCOMM WREN workshop,
2009.

5. C. E. Leiserson. Fat-trees: Universal networks for hardware-
efficient supercomputing. IEEE Transactions on Computers, 1985.

6. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.
Lahiri, D. A.Maltz, P. Patel, and S. Sengupta. VL2: a scalable and
flexible Data Center network. In SIGCOMM, 2009.

7. HOPPS, C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992, IETF, 2000.

8. W. J. Dally and B. Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Publisher, 2004.

9. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.
Vahdat. Hedera: Dynamic flow scheduling for Data Center net-
works. In NSDI 2010.

10. J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca. Planck: Millisecond-scale Monitoring
and Control for Commodity Networks. In SIGCOMM, 2014.

11. A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP
Extensions for Multipath Operation with Multiple Addresses”:
http://tools.ietf.org/html/ draft-ietf-mptcp-multiaddressed-09.

12. C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Design-
ing and Implementing a Deployable Multipath TCP,” USENIX
Symposium of Networked Systems Design and Implementation
(NSDI’12), San Jose (CA), 2012.

13. D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multi-
path TCP. In NSDI, 2011.

14. M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K.
Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese, et
al. CONGA: Distributed Congestion-aware Load Balancing for
Datacenters. In SIGCOMM, 2014.

15. D. R. Hanks. Juniper QFX5100 Series: A Comprehensive Guide
to Building Next-Generation Networks. “O’Reilly Media, Inc.”,
2014.

16. J Wu. Energy efficient dual execution mode scheduling for real-
time tasks with shared resources[J]. Computer Systems Science
And Engineering, 2016, 31(3): 239–253.

17. R.Wang, D.Butnariu, J.Rexford. OpenFlow-Based Server Load
Balancing Gone Wild. Hot ICE, 2011.

18. He K, Rozner E, Agarwal K, et al. Presto: Edge-based load balanc-
ing for fast datacenter networks[J]. ACM SIGCOMM Computer
Communication Review, 2015, 45(4): 465–478.

19. Y.Li, P.Deng. OpenFlow based load balancing for Fat-Tree net-
works with multipath support. Proc. 12th IEEE International Con-
ference on Communications, 2013.

20. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J.Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM CCR, 2008.

21. Pox OpenFlow Controller. http://www.noxrepo.org/pox/documen
tation/.

22. B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop:
Rapid Prototyping for Software-Definded Networks. ACM SIG-
COMM, 2010.

23. OpenFlow Switch Specification, Version 1.0.0.
http://www.OpenFlow.org/documents/OpenFlow-spec-v1.0.0.pdf.

24. C Guo, G Lu, D Li, et al. BCube: a high performance, server-
centric network architecture for modular Data Centers[J]. ACM
SIGCOMM Computer Communication Review, 2009, 39(4): 63–
74.

25. C. Guo, H. Wu, K. Tan, L. Shi, et al. Dcell: a scalable and fault-
tolerant network structure for Data Centers. SIGCOMM, 2008.

26. R.Kanagavelu, et al. OpenFlow based control for re-routing with
differentiated flows in Data Center Networks. Networks (ICON),
2012 18th IEEE International Conference on. IEEE, 2012.

258 computer systems science & engineering


