Comput Syst Sci & Eng (2018) 5: 361-368
© 2018 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

A Dynamic Online Protection
Framework for Android

Applications*

Junfeng Xu'and Linna Zhou

University of International Relationship, 12 PoshangCun, Haidian Area, Beijing, 100091, China

At present, Android is the most popular Operating System (OS) which is widespreadly installed on mobile phones, smart TVs and other wearable devices.
Due to its overwhelming market share, Android attracts the attentions from many attackers. Reverse Engineering technology plays an important role in
the field of Android security, such as cracking applications, malware analysis, software protection, etc. In order to prevent others from obtaining the real
codes and tampering them, this paper designs and implements a online dynamic protection framework by deploying dynamic anti-debugging technology
for Android application with comprehensive utilization of encryption, dynamic loading and shell technologies. Evaluated the performance on different
aspects, the proposed framework can work effectively for Android application protection. Comparing with the static protection scheme, the proposed online
dynamic protection framework can prevent the android applications from cracking and malicious analysis to the utmost

Keywords: Software Protection; Android Security; Encryption

1. INTRODUCTION

Since Google released the open source Linux-based smart phone
operating system (OS) Android on November 5, 2007, Android
was highly favored by businesses and developers for its open
source, openness and customizability. According to the reports
by US-based IT research firm IDC, Android’s market share will
rise from 81.2% in 2015 to 82.6% in 2019[1] in 2019. How-
ever, Android’s popularity also attracts a large number of attack-
ers. According to the China mobile security status report which
is released by security company 360[5], 360 Center for Inter-
net Security cumulatively intercepted 18.74 million new ma-
licious program samples of Android OS in 2015. Due to its
low-cost of development, a large part of the malicious software
are repackaged applications. Repackaging is commonly used by
Android malware developers, by analyzing 1260 malware some
researchers found that there were 86% repackaged applications
in the given samples[9]. In order to implement re-packaging,

*This work is supported by National Natural Science Foundations of China
(Grand No. 61672534, U1536207, U1736117 and U1636115).
TCorresponding Author. E-mail: fibger@foxmail.com

vol 33 no 5 September 2018

the attackers have to firstly reverse analysis the original APK
(Android Package) so that their malicious code can be injected.
On the other hand, reverse analysis plays an important role in
analysis of the Android malware.

Android reverse analysis includes static analysis and dynamic
debugging in accordance with whether the Android program is
performed. Static analysis is a procedure that analysts decom-
pile APK with decompilation tools, then read the code obtained
from decompilation to understand the principle of the applica-
tion. With the rapid development of the Android application
protection technology, static analysis technology was often pow-
erless to cope with code obfuscation, dynamic loading, software
reinforcement and other protection measures [10]. On analy-
sis of 50,000 apps from Google Play and third-party application
market, some researchers found that as of March 2013, there
were 32.8% (16,396 APKs) applications with dynamic loading
behavior[11, 7]. For obtaining runtime information of such ap-
plications, static analysis technology is even more helpless. Sta-
tic analysis is severely limited under a number of circumstances
and the deficits of static analysis gave rise to dynamic analysis
techniques[12]. Many researchers have also given their own dy-

361

namic analysis methods and tools of Android applications, such
as, TaintDroid [13], DroidScope[14], Aurasium[15] etc.

Dynamic debugging is a basic but very important tech-
nology in dynamic analysis of Android applications. Dy-
namic debugging is also called assembly-level debugging cor-
responding to the source-level debugging in phase of software
development[2, 6]. It is a procedure that in the case of only exe-
cutable Android application can be got, analysts run the program,
track and analyze the assembly code, obtain intermediate results
of program’s execution through observing values of the regis-
ter, then grasp behavior of the program, and at last understand
the core algorithm of the program. In Android reverse analy-
sis, especially for analyzing native code, dynamic debugging
has a huge advantage[3]. Dynamic debugging makes software’s
implementation details exposed, to protect Android application
from dynamic debugging, anti-debugging technology emerged.
Anti-debugging can greatly enhance the difficulty of dynamic
debugging software, so as to achieve effective protection for an-
droid applications[4, 8].

This paper present a new protection framework which can ex-
change online keys to encrypt the original APK file. After com-
paring with the existing anti-debugging technologies, this paper
chooses a practical dynamic anti-debugging scheme according
to the character of the proposed online protection framework
for android applications. Deploying the new framework and
the method, the protection system of Android applications can
eliminate the secondary packaging feasibility and extend the life
cycle of the software as long as possible.

The remainder of this paper is organized as follows. In Section
2, the current related protection technologies for anti-debugging
of Android application are described. Section 3 proposes a
new online dynamic framework to prevent Android applications
being decompiled. Some evaluations and assessments are de-
scribed to illustrate the effectiveness of the proposed framework.
Finally, the concluding remarks are given in Section 5.

2. COMMON ANTI-DEBUGGING TECH-
NOLOGIES

To protect Android application from dynamic debugging, de-
velopers can take a variety of anti-debugging techniques and
the following is an introduction to several commonly used anti-
debugging techniques.

2.1 Code obfuscation

Code obfuscation is a technology used to hide the intent of a
program and it can increase the dif-ficulty of reverse analysis.
The traditional code obfuscation technology increases the diffi-
culty of static analysis by replacing some function names with
meaningless words or complicating logic of program under the
premise not changing the function of program. The literature[16]
proposed an integrated protection system SMOG based on ob-
fuscation interpretation, the system confuses the Android exe-
cutable code, and it changes limitations that the traditional code
obfuscation techniques can only anti static analysis. In addition
to the SMOG system, Obfuscator-LLVM (OLLVM) project is

362

A DYNAMIC ONLINE PROTECTION FRAMEWORK FOR ANDROID APPLICATIONS

also of concern[17]. The project focuses on the LLVM com-
piler, it can be used for obfuscating native code (C/C++, etc.),
thus greatly improves the difficulty to reverse native program
that has already been quite difficult. The paper [18] proposes
a practical tool that makes Android application have the ability
of effective self-protection, OLLVM was used in this project.
Moreover, there are other Android application obfuscation tools
such as [19]: Proguard, DashO, Dexguard, DexProtector, Ap-
kProtect, Shield4j, Stringer, Allitori, etc.

2.2 Emulator detection

ro.debuggable’s default value in default.prop of Android emu-
lator is "1’, that means allowing Android to debug any program.
Therefore, using Android emulator can bring a lot of conve-
niences for reversing Android application. The emulator detec-
tion function can eliminate these facilities: when the program is
running in emulator detected, it can be terminated.

The emulator detection utilizes the differences between
the emulator and real Android devices on certain properties.
We can usually use the following methods to determine
whether an Android program is running in the emulator:
detect "/dev/socket/qemud", "/dev/qemu_pipe" these
two channels (only exist in emulator); check whether
goldfish driver is included in "/proc/tty/drivers"
(only exist in emulator); detect unique files of emulator,
such as "/system/lib/libc_malloc_debug_gemu.so",
"/sys/qemu_trace" and so on; detect default phone numbers
of emulator, such as "15555215554" "15555215556", etc.;
whether IDS of the Android device is "000000000000000";
whether IMSI ID of the device is "310260000000000"; detect
network operators, the network operator name in emulator is
"android". However, it is the owned operator name in real
device and it is empty if there is no SIM card in the device.

2.3 Shell

Shell technology is derived from the software protection tech-
nology of Windows and now it is also widely used in Android
applications protection. To reverse analysis interested applica-
tions, attackers have to crack the shell of the reinforced appli-
cation firstly. In shell technology of Android, the object to be
reinforced can be the whole original APK or only the dex file in
APK. The object is encrypted and stored in a specific location
in the shell APK. When the shell APK begins to run, it decrypts
the encrypted portion and gets the original APK or dex file, then
dynamic loading the original application.

As mentioned above, currently, the dynamic loading technol-
ogy has been commonly used in Android software development.
To study the malicious behaviors of malware with dynamic pay-
loads, ZHENG Min, et al. proposed a ptrace based Android
dynamic analysis system with forward execution: DroidTrace.
The system uses ptrace to monitor the system calls of the target
process which is running the dynamic payloads and classifies
the payloads behaviors (such as file access, network connection,
inter-process communication and privilege escalation) through
the system call sequence.

computer systems science & engineering

J. XU AND L. ZHOU

24 Anti-debugging runtime

The current runtime anti-debugging techniques based on the fol-
lowing principles:

24.1 Ptrace

Ptrace is an important system call in Linux and it provides a
mechanism by which a parent process may observe and control
the execution of another process. Many debugging tools such
as IDA, GDB implement dynamic debugging Android program
by means of ptrace. An important feature of ptrace is that a
process can be traced only by one process. So, we can call
ptrace (PTRACE_TRACEME, 0, 0, 0) in our own program to
achieve the effect of simple anti-debugging.

2.4.2 Debugging check

Read the value of TracerPid in ’/proc/[pid]/status’, if it is
'0/, that means the program is not being debugged, otherwise,
the value represents PID of the debugger. Another way is
to read the value of ’/proc/[pid]/wchan’ [20], when it is
’ptrace_stop’, the program is being debugged.

24.3 Time difference

When tracking and debugging Android applications by dynamic
debugging tools such as IDA, GDB, because of the need to step
through the key code, execution time of the program will be far
greater than the time under normal circumstances. So time dif-
ference detection code can be inserted into the key code segment,
if we find that the time difference exceeds a certain threshold,
that means the program is being debugged.

2.4.4 Parent process detection

Examine PPID of the target process, determine whether it is PID
of the android_server, gdb-server, etc.

3. ANDROID APPLICATION PROTEC-
TION FRAMEWORK BASED ON ANTI-
DEBUGGING AND NETWORK KEY

In this paper, we design and implement an Android application
reinforcement scheme based on anti-debugging and network key
with comprehensive utilization of encryption, anti-debugging
and dynamic loading techniques.

The scheme involves three objects [21]: the original
APK to be reinforced, namely Original APK; shell APK,
namely UnShell APK; reinforcing tool, namely ShellTools.
Original APK is reinforced on the remote server of network,
each reinforced APK has its own unique identifier ID, and we
use the KEY corresponding to the ID to encrypt Original APK.
The KEY table maintained in server-side is shown in Fig. 1.

The id field in the table will be written to the dex file of
UnShell APK by Shell Tools. The usable field represents
whether the reinforcement id is available, "1" represents that
it is available and "0" represents not. The key value field is a
random string generated by the class UUID, which is used as the

vol 33 no 5 September 2018

Figure 1 Key table maintained in the server

—

ShellTools

S

T

—
e

Figure 2 Generating flow of the reinforced APK

encryptionkey. When UnShell AP K obtains the reinforcement
key corresponding to its own ID from the Server, if it connects
the database at the Server directly, the username and password
of the database should be written in UnShell AP K, which is
clearly undesirable. To solve this problem, we use WampServer
as the server in our scheme. WampServer is a Windows web de-
velopment environment, it allows us to create web applications
with Apache2, PHP and a MySQL database. UnShell APK
uses PHP as a medium to access the database which can avoid
the exposure problem of username and password of database at
Server.

The generating flow of the reinforced APK is shown
in Fig. 2, specific implementation process is: Compile
UnShell APK and generate the file classes.dex (at the mo-
ment UnShell AP K is not executable for lacking of payload),
namely UnShell APK _dex. Then encryptthe Original APK
by Shell Tools with XOR and RC4 encryption algorithm and
get Original APK _en, the encryption key of RC4 is acquired
from the database at server. The file Original APK _en it-
self and its file size, reinforcement ID will be sequentially
written to the end of the file UnShell APK dex. Next, ac-
cording to the file format requirements of dex file, fix in turn
the dex file size, SHA-1 hashes, adler32 check value (avoid-
ing the Error [INSTALL_FAILED_DEXOPT]). After complet-
ing the repair we get UnShell APK _newdex, then replace
the original UnShell APK _dex with it, delete the original
signature file and resigned, finally we can get the reinforced
APKUnShellAPK _new.

The execution flow of the UnShell APK_new in client is shown
in Fig. 3.

363

—
=
T

Norma.l

Encrypted KEY
Be dynamic debugged

s
—<—_

‘—

Figure 3 Execution flow of the UnShell APK_new

UnShell APK_new firstly starts an anti-debugging process and
the process starts a child process which reads the value of Trac-
erPid in the file "/proc/$PID/status" in a certain interval of
time. If finding that the value is not O, it will kill the current
process. The anti-debugging algorithm is as follows.

Algorithm 1: anti_debug Function
1 getpid() ;

2 if fork() == 0 then

3 ptrace(PTRACE_TRACEME,0,0,0) ;
4 | while True do
5
6

Get pointer fp of the file *proc$PIDstatus’ ;
while Read the contents of the file from fp line
by line do
if Read the contents of "TracerPid’ then
Get the value of TracerPid ;
if TracerPid != 0 then
10 L Debugger detected, kill the process ;

o« 3

11 break ;

12 i sleep(CHECK_TIME) ;

This method should be modified with
__attribute__((constructor))’ so that it can be com-
piled into the section init_array by the compiler, which will
ensure that the method is executed at the very beginning.

After UnShell AP K _new starts the anti-debugging process,
it sends its own reinforcement /D + IMEI + RTIME (re-

/

364

A DYNAMIC ONLINE PROTECTION FRAMEWORK FOR ANDROID APPLICATIONS

quest time) to the Server to request the KEY required in de-
cryption. The server firstly checks that whether the received
IMEI is "000000000000000", if so, that indicates the program
is running in an emulator, server returns a fixed invalid key at
this time. If the IMEI is not "000000000000000", the server
look-up table of its database to find the KEY corresponding
to the ID, after this, encrypts the KEY with MD5 value of
ID+IMEI+ RTIM E using RC4 encryption algorithm, then,
send obtained KEYE to the client. The client makes debugging
detection once again, if it finds that the program is being dynamic
debugged, it will change the value of RTIME to CTIME (cur-
rent time) by a native method. When UnShell AP K _new use
ID+ IMEI 4+ RTIME (actually CTIME) to decrypt KEYE
it gets KEYEE, and it will obtain an invalid Original APK
when decrypting with KEYEE, so UnShell APK _new will
fail to dynamic loading the Original APK. If the running
environment of the program is normal, it will use ID +
IMEI + RTIME to decrypt KEYE to get KEYER, then de-
crypt Original APK _en with KEYER, we can get the right
Original APK,soUnShell AP K _new now can dynamic load-
ing it.

This scheme has two designs of anti-debugging. The first is at
the beginning of the program where the anti-debugging process
starts. The second is when KEYE got, if the check result is
not normal, the application no longer actively kills itself, but
makes the Original AP K obtained by the attacker not invalid
by modifying the decryption parameters, and ultimately fail to
dynamic loading Original AP K. This is mainly based on the
following considerations: when the attackers reverse analysis the
reinforced program, they often regard exiting of the program as
an important feature, narrow range step by step, and finally find
the anti-debugging code, then try to get rid of the anti-debugging
code. If we do not immediately exit the program when being
dynamic debugged detected, it can increase the difficulty that
attackers find the anti-debugging code.

Under normal circumstances, UnShellAPK_new loads its
own components after startup of the context class Applica-
tion. In order to read Original AP K _en and decrypt it before
UnShell AP K _new loads its own components, we need to de-
fine the class ProxyApplication that inherits from the class
Application, complete the following tasks in the class:

1) Separate Original APK_en from the dex file of
UnShell APK _new, and decryptit to get Original APK, and
get so library files in Original APK.

2) To be able to dynamic loading Original APK, in the
method attachBaseContext() (this method is executed prior
to the method onCreate())of the class ProxyApplication,
we need to generate a class loader(DexClassLoader) that can
dynamic loading Original APK, and its parent class loader
should be the class loader of UnShell AP K (the system de-
faultclassloader: PathClassLoader),thenreplace the original
PathClassLoader with DexClassLoader. The main differ-
ence between PathClassLoader and DexClass Loader is that
PathClassLoader canonly load the classes of APK which have
been installed in local device, while DexClass Loader have no
the limit. Specific code are shown as follows:

computer systems science & engineering

J. XU AND L. ZHOU

Object currentActivityThread =
RefInvoke.invokeStaticMethod (
"android.app.ActivityThread", "currentActivityThread",
new Class[] {}, new Object[] {});

String packageName = this.getPackageName ();
ArrayMap mPackages = (ArrayMap)
RefInvoke.getFieldOjbect ("android.app.ActivityThread",
currentActivityThread, "mPackages");

WeakReference wr = (WeakReference) mPackages.get
(packageName);

DexClassLoader dLoader = new DexClassLoader
(apkFileName, odexPath, libPath, (ClassLoader)
RefInvoke.getFieldOjbect ("android.app.Loaded Apk",
wr.get (), "mClassLoader"));

Reflnvoke.setFieldOjbect ("android.app.Loaded Apk",
"mClassLoader", wr.get(), dLoader);

Ref Invoke is a tool class that implements reflection calls.

3) Replace the Application object of UnShell APK _new
with the Application object of Original APK. For this
purpose, we need to write the application class name of
Original APK to the meta — data tag of application tag in
the file AndroidManifest.xml, namely:

< meta — dataandroid : name = "APP_CLASS_NAME"

android : value = "com.demo.originalapk.Original Application"/ >

then in the method onCreate() of UnShell APK_new,
get ApplicationInfo object by the method
this.get PackageManager().get ApplicationInfo() and
further obtain the class name. When we get the class name, we
can execute Original AP K by calling the method onCreate()
in the Original Application object, the key code is as follows:

Application app = (Application) RefInvoke.invokeMethod(
"android.app.LoadedApk", "makeApplication",
loadedApkInfo, new Class[] { boolean.class,
Instrumentation.class }, new Object[] { false, null });
Reflnvoke.setFieldOjbect("android.app.Activity Thread",
"mlInitial Application", currentActivity Thread, app);
app.onCreate();

At this point Original APK begins its normal execution.

4. EVALUATIONS AND ASSESSMENTS OF
THE FRAMEWORK

4.1 Effectiveness of the program’s normal exe-
cution

In order to verify the effectiveness of the proposed scheme,
the experiment is carried out, normal execution of the rein-
forced APK is shown in Fig. 4, the displaying interface is the
MainActivity’s interface of the Original APK.

vol 33 no 5 September 2018

i®! UnShellAPK

This is the original APK!

Figure 4 Normal execution of the reinforced APK

com.demo.jnitool #**%%* TracerPid = 0

com.demo.jnitool **%%% TracerPid = 0

com.demo.jnitool k%% TracerPid = 0

com.demo.jnitool *%%%* TracerPid = 4384

com.demo.jnitool *#*%+* Debugger is found here! Killing 3264
com.demo.jnitool wdkded PIIY[) =0

Figure 5 The value of TracerPid changes before and after gdbserver’s attaching

4.2 Anti-debugging validation

We can verify effectiveness of anti-debugging of the proposed
scheme by using gdbserver to attach UnShell AP K, as shown
in Fig. 5 and Fig. 6. Before attached by gdbserver, the value of
Tracer Pid is "0", application performs normally. While after
the attaching, the value of Tracer Pid becomes 4384, that is the
PID of gdbserver. Then UnShell APK is killed, "kill() = 0"
means that the method is executed successfully. Then search for
the process with PID 3264 in the process list we can see that the
process no longer exists.

4.3 Comparison of reverse test results

43.1 Comparison of APK file structure before and after
reinforcement

The comparison of APK file structure before and after reinforc-
ing is shown in Fig. 7, as what can be seen from the figure,
the reinforced APK file directory includes a lib directory which
doesnotexistin Original AP K ,anti-debugging and decryption
method in this scheme exist in the file libshell.so in form of na-
tive code. It also can be seen that the size of the file classes.dex
changed greatly, this is due to the encrypted Original APK
stored in the file.

rootBgeneric_xB6:sdataslocalstmp # ./gdbserver 5111 ——attach 3264
Attached; pid = 3264

Liztening on port 5111

C

138irootPgeneric_xB6:/dataslocalstmp # ps lgrep 3264
1 irootBgeneric_xB6:sdatarslocalstmp #

Figure 6 Attach to the program with gdbserver

365

(N} (M)
& b
E armeabi
B x86
“-alibshellso
= META-INF &= META-INF
B res B3 res 37,436
n AndroidManifest.xml 1 AndroidManifest.xml 2752 .
m classes.dex | m classes.dex T25500 0
B FESOUrCEs.arsc | m resources.arsc 2432 ..

Figure 7 Comparison of APK file structure before and after reinforcing

.method protected onCreate (Landroid/os/Bundle;)V
.locals 4
.param pl, "savedInstanceState" # Landroid/os/Bundle;
.prologue
.line 16

invoke-super {p0, pl}, Landroid/app/Activity;->onCreate (Landroid/os/Bundle;)V
.line 19
new-instance v0, Landroid/widget/TextView;

invoke-direct {v0, p0}, Landroid/widget/TextView;-><init> (Landroid/content/Context;)V

.line 20
.local v0, "content™:Landroid/widget/TextView:
const-string v1 his is the original APK!"™ |

invoke-virtmal {v0, v1}, Landroid/widget/TextView:->setText(Ljava/lang/CharSequence;)V

Figure 8 Snippet of MainActivity in OriginalAPK

4.3.2 Reverse OriginalAPK

Reverse Original APK by reverse analysis tools we can get
the smali code shown in Fig. 8, from which we can get the
implementation details of Original APK.

4.3.3 Reverse UnShellAPK
Projectinformation obtained about UnShellAPK is shown in Fig.
9.

But when we click on the entry class
com.demo.originalapk.MainActivity, the reverse tool
reports an error of smali file missing, as is shown in Fig. 10.
That is because Original APK exists in Un — Shell APK in
an encrypted form, the reverse tool are not able to resolve the
class information of Original APK correctly.

UnShell APK

'a‘ com.demo.unshellapk

com.demo.originalapk.MainActivity
Ver : 1.0(1) SDK : 19 TargetSDK : 20
5 Activity
A com.demo.originalapk.MainActivity

A com.demo.originalapk.SecondActivity
Receiver
Service
= Uses-Permission
P android.permission./INTERNET
B android.permission.READ_PHOMNE_STATE

Figure 9 Project information of UnShellAPK

366

H:\..\Original APK v| S e \UnshellaPK « |5 B ~[m @~ @~
@ . : -]

A DYNAMIC ONLINE PROTECTION FRAMEWORK FOR ANDROID APPLICATIONS

Android Killer x

File “MainActivity.smali” may has been lost, unable to open!

OK

Figure 10 Reverse tool report file missing error

D-zjdroid—shell-loading.androidmanual{12578>: build the dexfile ok
D/zjdroid-shell-loading.androidmanual{12578>: end build the smali files to dex:
cost time = 78s

D/zjdroid-shell-loading.androidnanual{i12578>: the dexfile data save to =/data-dalf
itasloading.androidmanual/filessdexfile.dex

Figure 11 Dump dex file

4.4 Crack shell test using ZjDroid

4.4.1 Introduction of ZjDroid

ZjDroid is a dynamic reverse analysis module based on the
Xposed framework and reverse analysts can accomplish the fol-
lowing tasks [22] by ZjDroid:

* Dump dex file in memory;

* Memory BackSmali based on Dalvik key pointer;

* Crack reinforced applications effectively;

* Dynamic monitoring sensitive API;

* Dump data in the specified memory area;

* Get dex information loaded by application;

* Get loaded classes information of the specified dex file;
* Dump java heap information in Dalvik;

e Dynamic run lua script in the target process.

4.4.2 Demo of crack shell using ZjDroid

Next we use ZjDroid to crack shell of an application reinforced
by ijiami. Prerequisite of using ZjDroid is that the Android
device has been "rooted", and the Xposed Framework has been
installed, in which the ZjDroid module option is checked. First,
we use the command:

adblogcat — szjdroid — shell —loading.androidmanual

to open the log output platform of ZjDroid, we use the com-
mand:

ambroadcast—acom.zjdroid.invoke——eitarget 12578 —
—escmd'action : dump_dexinfo’

to get Info about currently loaded dex files of the APK, we
can find that there is only one item:

filepath : /data/app/loading.androidmanual — 1.apk

so, we use the command:

am broadcast -a com.zjdroid.invoke —ei target 12578
—es cmd ‘action:backsmali, "dex-path":"/data/app/
loading.androidmanual-1.apk"’

to start dex file dumping, we can get results shown in Fig. 11

Log Info shows "build the dexfile ok", that means we dump
the dex file successfully. Then we export the file dexfile.dex

computer systems science & engineering

J. XU AND L. ZHOU

dexfile_dex2jar.jar

H# android.support.vd
B cn.sharesdk

B com

=8::} loading.androidmanual

- article

B b

B c

- d

-3 view

|1‘| A

-[1] Abouthctivity
m B

i#-[J] BeginningActivity

Figure 12 Open the jar file with JD-GUI

from the directory specified by Log, and convert the dex file to
jar file by the tool dex2jar, open the jar file with JD-GUI, we find
that the file can be opened successfully, as is shown in Fig. 12.
It proves that we have restored the original dex file and cracked
shell of the APK successfully.

443 Crack shell of the APK reinforced by proposed
scheme

The same as the last section, first get Info about currently loaded
dex files of APK, as is shown in Fig. 13. The second item is the
shell part, we need only to dump the first part payload.apk using
the backsmali command, then convert the obtained dexfile.dex
to jar file. The opened jar file is shown in Fig. 14, we can see that
ZjDroid did not extract any valid class files of Original APK.
That’s because Original AP K existsin UnShell APK _new in
the encrypted form and after decryption it is performed in the
way of dynamic loading. So, ZjDroid can’t get any valuable file
of Original AP K, the scheme proposed is proved effective.

5. CONCLUSIONS

In this paper, we studied anti-debugging technology in Android
reverse, proposed and implemented a scheme of reinforcing An-
droid application based on anti-debugging and network key. In
the proposed scheme, the strategies can be improved when find-
ing that the application is being dynamic debugged to achieve a
better effect of anti-debugging, it will be the direction of our fu-

dexfile_dex2jar.jar
android.support
annotation

- EF w4

+-f} accessibilityservice

-f animation

=8 app

|- [7] ActionBarDrawerToggle$l

[J] ActionBarDrawerToggle$ActionBa
|-[J] ActionBarDrawerToggle$ActionBa
1 [¥] ActionBarDrawerToggle$ActionBa
- [J] ActionBarDrawerToggle$ActionBa

Figure 14 Payload dex file dumped by ZjDroid

ture work. In addition, as mentioned by responsible person of a
well-known Android application reinforcement company: "The
most difficult part is that growing and enhancing security policy
conflicts with the user experience." How to protect Android ap-
plication better against dynamic debugging with a smaller affect
to the user experience will be the focus of future research.

REFERENCES

1. H. Bagheri, A. Sadeghi, J. Garcia and S. Malek, COVERT: Com-
positional Analysis of Android Inter-App Permission Leakage,
in IEEE Transactions on Software Engineering, 2015, 41(9):866-
886.

2. Y. Jing, G. J. Ahn, Z. Zhao and H. Hu, Towards Automated
Risk Assessment and Mitigation of Mobile Applications, in IEEE
Transactions on Dependable and Secure Computing, 2015, 5:
571-584.

3. Lei Cen; Christoher S. Gates; Luo Si; Ninghui Li, A Probabilistic
Discriminative Model for Android Malware Detection with De-
compiled Source Code, IEEE Transactions on Dependable and
Secure Computing, 2015.

4. Suleiman Y. Yerima; Sakir Sezer; Igor Muttik, High accuracy
android malware detection using ensemble learning, IET Infor-
mation Security, 2015.

DAz jdroid-shell-com.demo -unzhellapk{ 169> the cmd = dump_dexinfo
Dz jdroid—shell-com.demo.unzhellapk{ ?169>: The DexFile Infomation -2
Dsz jdroid—-shell-com.demo . -.unshellapk{ 716%9>: filepath:-sdatasdata-com.demo.unshellapk/app

payload_odexspayload.apk mCookie:2812656456

Azjdroid-shell-com.demo.unshellapks ?16%>: filepath:-datasappscom.demo.unshellapk—1.ap
mCookie 2012657064

Dz jdroid—-shell-com.demo-.unshellapk{ 16922 End DexFile Infomation

Figure 13 Dexinfo of the reinforced APK

vol 33 no 5 September 2018

367

10.

11.

12.

368

. http://zt.360.cn/1101061855.php?dtid=1101061451&did=11015

93997.

. Jaya Bhattacharjee, Anirban Sengupta, Chandan Mazumdar and

Mridul Sankar Barik, A two-phase quantitative methodology
for enterprise information security risk analysis. International
Journal of Computer Systems Science and Engineering, 2012,
29(1):809-815.

. Shuchih Ernest Chang and Anne Yenching Liu, Information se-

curity in practices: Exploring privacy and trust in computer and
inernet surveillance. International Journal of Computer Systems
Science and Engineering, 2016, 31(2).

. Yifan Chen, Xiang Zhao, Jiuyang Tang, Weiming Zhang and

Haichuan Shang,Taxi-taking recommendation using real-time
trajectories: an online query based approach. International Jour-
nal of Computer Systems Science and Engineering, 2016, 31(2).

. Y. Zhou and X. Jiang, "Dissecting Android Malware: Character-

ization and Evolution," 2012 IEEE Symposium on Security and
Privacy, San Francisco, CA, 2012, pp. 95-109.

Bartel, J. Klein, M. Monperrus and Y. Le Traon, "Static Analy-
sis for Extracting Permission Checks of a Large Scale Frame-
work: The Challenges and Solutions for Analyzing Android,"
IEEE Transactions on Software Engineering, 2014, 40(6):617-
632.

M. Zheng, M. Sun and J. C. S. Lui, "DroidTrace: A ptrace based
Android dynamic analysis system with forward execution capa-
bility," 2014 International Wireless Communications and Mobile
Computing Conference (IWCMC), Nicosia, 2014, pp. 128-133.
J. Schutte, R. Fedler and D. Titze, "ConDroid: Targeted Dynamic
Analysis of Android Applications," 2015 IEEE 29th International
Conference on Advanced Information Networking and Applica-
tions, Gwangiu, 2015, pp. 571-578.

A DYNAMIC ONLINE PROTECTION FRAMEWORK FOR ANDROID APPLICATIONS

13.

14.

17.
18.

19.

20.

21.
22.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taint-droid: an information-flow tracking sys-
tem for realtime privacy monitoring on smartphones, In Proceed-
ings of the 9th USENIX conference on Operating systems design
and implementation, OSDI’10, 2010.

L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android malware
analysis, In Proceedings of USENIX Security’12, 2012.

. R. Xu, H. Sadi, and R. Anderson. Aurasium: practical policy

enforcement for android applications, In Proceedings of USENIX
Security 2012, 2012.

. J. Shu, J. Li, Y. Zhang and D. Gu, Android App Protection via

Interpretation Obfuscation, Dependable, Autonomic and Secure
Computing (DASC), 2014 IEEE 12th International Conference
on, Dalian, 2014, pp. 63-68.

https://github.com/obfuscator-1lvm.

M. Protsenko, S. Kreuter and T. Muller, Dynamic Self-Protection
and Tamperproofing for Android Apps Using Native Code, Avail-
ability, Reliability and Security (ARES), 2015 10th International
Conference on, Toulouse, 2015, pp. 129-138.
http://fuzion24.github.io/android/obfuscation/ndk/llvm/o-
1lvm/2014/07/27/android-obfuscation-o-1lvm-ndk/

J. Xu, L. Zhang, D. Lin and Y. Mao, Recommendable Schemes of
Anti-decompilation for Android Applications, 2015 Ninth Inter-
national Conference on Frontier of Computer Science and Tech-
nology, Dalian, 2015, pp. 184-190.
http://blog.csdn.net/jiangwei0910410003/article/details/48415225
http://bbs.pediy.com/showthread.php?p=1303746.

computer systems science & engineering

