Comput Syst Sci & Eng (2018) 4: 267-274
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Analysis and Application of the
Spatio-temporal Feature in Wind

Power Prediction

Ruiguo Yu!?, Zhigiang Liu'-?, Jianrong Wang!-3, Mankun Zhao'?, Jie Gao'3, Mei Yu!:3-*

1School of Computer Science and Technology, Tianjin University, Tianjin 300350, China

{rgyu; tjubeisong; wjr; zmk; gaojie; yumei}@tju.edu.cn

2Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, China

3Tianjin Key Laboratory of Advanced Networking, Tianjin 300350, China

The spatio-temporal feature with historical wind power information and spatial information can effectively improve the accuracy of wind power prediction,
but the role of the spatio-temporal feature has not yet been fully discovered. This paper investigates the variance of the spatio-temporal feature. Based on
this, a hybrid machine learning method for wind power prediction is designed. First, the training set is divided into several groups according to the variance
of the input pattern, and then each group is used to train one or more predictors respectively. Multiple machine learning methods, such as the support
vector machine regression and the decision tree, are used in the proposed method. Second, all the trained predictors are adopted to make predictions for a
sample, and the results generated from these predictors will be combined by an optimized combination method based on the variance. The experimental
results based on the NREL dataset show that the method adopted in this paper can achieve a better performance than the stage-of-the-art approaches
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0.1 Introduction

Short-term wind power prediction, aiming at forecasting the
wind power of a turbine or turbine groups after a few minutes, is
a key to ensure the stability of the power grid after wind power
generation systems are connected to the grid. With the concept
of sustainable development, the wind power, a type of the im-
portant clean renewable energy, has drawn an increasing amount
of attention in recent years [1].

Machine learning methods are popular in the problem of short-
term wind power prediction. The other two commonly used
methods are mathematics and physical based methods, and sta-
tistics based methods [2]. The problem of wind power prediction
is considered as a regression problem in the machine learning
[3, 4], and the time series measurements of turbines in the past
times are used to train a model. Generally, some measurements
which are close to the target time are set as features to make
predictions.
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Poloczek J, Treiber N A, Kramer O. proposed a novel method
to extract the features, in which the spatio-temporal information
is concluded into the input pattern [5]. We will call the feature
with spatio-temporal information as FST in this paper.

The FST feature of a turbine can present the wind energy
of other turbines in the past few times within a certain range.
The performance of this feature is superior to the traditional
ones in the experiment, and it is theoretically possible to make a
further improvement on the accuracy of wind prediction because
it contains a more complete dynamic change process of the wind
energy.

Nils André Treiber et al. took advantage of the FST feature
in their work [6], however, they simply replaced the traditional
features with the FST features. In fact, the variance of the FDT
feature itself reflects the stability situation of a certain region’s
wind energy output when the information of temporal-spatial
information is included. Hence, the FST feature becomes a key
factor in predicting the wind energy. Experiments show that
when the variances of the features of the datasets to be predicted
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remains within a range and the variances of the features of the
training set also remains within this range, it can achieve a higher
prediction accuracy, as shown in Fig 1.

To use the multiple models to solve the same problem is an
effective way to get a better result [7], and in this case, how
to integrate the results of the multiple models has a significant
impact on the final prediction effect. Therefore, the weighted av-
erage is a simple and effective method to deal with this problem.
However, there must be a way to calculate the weights of each
model. Heinermann J et al. proposed a method in their work [8]
and applied it to the wind energy prediction. They evaluate the
mean squared error (MSE) of each base model, and then use the
reciprocal of MSE as the weight of the base model, as (1) shows.

1
w=—
MSE

In this paper, the method of combining multi-predictors with (1)
is called the RW (use reciprocal as the weight) method. Com-
pared with the traditional methods, RW method performs well,
but it still needs to improve.

First, the function image of is shown in Fig 2, which reflects the
relationship between the MSE of the base model and its weight
in the RW method. It can be seen that when the MSE of the
base model is distributed within an interval with small values,
the weight decreases rapidly with the increase of MSE. Whereas
when the MSE is distributed within an interval with big values,
the weight changes slowly, In the practical applications, the MSE
of the base model is greater than 5 in most cases, which makes the
weights among the models become too close, and cannot make
the well-performed models account for higher weights and more
important status.

Second, the reciprocal of the error is set as the weight, so the
weight is linearly related to 1/MSE, however, the more adaptive
non-linear function is superior to the linear function, which can
better express the relationship between them. Thus, there are at
least two points where the RW method can be improved.

Based on the basic regression models in the machine learn-
ing, this paper proposes a hybrid wind power prediction method
called ML_HWP, in which FST is used.

First, we divide the training data into groups according to the
variance of the input feature, so that the variance of each data
set remains in a fixed interval. In the process of grouping, each
example is endowed with an attribute, type, which indicates the
serial number of the group containing it.

Second, we take each set of training data to train one or
more models. The different machine learning algorithms are
adopted to train multiple models. After the model training is
completed, the effect of each model on each type of data is
estimated through the cross validation. Finally, a number of
trained models are acted on each example when making pre-
diction, and the weighted average is used to combine results
they produced. This paper adopts an improved method based
on RW to calculate the weights. Comparing with five methods,
including support vector machine regression, k-nearest neigh-
bors regression, decision tree, artificial neutral networks and the
RW method, ML_HWP can improve the prediction accuracy to
3.975%, 11.484%, 16.613%, 4.74% and 3.882% respectively.

The rest of this paper is organized as follows: section 2 intro-
duces the commonly used machine learning methods in the wind
power prediction and the extraction method of temporal-spatial
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features. Section 3 describes the model construction process and
the important algorithms of ML_HWP method. Section 4 veri-
fies the proposed algorithms with a large number of experiments.
We conclude the paper in section 5

1. RELATED WORK

1.1  Machine learning methods for wind power
prediction with time series measurements

Wind power values recorded from of a turbine with a certain
time interval is called the time series measurements. Time series
measurements are the base of the most machine learning meth-
ods for the wind power prediction [9], which are represented as
M={m;}. Generally, the problem of short-term wind power pre-
diction is described to be: predicting the value of m; with given
mo~m;_p+1, where h is the so-called time horizon, and ¢ is the
target.

The machine learning methods which are commonly used in
this field contains k-nearest neighbors regression (k-NN), sup-
port vector machine regression (SVR), decision tree (DT) [10]
and artificial neutral networks (ANNs) [11]. SVR and k-NN are
considered to be stage-of-the-art methods. k-NN regression is
one of the simplest regression algorithm, which predicts the nu-
merical targets based on a similarity measurement. It has been
widely used for its simplicity and high efficiency [12]. Vladimir
N. Vapnik et al. proposed SVR in 1996 [13], which maps the
input data to the higher dimensional space through the kernel
function so as to build a linearly decision function to achieve
the linear regression in the higher dimensional space. DT is a
tree structure, in which each internal node of the tree represents
a test on an attribute, and the outcomes of the test can generate
branches. Each leaf of DT indicates a label, and the path from
the root to the leaf shows the regression rules. ANNs are usu-
ally a graph, in which the nodes are divided into several layers
and each layer only connects with the its neighbors. A typical
ANNSs consists of three layers, including the input layer, hidden
layer and output layer. The prediction rules are represented in
the weights of edges.

WindML, developed by Kramer, O et al., is a python based
machine learning framework that focuses on the wind power
prediction [9]. The framework can download the data of national
renewable energy laboratory (NREL), which is collected during
2004~2006 with a time interval of 10 minutes [14]. Based on
this framework, the regular works in the wind power prediction,
such as data acquisition and feature extraction, can be easily
achieved. Thus, we have achieved our method based on this
framework.

1.2  Temporal-spatial feature extraction

Features in machine learning methods for wind power prediction
are extracted from the wind power series measurements. Fig. 3
(a) shows a common method of feature extraction. The succes-
sive measurement points are set as a feature, and the point after
the interval is regarded as the corresponding output of the feature
[11].
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Figure 1 Graph of function y =1/x.
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Figure 2 prediction results of the models trained by a certain subset and the whole set of training data respectively. SVR((kernel="rbf’, epsilon=0.1, C=100.0,
gamma=0.0001) is used as prediction. Time series of turbine #11637 in 2004 are used as training data, and that of 2005 are used as test data. The selected variance

range is [2, 5].

Compared with the above method of feature extraction, the
temporal-spatial feature extraction shown in Fig. 3 (b) takes
the spatial information into account. To explain thoroughly, we
set the target turbine as the center and gather the surrounding
turbines together as a group. Then, we extract the feature of
each turbine with the traditional method and then combine them
together as a new feature. It should be noted that the feature con-
tains the temporal and spatial information, but they are implied
in the specific data. Thus, how to make use of the information
depends on the specific prediction algorithm.

2. WIND POWER PREDICTION

MULTI-PREDICTORS

WITH

In this chapter, we plan to discuss the basic ideas and the main
processes of the wind power prediction with multi-predictors
(ML_HWP).

2.1 Framework

The main processes of the ML_HWP are shown as follows:

1. transform the time series measurements into training dataset
and test dataset.
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Figure 3 Transforming time series into features and corresponding responses.
The word “tb” means the object turbine, and nt; means the ith neighbor of the
object. The red point both in (a) and (b) are outputs of the features.

2. Divide the training set into several groups according to the
variance of input pattern from small to large, and then en-
dow each example of both training set and test set the at-
tribute, type. The value of fype in the training set equals to
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the serial number of group that contains it., and also equals
to the virtual serial number of group that contains in in
the test data if the test data is divided into groups with the
same variance thresholds during the process of dividing the
training sets.

. Train predictors with each group of training data, and then

calculate the MSE of the predictors on each group of the
training set. The results form a matrix E, in which E; ;
represents the MSE of the j-th training set on the i-th pre-
dictor, Actually, cross-validation is used in this step.

. Predict with the multi-predictors and combine these predic-

tors’ results through the weighted average method to prod-
uct the final results. The weights are calculated according
to matrix E that is generated in the process 3.

SVR perfects well in most case, but the accuracy is hard to be fur-
ther improved. So the hybrid method is a better choice. Others
methods like k-NN are not as good as SVR, but when compar-
ing algorithms with their best prediction times, which means the
closest one to the real value among multi-predictors’ results, as
shown in table 1, there is not much difference. This phenomenon
shows potential of other methods.

The framework of ML_HWP is shown in fig 4, which shows
the main processes described above. Data is denoised before
grouping for system robustness [15].

Group0 - Groupi i - Groupn—1°
| _ |
. ! - T 5 .
Model0 - wee | Modeli J «eo { Modeln-1 gBase predlctorﬂ

|
;"\:Re sult Comb inel:}

S g

{ - Final Predictor j

Figure 4 Framework of ML_HWP method. Data divider, Multi-predictors and
result combiner are three components of the method.

Table 1 Best behaved times of for popular prediction algorithms on turbine
#11637 of NREL dataset.

2.2

1.
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Turbineid SVR k-NN ANNs DT
11637 2033 3664 1890 3563
4155 2228 3115 2142 3187
3389 3631 2211 2098 2710
4115 1866 4461 1647 2575
30867 2184 3247 2234 2908

Model building

data preparation

The first step of building our model is to extract features
from the time series measurements. That s, to get the input

pattern and the corresponding response. The way to achieve
above function is inherited from work of Justin Heinermann
et al. [11]. The training set after pretreatment is regarded
as M = {(X;, y,-)}lN:Bl, where X; is the input pattern of the
ith example and y; is the corresponding desired response.
N is the number of examples. Test set is represented as the
similar form, I = {(X;, yi)}?igl, where M is the number
of examples in test set.

. Calculate the variance v; of each X;, as (2).

w—1
-2
vw=2 XX @
i=0

Where X; is the average value of X;, j- The accuracy of
wind power prediction to a turbine is strongly related to
the turbine’s variances of its’ input patterns. Generally,
the smaller the average variance is, the lower MSE can be
achieved.

. Divide ) into several groups according to the variance of

the input patterns, that is, R={N; }l’.':_ol, where ); is a subset
of M. There is a list of thresholds H = {H;}}_,, and each
N; satisfies the rule in (3).

H; < (variance(n.X)|m € R;) < Hiyq 3)

Note that 9 is divided into n groups by n 4+ 1 thresholds,
and we try to keep the members of each group being equal.
Actually, each item of % is given an attribute, type = the
serial number of the subset it belongs to after the process
of dividing. Attribute fype is used in combining predictors’
results when making prediction.

. Training predictors with each ;. In this step, each group of

training set is served as an independent training set to train
base models. base models are based on a single algorithm
like SVR, k-NN and so on. In ML_HWP. each )i; is used to
train several predictors, but no two of them used the same
base algorithm. The trained predictors are expressed as
P ={P };”:_Ol , where m is the number of predictors.

. Build a matrix E™*", where E; ; means the MSE of P;

testing on M ;. In other words, use P; as predictor and
N as test set to obtain the MSE. This is actually a Cross-
validation method.

. Build the weight matrix W™ " based on matrix E,as shown

in (4).

Wi o = 1.0 @

" (Eij — h-min(E )

E ; means the j-th column of E, and 4 and ¢ are two ad-
justable parameters, they are introduced to solving the prob-
lem described in chapter I. comparing with RW method, pa-
rameter 4 changes the Distribution interval of denominator,
and ¢t make the denominator into a non-linear function of
MSE.

Before transform E to W, an optional normalized operation

on E can be adopted, as shown in (5).
E. .

Eij= )

max(E ;)

&)
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7. For test data I = {(X;, yi)}?igl, calculate the variance u;
of each X; and then based on u; to determine the value of
attribute type, t;,, which equals to k if and only if Hy, < u; <
Hiy1.

8. Make prediction to X; with each predictor. Suppose that
the results from base predictors are F; = {f;, j};':()l, then
the final result is obtained as (6).

25 (fd - i)
Z]m;ol (Wj’ti)

(6)

2.3  Algorithm

The main processes of ML_HWP will be described through
pseudocode in this chapter.

1. dividing the training set into groups.

Firstly, calculate the variance v; of X; for each example in
training set, and then, calculate the sorted index, ids, of %,
that is, vigs;, < Vids, if i < j. when the number of groups
n is given, the number of examples in each group is about
£ = IIRll/n. We divide the ids into n continuous parts from
left to right, and the variance of each split point will be
viewed as thresholds. The first element of thresholds will
be set to -1 and the last element will be set to an infinity
number to conclude all the examples when thresholds are
extended to test set. Code 3-1 shows the details of what we
have described above.

code 3-1 data divider

Input: X, y, n
Return: Xs, ys, h
begin:

v = variance(X)

ids = argsort(v)

h=[-1]

members = len(X)/n, cur = 0

foriin (0, n):

if i <len(X)%n: next = cur+(members+1)
else: next = cur+members

Xs[i] = X[ids[cur~next-1]], ys[i] = y[ids[cur~next-1]]
cur = next

h.append(v[ids[cur-1]])

hflen(h)-1] = INF

return Xs, ys, h

end

In code 3-1, argsort() is a built-in function in Python that
can return ids that is described above.

2. training Multi-predictors

One or more basic predictors can be built by using the data
from each group. All basic predictors contain two func-
tions, fir and predict, no matter what type of predictors they
are. Function fif is used to train the model, while predict
produces response to an input pattern.
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code 3-2 training predictors

Input: Xs, ys
Return: predictors
begin:

predictors =[]

for each (x, y) in (Xs, ys):

for each p in selected_base_predictors:
predictors.append(p.fit(x, y))

return predictors

end

In code 3-2, selected_base_predicors means the base algo-
rithms, including SVR. k-NN, DT and ANNs.

3. Cross-validation to obtain the matrix E and W

code 2-1 get the matrix E and W
Input: Xs, ys, predictors

Return: E, W

begin:

n=len(X), m=len(predictors)

E = zeros(m, n)

for i in range(0, m):

for jin range(0, n):

p = predictors[i]

E; j= MSE(p.predict(Xs[i]), ys[i])
W = zeros(m, n)

for i in range(0, m):

for jin range(0, n):

Wi j = 1.0/(E; j— h.?max(E ;))
end

3. EXPERIMENTS

3.1 Key parameters

The key adjustable parameters in ML_HWP method are the num-
ber of data groups, n, and the parameters 4 and ¢ in (4).

A problem before determining the best value of 7 is how to di-
vide the data, whether using an arithmetic progression as thresh-
olds or trying to keep the members of each group being equal.
To solve this problem, the distribution of variance of the patterns
is studied. As shown in fig 5.

The variances of input patterns have great influence on the ac-
curacy. A test on turbine #11637 shows that the average MSE of
test examples with a variance which is smaller than 2 can achieve
2.980. It accounts for 43.4% of the all test examples, while the
average MSE of the rest examples reaches 20.922. From fig 5,
we can see that the variances of examples are distributed in a
large range of 0~300. However, most of them are with small
values, about half of them are smaller than 2, and only about 30%
are larger than 10. If use an arithmetic progression as thresholds
for dividing data, the members of some groups are too small in
the case, thus, setting an arithmetic progression as threshold is
not reasonable.
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To explore the relationship between any two parameters, we
set the third parameters with a default value, and then visual-
ize the relationship between two variables by a surface, which
demonstrates the change of MSE with two selected parameters.
The results are shown in figure 6.

As shown in figure 6, we can conclude that:

1. The correlation among variables is not strong.

2. If the value of t is less than 1, the effect is very poor. In a
certain range, MSE reduces quickly with the increase of ¢.
if the value of # is greater than 2, which is the optimal value,
MSE begins to increase slowly. In fact, the optimal value
of ¢ is different for different turbines, as shown in Figure
7. For some turbines, the optimal value of ¢ is about 2,
but about 4 for most of them. Generally, value 4 is a good
choice.

3. If the parameter n value is 3 or 4, the effect is better. Ac-
cording to our method, it is true that the data is grouped
according to the variance of the input feature can improve
the prediction accuracy. However, the model will be diffi-
cult to have convergence when the number of groups is too
large.

4. the change law of the parameter & is relatively simple. Gen-
erally, MSE gradually reduces with the increase of parame-
ter h. However, taking the meaning of the formula (4) into
account, when the value of & tends to be 1, the value of the
function will become infinite, which is theoretically unrea-
sonable. In the experiment, when the value of % is close to
1, MSE grows rapidly. When the value of h is more than
1, MSE is no longer regular, as shown in Fig 8. After lots
of experiments, we find that the optimal value is usually
between 0.8 and 0.9.

3.2  Using multiple types of base predictors

We trained multiple types of predictors with each group of train-
ing set and tries different combinations. The experimental results
are shown in Table 2. The first four lines of the Table represents
the results of using a single base algorithm, while the rest of
lines demonstrates the results of using varieties of base algo-
rithms. The table only lists some of the combinations because
of the limited space, while the statistics in the table are able to
prove the effectiveness of our method.
As table 2 shows, we can conclude that:

1. Different base methods show big difference when they work
alone. SVR and ANNSs are superior to k-NN and DT.

2. Hybrid predictors with multiple basic algorithms perform
better than base predictors;

3. Performance of hybrid predictor depends on its base predic-
tors. Itis clear that SVR and ANNs are two best performed
base algorithms, and the hybrid predictor with these two
base algorithms is also the best performed hybrid predictor.

4. The proposed method is almost ineffective to the k-NN
algorithm. In fact, k-NN algorithm makes decisions ac-
cording to the nearest neighbors of each example during
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the process of making prediction. In addition, the similar
examples will probably appear in the same group in the
process of grouping. Thus, the data grouping has little ef-
fect on the k-NN algorithm.

3.3  Compare with other methods.

We design experiments to compare our proposed methods and
existing algorithms. The existing methods include four com-
monly used machine learning methods such as SVR, k-NN, DT,
ANNs and RW. In general, SVR and k-NN are usually consid-
ered as the stage-of-the-art methods. The comparative results
are shown in table 3.

Table 2 MSE of types of combination.

Turbineid 11637 4155 3389 4115 DT
[1] 11.978 7.160 10.693 7.885 5.083
[2] 13.909 8.002 11.285 8.376 5.709
[3] 11.768 7.158 10.424 7.756 5.102
[4] 15.240 8.557 12374 8.934 6.092
[1,3] 11.492 6977 10.270 7.752 5.041
[1,2,3] 11932 7.285 10.576 7.876 5.133
[1,3,4] 12.012 7.247 10.813 8.053 5.154
[1,23,4] 13.872 7.973 11.266 8.352 5.679

In this table, 1=SVR, 2=k-NN, 3=Networks and 4=DT. SVR
and Networks are used in each type of combination for their
output performance. Parameters, n=5, h=0.9, t=1.7. Due to
the characteristics of the algorithm itself, the results of DT and
ANN s have randomness, so we used the average of 10 runs result
when involving the above two algorithms.

Table 3 comparative results of types of methodds

Turbineid 11637 4155 3389 4115 DT

SVR 12.094 7.240 10976 8.000 5.130
k-NN 13.797 7.972 11.264 8.405 5.705
DT 14517 8.560 11.858 8.681 6.273
ANNSs 12.028 7.423 10.834 8.062 5.326
RW 12.103  7.327 10935 7.935 5.102

ML_HWP 11492 6977 10.270 7.752 5.041

4. CONCLUSIONS AND FUTURE WORKS

This paper investigates the spatio-temporal feature and focuses
on the important role of its variance in wind power prediction.
Based on this, a hybrid machine learning algorithm is designed.
This paper studies the various variables involved in the algorithm
and analyzes their influence on the prediction effect. Finally, we
prove the effectiveness of the proposed method by comparing
with the five existing machine learning algorithms.

In the future, we will further study and adjust the parameters
in the method to achieve better predictive results.
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Figure 5 Variance distribution of turbine #11637°s data. picture (a) shows the dataset’s global distribution of variance, and figure (b) shows part of (a). figure shows
the amount of data in each variance interval.

Figure 6 Parameters of ML_HWP. (a) shows the relationship of n and #; (b) shows the relationship of  and ¢; (c) shows the relationship of n and /. The experiments
are adopted on turbine #11637. When training any two parameters, the third parameter is assigned with a default value: n=4, h=0.9 and t=2.0.
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Figure 7 Experiment results of algorithm described in this chapter. The green line in each figure represents the MSE of a single SVR predictor, while the red line
represents the change of MSE with parameters in formula 5-2.
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Figure 8 curve of MSE with parameter h. The experiment is carried out based on turbine # 11367. ANNs is the only base algorithm. Group number =5, t=1.7.
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