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To better solve the issue with abnormal failure of electric motor unit (EMU) brake pad resulted from various random factors in the ever-changing operating
environment, in this paper, a new evaluation method of performance prediction and abnormity decision is proposed based on the Multivariate integrated
random walk (MIRW) model. In this method, the state space model of the EMU brake pad performance degradation is firstly established. And then based on
the observed data, the brake pad performance degradation trend is extracted by the fixed interval forward - backward smoothing algorithm. Based on it, the
future degradation state can be predicted by Kalman predictor. Based on the obtained state estimation values, abnormal failure tolerance range (AFTR) can
be determined applying Grubbs criterion to judge whether the brake pad is being in abnormal state before reaching the final failure or not as a new sample
appears. In addition, the cumulative failure probability of the brake pad is estimated in the degradation process. Finally, the thickness data of a certain type
of EMU brake pad is applied to predict the future degradation state and determine the abnormal condition, and the result shows that the proposed method
is more efficient and accurate.
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1. INTRODUCTION

In past several years, China high-speed railway undergoes a quite
rapid development, the main lines of which is extended towards
remote regions and the speed of the existed lines is also increased,
constantly, which proposes higher requirements for China rail-
way safety and reliability. In northwest China, climatic condition
is harsh more, say, high temperature, high cold, high altitude, and
strong sandstorm weather, which generates a serious impact on
the performance degradation of electric motor unit (EMU) de-
vices [1]. Moreover, the running speed of high-speed railway is
constantly refreshed, such that higher safety demand is required
on the braking performance of EMU [2].

Brake pad is one of the key components of braking system,
the reliability and safety of which possesses quite significant
impacts on EMU operation. The quantity of brake pad installed
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in each EMU is very large, for example, CRH2A with four-
tractor four-trailer possesses 192 brake pads in all [3], whereas
CRH380BL with eight-tractor eight-trailer has 320 brake pads
[4]. According to the current maintenance schedule in China,
the daily maintenance cycle of EMU is two days alone, which
generates the workload heavier. In addition, the initial cost of
the brake pad is quite high and its replacement rate is the most
frequent for the maintenance of all the EMU components [5].
With EMU running continuously, the performance degradation
of the brake pad is constantly accumulated. Although it does not
fail at that time, the failure probability is increasing gradually.
Hence, it is necessary to investigate the dynamic performance
degradation level of brake pads to ensure safe operation of EMU
braking systems before it is finally replaced, which is the problem
to expect to be solved for EMU industry.

Train condition monitoring system is proposed in [6], where
the brake pad wear monitoring system (BWMS) can monitor the

vol 33 no 5 September 2018 351



PREDICTION AND ABNORMITY ASSERTION ON EMU BRAKE PAD BASED ON MULTIVARIATE INTEGRATED RANDOM WALK

condition of brake pads, automatically. But the assembling site
of the brake pad is hidden, and the system is vulnerable to the
external environment interference so that the image capture is
difficult. In [5], the damage recording of the EMU main com-
ponents operation and repair process is collected and analyzed
under the particular environment in China, and then based on the
running kilometrage of EMU, the life-expectancy of trailer brake
pad is estimated. In [7], a life prediction model is established
based on the gray system theory, and the collected thickness data
is used to predict the life cycle of the brake pad. In [8], under the
condition that the relevant factors affecting brake pad wear are
considered, machine learning algorithm is used to establish the
estimation model of the brake pad wear amount for the remain-
ing useful life prediction. However, the studies above are lack
of the consideration of the randomness and uncertainty in the
degradation process, and abnormal failure working condition of
the brake pad is ignored.

In [9], the mean value of device degradation in the future
is directly predicted using the Kalman filter based on the his-
torical status and data of the device itself. But the data is not
preprocessed, as a result, an obvious prediction error is then gen-
erated. In [10], in order to deal with the limitations and mislead
results that most reliability assess of the circuit connector is in
accordance with certain standards, the physical failure model
and accelerated degradation test are combined to obtain the reli-
ability estimation of the electrical connector with the data from
the accelerated degradation test.

It can be seen from the above that the observational or experi-
mental data of the device degradation are directly used to predict
the performance reliability, but during the actual operating, it is
inevitable for the equipment to suffer from various random fac-
tors from the running and serving environment, such that the
measurement data containing noise.

Hence, to evaluate the reliability of brake pad accurately, it is
necessary to implement preprocess on the measurement data to
obtain an accurate estimate of the degradation level. In this pa-
per, the characteristics of multivariate integrated random walk
(MIRW) model are applied [11]. Based on MIRW, the state
space model of device performance degradation is established,
and then Kalman fixed-interval smoothing algorithm is firstly
applied to extract the trend of device performance degradation.
Further, Kalman filter is used to predict and estimate the degrada-
tion state in future. In addition, according to the state estimation
obtained, the abnormal failure tolerance range(AFTR) is deter-
mined to judge that whether the abnormal failure occurs in the
device degradation process before it reaches a critical degrada-
tion failure threshold or not. Based on the obtained results above
and the failure probability of device in the degradation process,
the cumulative failure probability is estimated and the dynamic
reliability is analyzed. Finally, brake pad thickness data of a
certain type of EMU is applied to verify the effectiveness of the
method proposed.

2. MODELLING

Under normal circumstances, many factors, say, random back-
ground noise, the seasonal changes, and sudden interference,
and etc, will affect the reality of performance degradation data

acquired by the monitoring devices [12]. Therefore, to obtain
the true trend and characteristics of the device degradation, it is
necessary to implement preprocessing on the observed data of
performance degradation.

On one hand, the performance degradation of the brake pad
is mainly affected by the number of passengers, and the vehicle
weight, and the EMU initial braking speed, the number of brak-
ing, and as well as the specific braking operation details, which
lead the brake pad to be worn constantly, such that the wear sit-
uation is different in each running. On the other hand, under the
interference of various random factors, there is a certain error
existing in the thickness data observed for the brake pad during
the measurement. Thus the degradation process can be regarded
as a stochastic dynamic process with multivariate continuously
varying over time [13]. The brake pad thickness observing data
can be modeled as an original structure time series, and repre-
sented by y(t). The orthogonal decomposition of y(t) produces
the trend component yt(t) that affects the mean value of y(t)
permanently, and the seasonal component ys(t) that fluctuates
around y(t) periodically, and the transient interference compo-
nent yp(t) due to the external disturbance, and as well as white
noise e(t), such that y(t) can be described by

y(t) = yt(t)+ ys(t)+ yp(t)+ e(t) (2.1)

Although all components in (1.1) are potentially important, this
does not mean that they all are used to fully describe the per-
formance degradation of the brake pad. Hence, after ignoring
ys(t) and yp(t) which does not indeed exist in the time series,
the degradation process of the brake pad will be integrated in the
sum of yt (t) and e(t), as shown by

y(t) = yt(t)+ e(t) (2.2)

Since the performance tendency of brake pad can reflect the
degradation processes which is characterized by a low frequency.
In this paper, MIRW is used to simulate the low frequency of the
brake pad degradation trend so as to build the state space model,
which can be shown by

x(t + 1) = �x(t)+ �η(t) (2.3)

y(t) = H x(t)+ ν(t) (2.4)

In (1.3), x(t + 1) expresses the state vector of the brake
pad performance degradation at time t + 1, and x(t + 1) =[

μ(t + 1)

β(t + 1)

]

, wherein μ(t+1) expresses the performance level

of the brake pad degradation at time t+1, and β(t+1) indicates
the degradation speed of the brake pad at time t + 1, and η(t)
is the process noise, and � and � are the state transition matrix
and input matrix, respectively. In (1.4), y(t) is the observation
vector of the brake pad thickness at time t , and H is the obser-
vation matrix, and v(t) is the observation noise. Assuming that
η(t) and v(t) be uncorrelated white noise with zero mean and
covariance matrix Q and R respectively, and satisfy

E[η(t)] = E[ν(t)] = 0
E[η(t j )η

T(tk)] = Q jδ j k

E[ν(t j )ν
T(tk)] = R j δ j k

E[η(t j )ν
T(tk)] = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.5)
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where δ j k is the Kroneker coefficient, and δ j k ={
1, t j = tk
0, t j �= tk

. .

In addition, the initial state x(0) be irrelevant to η(t) and v(t),
and satisfy

E[x(0)] = μ0, E[(x(0)− μ0)(x(0)− μ0)
T] = P0 (2.6)

Due to the extensive adaptability and importance of MIRW,
when the observation equation is only composed with yt (t) and
e(t), Kalman filter can be used to predict and correct it. In (1.3)
and (1.4), �, �, and H owns the following form, respectively.

� =
[

1 1
0 1

]

, � =
[

1 0
0 1

]

, H = [
1 0

]
.

The observed signal is usually mixed with random noise due
to the uncertain factor in the actual operation and observation
devices. It is very difficult to extract accurately the state value
from the observed signal with the mixture of random noise. And
so what we can do is just to estimate the degradation state on the
basis of the observed signal. In order to make the state estimation
more close to the true value, Kalman filter is applied to obtain the
linear minimum variance estimation x̂(t|t) of x(t) based on the
observation vector y(t), and the minimal performance indicator
is expressed as [14, 15]

J = E[(x(t)− x̂(t|t))T (x(t)− x̂(t|t))] (2.7)

3. DEGRADATION STATE ESTIMATION

3.1 Extracting the degradation trend

Kalman fixed interval forward - backward smoothing algorithm
is a process of ’prediction - correction’ continuously, and can
be applied to extract the degradation trend of the brake pad.
Based on the MIRW model, and considering the measurement
error, this paper implements the preprocessing on the observed
thickness data of the brake pad to extract the degradation trend,
and performs prediction and estimation for the future degradation
level.

3.1.1 Backward smoothing

To estimate the optimal smoothing value of the degradation state
x̂(t|N), the backward smoothing algorithm is adopted and shown
by [16]

x̂(t|N) = x̂(t|t)+ AS(t)× [x̂(t + 1|N)− x̂(t + 1|t)]
(3.1)

As(t) = P(t|t)�T P−1(t + 1|t) (3.2)

P(t|N) = P(t|t) + As(t)× [P(t + 1|N)

− P(t + 1|t)]AT
s (t) (3.3)

x̂(N |N) = x̂(N |N − 1)+ K (N)ε(N),

P(N |N) = [In − K (N)H ] P(N |N − 1) (3.4)

wherein x̂(t|N) (t = N , N−1, . . ., 1) is the fixed interval optimal
smoothing estimation value, and As(t) is the optimal smoothing
gain matrix, and P(t|N) is the error covariance matrix of optimal

smoothing and used to quantitatively evaluate the quality of the
fixed interval smoothing estimation. x̂(t|t) and P(t|t) may be
obtained by Kalman filter described in section 3.1.2.

Finally, we get the trend component of the brake pad perfor-
mance degradation, as shown by

yt (t) = y(t|t) = H x̂(t|N) (3.5)

3.1.2 Forward smoothing

Kalman filtering algorithm is applied to forward smooth recur-
sively to obtain the optimal filtering estimation value of the brake
pad thickness, which is described in [14].

x̂(t + 1|t) = �x̂(t|t) (3.6)

P(t + 1|t) = �P(t|t)�T + �Q�T (3.7)

ε(t + 1) = y(t + 1)− H x̂(t + 1|t) (3.8)

K (t + 1) = P(t + 1|t)H T

[H P(t + 1|t)H T + R]−1 (3.9)

x̂(t + 1|t + 1) = x̂(t + 1|t)
+ K (t + 1)ε(t + 1) (3.10)

P(t + 1|t + 1) = In − K (t + 1)H P(t + 1|t) (3.11)

x̂(0|0) = μ0, P(0|0) = P0 (3.12)

wherein x̂(t + 1|t + 1) represents the optimal filtering estima-
tion value of the degradation state and will be used to backward
smooth, and K (t+1) presents the filtering gain matrix obtained
by minimizing performance indicator J , and K (t+1) and ε(t+1)

are used to correct the error due to the observation noise in the
estimation of x̂(t + 1|t), and P(t + 1|t) and are respectively the
error covariance matrix of filtering and predicting, and In is the
unit matrix.

3.2 Predicting the future state

Kalman predictor is applied to predict the future degradation
state at time t + 1 based on the trend component yt(t). And it’s
given by

x̂(t + 1|t) = �x̂(t|t − 1)+ K p(t)[yt (t)− H x̂(t|t − 1)]
(3.13)

K p(t) = �P(t|t − 1)H T [H P(t|t − 1)H T + R]−1

(3.14)

P(t + 1|t) = �{P(t|t − 1)− P(t|t − 1)H T

× [H P(t|t − 1)H T + R]−1

× H P(t|t − 1)}�T + �Q�T (3.15)

x̂(1|0) = �x̂(0|0),

P(1|0) = �P(0|0)�T + �Q�T (3.16)

where x̂(t + 1|t) is the optimal prediction of degradation state,
K p(t) is Kalman predictor gain matrix, P(t + 1|t) is the error
covariance matrix of optimal prediction.

Therefore, we have the optimal thickness prediction of the
brake pad at the future time t + 1 that we are looking forward to
getting, which is shown by

y(t + 1) = H x̂(t + 1|t) (3.17)
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Figure 1 Failure rate curve of mechanical wear equipments.

4. ABNORMAL CONDITION DETERMINA-
TION

4.1 Related work

For most of mechanical wear equipment, they roughly possess
the failure rate curve as shown in Fig. 3 [17].

Seen from Fig. 1, the overall life cycle model of the device
can be distributed into three stages, that is, the infant (DFR, de-
creasing failure rate with time), and middle age(CFR, constant
failure rate with time), and ageing(IFR, increasing failure rate
with time). If we ignore the infant death, and then it will start
to work from middle age, up to ageing. In the middle age, the
device will possess a low and basically stable failure rate, and
approximates a constant. As entering into ageing, the device
will possess an abruptly increasing failure rate, and finally be
replaced as it reaches a predefined failure threshold beforehand
[17]. In this paper, we pay attention to the failure in middle age
with constant failure rate and generally following the exponen-
tial. Clearly, this just is the abnormal failure. And contrary, if
the failure occurs in ageing, and then it is called as normal one.

Let the true degradation level of the device follow the expo-
nential distribution, which can be described by

z(t) = z0e−λt (4.1)

where z0 represents the initial performance value at time t0, and
z(t) is the one in t , and λ is the failure rate of the devices.

For time ti , we have

zi = z0e−λti (4.2)

Similarly, for time ti+1, we have

zi+1 = z0e−λti+1 (4.3)

And so, we easily obtain

zi

z0
= e−λti (4.4a)

zi+1

z0
= e−λti+1 (4.4b)

Then make the logarithmic processing of (3.4a) and (3.4b) re-
spectively, we get

ln
zi

z0
= −λti (4.5a)

ln
zi+1

z0
= −λti+1 (4.5b)

From (3.5a) and (3.5b), we then obtain

ln zi+1 − ln zi = −λ (ti+1 − ti ) = −λ
ti+1 (4.6)

where 
ti+1 is the (i + 1) the time interval.
Let


̃i+1 = ln zi+1 − ln zi = −λ
ti+1 (4.7)

where 
̃i+1 is the logarithm increment of the device degradation
level.

Specially, as time intervals are taken equal, we then have


̃i+1 = −λ
t (4.8)

On the other hand, let 
i be the observed logarithm increment
of the degradation level between two-adjacent non-overlapping
time intervals, and yi is the observed quantity, then we have


i+1 = ln yi+1 − ln yi (4.9)

And so,
E[
i+1] = 
̃i+1 = −λ
t (4.10)

Let us define the performance degradation sequence as


= [
1,
2, · · · ,
n] (4.11)

Clearly, each performance degradation quantity possesses
same the expected value and follows same distribution, which
leads to

lim
k→∞ Fk(
) = lim

k→∞ P

{

i − E(
i )

σ
� 


}

= 1√
2π

∫ 


−∞
e−

t2
2 dt = �(
) (4.12)

where Fk (
) is the distribution of 
, and �(
) is standard
normal distribution function, and σ is the finite variance, which
can be estimated by

σ = E(s) =
√
√
√
√ 1

n − 1

n∑

i=1

(

i −


)2
(4.13)

where s is the sample variance, and 
 is the estimated value of
E(
i ), namely, the average value of samples.
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As a matter of fact, let Y1, Y2, . . ., Yn be the observing sequence
with E[|
| <∞], and then we can say

Zn = E[
|Y1, Y2, . . . , Yn], n � 1 (4.14)

is a martingale, and as Doob martingale [18]. Hence

E[Zn+1|Y1, Y2, . . . , Yn]
= E[E[
|Y1, Y2, . . . , Yn+1]|Y1, Y2, . . . , Yn]
= E[
|Y1, Y2, . . . , Yn]
= Zn (4.15)

The formula shows that 
 can be revised constantly as new
observing value arrives at, but E[|
|] remain unchanged.

4.1.1 Grubbs criterion

The Grubbs principle is adopted to exclude the bad observational
value 
i corresponding to the desired value E(
i ) when the
number times of observation is smaller (n < 20 times)[19]. Let
vi be the residual error and shown by

vi = 
i −
 (4.16)

According to the Grubbs criterion, if |vi | > Gσ , the 
i should
be excluded. G is Grubbs coefficient and σ is variance of obser-
vation data. For instance, as G is taken by 2.78 for n = 17, we
have 99% reason to believe that the sample should be excluded.

4.1.2 Distance judgement law

The distance judgment is to determine that one unknown sample
belongs to which known population by computing the distances
between the sample and each population [20]. In this paper, Ma-
halanobis Distance is adopted. Let G be the p-dimensional pop-
ulation with the mathematical expectation μ and the covariance
matrix s, and then Mahalanobis distance from the p-dimensional
sample vector x to the population G is defined by

d (x, G) =
[
(x − μ)T s−1 (x − μ)

] 1
2

(4.17)

Assume that G1 and G2 are two different populations with
the different mathematical expectation μ1 and μ2, and the same
covariance matrix s, and the Mahalanobis distances from x to
G1 and G2 be respectively defined as d (x, G1) and d (x, G2).
And thus the discriminant criterion is expressed as follows

{
x ∈ G1, if d (x, G1) � d (x, G2) .

x ∈ G2, if d (x, G1) > d (x, G2) .
(4.18)

The square difference of d (x, G1) and d (x, G2) is shown

d2 (x, G2)− d2 (x, G1)

= (x − μ2)
T s−1 (x − μ2)− (x − μ1)

T s−1 (x − μ1)

= 2 (x − μ)T s−1 (μ1 − μ2) (4.19)

where μ = 1
2 (μ1 + μ2).

Let W (x) = (x − μ)T s−1 (μ1 − μ2), then (3.16) is simpli-
fied as {

x ∈ G1, if W (x) � 0.

x ∈ G2, if W (x) < 0.
(4.20)

4.2 AFTR determination

Statistical process monitoring technology is applied in anom-
aly detection of industrial process based on data [21]. The de-
vice degradation increments obtained from the device itself are
different in different time intervals, which basically reflect the
deterioration characteristics of the device. Therefore, the rea-
sonable and reliable AFTR is available by statistical analysis for
equipment performance degradation data. It is necessary to get
a quantitative indicator which can determine whether there is
abnormal working condition or not.

We can obtain the root mean square deviation according to 
 j

before time ti+1 and the average value 
, which is shown by

si =
√
√
√
√ 1

i − 1

i∑

j=1

(

 j −


)2
(4.21)

Let SND represent the standard deviation of degradation incre-
ment, which can measure the deviation degree of the increment
in each time interval compared to the average value of all incre-
ments prior to this time [22]. SND is shown as follows

SNDi = 
i −
i

si
× 100% (4.22)

We know that SNDi represents the deviation degree of 
i with
respect to 
i and can reflect the overall fluctuation characteristics
of device degradation [23]. So in order to analyze the overall
degradation characteristics during the degeneration process, it is
necessary to calculate the deviation degree of the increment in
each time interval. SNDi is shown by

SNDi = 1

i

i

j=1
|SNDj | (4.23)

Thus we may use SNDi to determine whether there is abnormal
failure or not in the device. Compare |SNDi+1| (the module
value of SNDi+1) to SNDi , if the difference calculated exceeds a
certain range, we can consider that there is abnormal condition
in the device at time ti+1. This certain range is the effective
AFTR to determine.

To measure the dispersion degree of SND until time ti+1, the
former i -mean-square-deviation is calculated by

SSNDi =
√
√
√
√ 1

i − 1

i∑

j=1

|SND j | − SNDi
2

(4.24)

In general, 
 should not possess dramatic change during
equipment normal operation. Once an abnormal condition oc-
curs, SND will fluctuate, evidently. Therefore, let

SNDSNDi =
|SNDi | − SNDi

SSNDi

(4.25)

Clearly, SNDSNDi follows N(0,1), and represents the fluctua-
tion degree of |SNDi |with respect to SNDi . Based on it, accord-
ing to Grubbs principle, we can define three different population
G1, and G2, and G3 with the different mathematical expectation
zero, and GsSNDi , and−GsSNDi , and as well as the same covari-
ance 1. In fact, considering the symmetry of the distance judge-
ment between a new sample belonging to G1 or G2, and to G1 or
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G3, it is feasible for us that only two population is involved, for
instance, G1 and G2. Thus, as a new sample SNDSNDi+1 occurs,
we firstly compute

SNDSNDi+1 =
|SNDi+1| − SNDi

sSNDi

(4.26)

Then computing

d(SNDSNDi+1 , G1) � d(SNDSNDi+1 , G2) (4.27)

We can say the new sample belongs to G1 and no abnormal
failure occurs, and inversely, we can say that the new sample
belongs to G2 and an abnormal failure appears.

Fig. 2 shows the algorithm flow diagram to predict and deter-
mine whether there is abnormal failure occurring, using device
performance degradation data. The entire procedure of the al-
gorithm illuminates that it can be effectively applied to predict
the abnormal failure of devices, such as EMU braking pads and
roulettes [24], and large-scale wind power system [25], etc, and
is the basis of the follow-up work of maintenance strategy mak-
ing.

5. RELIABILITY PREDICTION

The operation reliability of the same equipment must be differ-
ent under different operating conditions and environment [26].
Reliability refers to the ability of a device or system to perform
a defined function within a predetermined time under specified
conditions [27]. The operation of the equipment will be affected
by environmental and self-performance and other random fac-
tors, such that the reliability will also change with the running
time. Dynamic reliability describes the dynamic evolution of
a device or system over time and studies the effect of failure,
maintenance and associated control measures on the dynamic
characteristics of the equipment or system [28].

Fig. 3 shows the schematic diagram of the device perfor-
mance degradation, clearly, the degraded performance value yt

is gradually decreasing with the operation of device. Although
the device hasn’t yet expired before reaching the critical degra-
dation failure threshold yC , the failure probability is increasing
from the change in the shaded area.

Let F(t + 1|t) be the cumulative failure probability in the
future time t + 1. And the critical failure threshold is usually
defined as a constant, noted by yC . When the thickness is less
than yC , we think that the critical degradation failure occurs and
relevant maintenance measures are required [29].

For the brake pads belonging to the kind of device whose
performance indicators reduce gradually with the running time,
F(t + 1|t) is the estimation value of the conditional probability
at time t +1 due to the continuous degradation when the current
thickness estimation is less than the critical failure threshold,
which can be shown by

F (t + 1|t) = P {y (t + 1) � yC} =
∫ yC

−∞
f (y (t + 1)) dy

(5.1)
where f (y(t + 1)) indicates the probability density function of
y(t + 1) and follows normal distribution. The mean value and

variance of the degradation can be calculated using the statistical
analysis in the former sections.

The reliability and the cumulative failure probability of the
brake pad at time t + 1 are opposite, so we have

R(t+1|t) = 1− F (t + 1|t) = 1−
∫ yC

−∞
f (y (t + 1)) dy (5.2)

where R(t + 1|t) presents the reliability that the brake pad will
normally operate at the (t + 1)th time interval.

6. EXAMPLE

In terms of the high-speed railway EMU, the braking system
determines the security and stability of the EMU. And the brake
pad is one of the key parts of the braking system whose perfor-
mance will directly reflect the function of the braking system.
Each actual braking operation will inevitably lead to the wear
of the brake pad so that the gradual performance degradation
of which is accumulated continuously. Eventually, the failure
occurred. Therefore, taking the thickness degradation data of a
certain type of the EMU brake pad for example, the state space
model of the performance degradation based on MIRW is es-
tablished in this paper to extract the degradation trend. And the
future degradation state is predicted and estimated. Based on the
obtained state estimation values, the AFTR can be determined
applying Grubbs criterion to judge whether the brake pad is be-
ing in abnormal state before reaching the final failure or not as a
new sample appears. Finally, the reliability of the brake pad is
predicted, which is significant to ensure that the EMU braking
system operates safe and reliable.

Fig. 4 indicates three groups of thickness data of a certain type
of EMU brake pad, wherein the signal ’—’ presents the mea-
surement data which are sampled every two days and obtained
from CRRC (Customer-oriented Responsible Reliable Creative)
Qingdao Sifang rolling stock research institute, and ’*’ presents
the result obtained with the evaluation method proposed in this
paper, which is that the performance degradation trend of the
brake pad is extracted by the fixed interval forward - backward
smoothing algorithm. And the thickness estimation which is ob-
tained just by the Kalman filter directly without extracting the
degradation trend expressed by ’�’.

As we can see from Fig. 4, the brake pad is gradually worn
due to the repeated braking until the final failure throughout the
lifecycle. The result of the evaluation method is more consistent
with the practical degradation situation than the result obtained
by directly filtering, especially in the later period, the latter is
rather scattered.

The covariance of the brake pad thickness obtained at each
sampling time is showed in Fig. 5. it is quite clear that the MSE
obtained by fixed interval forward - backward is significantly
less than that the one obtained by filtering directly. And the
covariance obtained by the two methods is convergent, that is
to say, Kalman filtering algorithm can deal with Gaussian noise
efficiently.

The above analysis suggested that the evaluation method can
reduce the estimation error and improve the estimation accuracy.
Actually, the brake pad may lose a predetermined braking ca-
pacity due to the various uncertain factors before reaching the
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Figure 2 Flow diagram of the algorithm predicting the abnormal failure.
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Table 1 Grubbs coefficient(P=99%) [18].

n 3 4 5 6 7 8 9 10
G 1.16 1.49 1.75 1.94 2.10 2.22 2.32 2.41
n 11 12 13 14 15 16 17
G 2.48 2.55 2.61 2.66 2.70 2.75 2.78
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Figure 7 Reliability of the brake pad.
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critical threshold. Then, based on the estimation thickness value
obtained by the two methods, two kinds of abnormal failure judg-
ment methods proposed in this paper are adopted to determine
whether the abnormal failure occurs in the brake pad.

Fig. 6 indicates the comparison of the judgement of abnor-
mal failure, where d(SNDSNDi+1 , G1) and d(SNDSNDi+1 , G2)

respectively present the distance from |SNDi+1| to SNDi and
the AFTR at time t + 1 based on the estimated value which
is obtained by the fixed interval forward - backward smoothing,
d ′(SNDSNDi+1 , G1) and d ′(SNDSNDi+1 , G2) present the ones that
obtained by directly filtering, respectively. And when the Grubbs
coefficient G is taken form the Table 1 which is shown as fol-
lows, we have 99% reason to believe that the sample should be
excluded [18].

From Fig. 6, we can see the judgement of abnor-
mal failure can start from the 4th sample since the initial
value of s and SND may be zero. In forward-backward
smoothing algorithm, d(SNDSNDi+1 , G1) does not exceed the
AFTR d(SNDSNDi+1 , G2) from the 4th to the 16th, but from
the 17th sampling time interval, d(SNDSNDi+1 , G2) exceeds
d(SNDSNDi+1 , G1). Hence, we judge that there is the abnormal
failure occurs at the 17th sampling time interval. On the other
hand, for the Kalman filtering alone, d ′(SNDSNDi+1 , G1) can
never exceed d ′(SNDSNDi+1 , G2) in the whole process, which
suggests that there is no abnormal condition.

As shown in Fig. 7, the reliability of the brake pad is then
predicted based on the estimated thickness value obtained by
forward - backward smoothing and filtering directly, under the
current maintenance mechanism in China that yC is formulated
by 7mm, and f (y(t + 1)) obeys the normal distribution and the
mean value and variance have been obtained before. The relia-
bility based on forward - backward smoothing tends to decrease
gradually starting from the 10th sampling time interval, such that
the reliability of the brake pad at the 16th interval approaches to
0, approximately. In another hand, this tends to decrease at the
12th sampling time interval using Kalman forward filtering alone
and is still greater than 0 at the end of the lifecycle.

As mentioned from the above, the thickness of the brake pad
at the 17th sampling time is significantly thinner than the former
ones. Moreover, the covariance estimation also shows evident
fluctuation at the same time. These suggest that the abnormal
failure occurs in the brake pad at that moment. In fact, the testing
result on - site of the brake pad in EMU section showed that the
brake pad has to be replaced at the 17th interval, otherwise, it
would have a negative impact on other components in the braking
system.

From the above analysis, we know that the fixed interval for-
ward - backward smoothing can reduce the estimation error and
improve the estimation accuracy of the brake pad thickness.
And the judgment method of abnormal failure based on distance
judgement law is more consistent with the practical testing re-
sult of the EMU brake pad and the replacement and maintenance.
The above analysis proves that the evaluation method in this pa-
per is reasonable and valid.

7. CONCLUSION

In this paper, the characteristics of the MIRW model are ana-
lyzed and the state space model of the performance degradation
is established based on the MIRW with the consideration of the
uncertainty of the environment and climate and other random
factors during the brake pad’s operation. In order to improve
the estimation accuracy of the EMU brake pad’s performance,
the degradation trend is extracted with the Kalman fixed inter-
val forward - backward smoothing algorithm and then the future
degradation state is predicted and estimated with the Kalman pre-
dictor. Furthermore, AFTR is determined to judge that whether
there is any abnormal failure before reaching the critical failure
threshold. And the reliability of the brake pad is then predicted.
Finally, the observed thickness data of a certain type of the EMU
brake pad proved that it can improve the estimation accuracy of
the thickness. And it is more in line with the actual degrada-
tion situation and provides the theoretical guidance for the EMU
management industry safely and reliably.
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