
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 3, 385–396
DOI: 10.32604/iasc.2020.013915

 abayomiallia@funaab.edu.ng CONTACT Abayomi-Alli Adebayo

Genetic Algorithm and Tabu Search Memory with Course Sandwiching
(GATS_CS) for University Examination Timetabling

Abayomi-Alli A.1, Misra S.2,3, Fernández-Sanz L.4, Abayomi-Alli O.2,*,
and Edun A. R.1
1Department of Computer Science, Federal University of Agriculture, Abeokuta, Nigeria.
2Department of Electrical and Information Engineering, Covenant University , Ota, Nigeria.
3Department of Computer Engineering, Atilim University , Ankara, Turkey.
4Department of Computer Science, University of Alcalá, Spain.

KEY WORDS: Genetic Algor ithm (GA), Tabu search, Timetabling, Sandwiching, Optimization.

1 INTRODUCTION
TIMETABLING problems are complicated

constraint satisfaction problems said to be Non-
Deterministic Polynomial-time (NP) hard. Many

Institutions of higher learning use timetables to
schedule classes, lectures, and examinations to assign

appropriate venues and timeslots for such events in

order to optimize available resources. Institutions of
higher learning like Universities are generally

concerned with a large number of examination courses
to be allocated to fewer examination halls/venues

within a short period of the exam. This often leads to
poorly designed timetables that are expensive

considering the time and other resources expended in

developing them.
“Timetabling is the allocation, subject to

constraints, of given resources to objects being placed
in space and time, to satisfy as nearly as possible a set

of desirable objectives” (Wren, 1996). The main
objective when designing an examination timetable is

to develop an optimized most appropriate schedule for

a set of examinations that satisfies pre-defined

constraints (Arogundade, Akinwale, and Aweda,
2010). Hence, the construction of a University

examination timetable is a complex problem due to
the high number of constraints required, large class

sizes, venue capacity, and their availability, etc.

Burke, Kingston and De Werra (2004) defined the
timetabling problem as “A timetabling problem is a

problem with four parameters: T, a finite set of times;
R, a finite set of resources; M, a finite set of meetings;

and C, a finite set of constraints”. It has created the
challenge of assigning venues and time slots to events

to satisfy the constraints maximally. This has been an
interesting research area in operation research and

artificial intelligence for the last decade (Bargetto,

Della and Salassa, 2016).
University timetabling is the most widely studied

among other timetabling problems since it is a
required and time-consuming task which occurs

regularly per semester, be it lectures, examinations,
seminar or faculty scheduling. Timetabling problems

in academic institutions is however broadly divided

ABSTRACT

University timetable scheduling is a complicated constraint problem because
educational institutions use timetables to maximize and optimize scarce
resources, such as time and space. In this paper, an examination timetable
system using Genetic Algorithm and Tabu Search memory with course
sandwiching (GAT_CS), was developed for a large public University. The concept
of Genetic Algorithm with Selection and Evaluation was implemented while the
memory properties of Tabu Search and course sandwiching replaced Crossover
and Mutation. The result showed that GAT_CS had hall allocation accuracies of
96.07% and 99.02%, unallocated score of 3.93% and 0.98% for first and second
semesters, respectively. It also automatically sandwiched (scheduled) multiple
examinations into single halls with a simulation time in the range of 20-29.5
seconds. The GAT_CS outperformed previous related works on the same
timetable dataset. It could, however, be improved to reduce clashes,
duplications, multiple examinations and to accommodate more system-defined
constraints.

386 ABAYOMI-ALLI A. ET AL.

into two: (i) examination and (ii) course scheduling.

While the examination scheduling problem is
concerned with assigning exams to venues over a

certain period, the time is fixed within a week for
course scheduling.

The constraints to be satisfied in timetabling are
usually of two types: Hard and Soft Constraints. Hard

constraints must be met; they are also called

unavoidable constraints while soft constraints may not
be satisfied but it is preferably not to be violated.

However, meeting them is essential to having a good
and feasible timetable (Van Staereling, 2012).

Constraints’ affecting University’s examination
timetable include:

1. The population of students (class domicile);
2. Incapacitated exam venues;

3. The limited time frame for examination per day

(timeslots);
4. Not assigning exams with common resources

simultaneously.
This research study is concerned with the

allocation of semester examinations taken by student
populations to limited available examination venues

within specific time slots. This is a problem that no

efficient algorithm has been able to solve optimally
(Esraa and Ghada, 2016) and it occurs because:

1. There are challenges of insufficient resources
such as exam venues (number and capacity) and

timeslots to carter for the entire student
population;

2. Satisfying all the constraints is becoming

increasingly difficult;
3. There are very few venues/halls available during

the short period of examination.
THIS study aims to develop an automatic

examination timetable system for a University that
will enhance course allocation to examination

halls/venues and minimizes course un-allocation,
clashes, duplication and multiple examinations in the

University timetable. This system is expected to meet

all the timetable constraints (soft and hard) optimally
through a combination of Genetic Algorithm (GA) and

Tabu Search (TS) memory that is enhanced with
course sandwiching. The motivation for the study is

the present method of manual scheduling of
examination timetabling which is becoming more

cumbersome and expensive as the University is

growing.
THE rest of the paper is organized as follows:

Section 2 presents a brief literature review on the
subject area and previous related study, while Section

3 represents the research approach and methodology
employed in the development of the automatic

University examination timetabling system. Section 4

discusses the results obtained while the paper
concludes with directions for future studies in Section

5.

2 LITERATURE REVIEW
A brief literature review and closely related works

are presented in this section.

2.1 Timetabling Problems
Timetabling problems are complicated Scheduling

problems which belong to a broad class of

combinational optimization problems aimed at finding

an optimal matching of tasks to different sets of
resources (Anisha, Ganapathy, Harshita and Rishabh,

2015); (Mousavi and Zandieh, 2016); (Sadhasivam
and Thangaraj, 2016) and (Srivastav and Agrawal,

2017). Merlot, Boland, Hughes, and Stuckey (2003)
developed a “hybrid approach for solving the final

examination timetabling problem that generates an
initial feasible timetable using constraint programming

and then applied simulated annealing with hill

climbing to obtain a better solution”.
TS approach was explored by Gaspero and Schaerf

(2000) using graph coloring-based heuristics. Wilke
and Ostler (2008) considered four algorithms, namely:

TS, Simulated Annealing, GA, and Branch & Bound
for solving a typical school timetable problem and

evaluated their performance. Results showed that

Simulated Annealing gave the best trade-off between
accuracy and execution time while TS, GA, Branch &

Bound were next in performance.
Ruey-Maw and Hsiao-Fang (2013) employed

constriction Particle Swarm Optimization (PSO) with
a local search for the timetable problem. Burke and

Bykov (2016) developed an adaptive method that was

general and fast to arrange heuristic for ordering the
next scheduled examinations. However,

methodologies such as GAs, evolutionary techniques,
and others have been implemented with mixed success

(Anuja, Priyanka, Shruti, Sonali, Rupal, and Dinesh,
2014). Unfortunately, many of the studies in the

research area have been carried out with artificial data
sets or on highly simplified real-world case studies

(Mccollum, 2006).

In developing countries especially sub-Saharan
African countries, first-year students (100 level) may

be up to 1500 students in a course, thus making the
timetabling problem even more challenging.

2.2 The Current Examination Timetabling
System in the University under Study

A public University in Nigeria is used as the case
study for this paper as the present method of

examination timetabling as described by Arogundade,
Akinwale and Aweda (2010) as a grid with days of the

week, venues and time periods on different axes. This

approach facilitates visual checking for conflicts in the
timetable schedule and allows for modification until

the timetable is adjudged as satisfactory. However, it
is a very cumbersome and time-consuming exercise

which often leaves several constraints unsatisfied. As
the University is growing larger, the final exam

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 387

timetable is preceded by three to four drafts that are

released weeks before the start of the semester
examination. Students and Departments are required

to check the draft timetables for issues like non-
allocation, clashes, duplication and/or multiple courses

on the timetable. This takes about two to three weeks
and after every correction, an updated version is sent

to the Departments for review until the start of the

semester examination. Hence, the present approach is
no longer sustainable as it can only suffice for small

inputs. In this study, an automatic University
examination timetabling system is proposed based on

Genetic Algorithm and Tabu Search Memory with
Course Sandwiching (GATS_CS).

2.3 Genetic Algorithm
Hamed, Kuan, and Adnan (2016) define a Genetic

Algorithm (GA) as a powerful search technique that

imitates the biological evolution and natural selection
process. It has been applied to solve complex

problems with large spaces in optimization (Bull,
Martin and Beasley, 1993; Dipesh, Hiral, Mohammed,

and Renuka, 2015). GA is a procedure used to
discover the best solutions to search problems using

the principles of evolutionary biology such as natural

selection, mutation, genetic inheritance, and sexual
reproduction. GA structure is governed by import laws

of the theory of evolution of species and concreteness
in two fundamental concepts:

1. Selection;
2. Reproduction (Jose, 2008).

The major problem in optimization is how to

satisfy constraints, in a problem that is defined by
several solutions. The GA determines the overall

solution or one that is acceptable within the time
defined for the algorithm (Jose, 2008). GA is

implemented basically with five components as stated
by Gen, Cheng, and Lin (2008):

1. A genetic representation of potential

solutions to the problem;
2. A way to create a population (an initial set of

potential solutions);
3. An evaluation function rating solution in

terms of their fitness;
4. Genetic operators that alter the genetic

composition of offspring (crossover,
mutation, selection, etc.);

5. Parameter values that genetic algorithm uses

(population size, probabilities of applying
genetic operators, etc.).

2.4 TABU Search
Glover (1986) proposed an approach called Tabu

Search (TS). TS was proposed as an alternative local
search algorithm to solve several combinatorial

optimization problems. The solution set must be finite

or countable infinite (Michiels, Aarts and Korst, 2007)
as many of such problems are expressed as a search

for a specific permutation (Russell, Chiang, and

Zepeda, 2008). Solution space of combinatorial

optimization problems can typically be represented by
sequences, permutations, graphs and partitions

(Michiels, Aarts and Korst, 2007). Gendreau (2002)
stated that the basic principle of TS “Is to pursue local

search whenever it encounters a local optimum by
allowing non-improving moves. Moving back to

previously visited solutions is prevented using

memories called Tabu lists that record the recent
history of the search”. Thus, it is prevented from

revisiting the previous solution by tracking them in
memory. TS has several memory types such as Short-

term and Long-term (Harun, Engin, and Burak, 2008),
Recency-based (Glover and Laguna, 1997),

Frequency-based (Dréo, Petrowski, Siarry, and
Taillard, 2006) memories, etc. It uses a Tabu list to

track Tabu moves or attributes of moves. Short Tabu

lists may not prevent cycling, thereby resulting in
information loss while long Tabu lists may

excessively prevent a neighborhood such that moves
are limited to some extent (Harun, Engin, and Burak,

2008).

3 RESEARCH METHODOLOGY
THIS section represents the research methodology

employed in the development of GAT_CS, which

includes: The Design objectives, Requirements
gathering, System constraints, Design approach,

System Parameters, and the primary data source.

3.1 The Design Objective: Exam Timetable
The objective of this study is to design and

implement an examination timetable system for a
public University in Nigeria. All courses are assigned

to a hall with enough seats to accommodate the course
registered students; this will address the hall

congestion issue. Course allocation and hall
scheduling are optimized based on the constraints

presented to the system.
The following are the components of the timetable:

1. The course code;

2. Total number of registered students;
3. The hall assigned to each course;

4. The examination session (morning or
afternoon);

5. The day scheduled for each exam.

3.2 Requirements Gathering
During the system design, the Timetable and

Examination Committee of the University was
approached for necessary information and answers

were promptly provided with supporting documents.
Some of the details required were:

1. The number of halls in the University;
2. The capacity of each hall in the University;

3. The total number of courses to be examined

in the semester exam;
4. The number of sessions per day;

388 ABAYOMI-ALLI A. ET AL.

5. The number of weeks for examination.

3.3 Constraints
As mentioned in the preceding section, there is a

need to consider some factors that must be fulfilled at
all cost. These factors are known as hard constraints.

Hard constraints play a major role in arriving at an
optimized timetable. The other constraints to be

considered are soft constraints which do not

necessarily affect the quality of the timetable but has
considerable influence on the output of the system.

They are also known as optional constraints.

 Hard Constraints (Compulsory) 3.3.1
The following hard constraints were modelled by

GAT_CS:

1. Exam Population (registered students for the
exam) must be less than the hall capacity;

2. Practical should be scheduled to hold in its
corresponding hall;

3. One hall must not be used more than twice in
a day.

4. Students in one level should not have more

than one exam at a time (exam session).

 Soft Constraints (Optional) 3.3.2
For the soft constraint students in one level should

not have more than two (2) theory-based examinations

in one day.

3.4 Design Approach
The proposed University timetable system is a

combination of modified Genetic Algorithm (GA),

Tabu Search (TS) memory and course sandwiching to
enhance hall optimization and course allocation

accuracy. The developed timetable examination

system is named GATS_CS. GATS_CS is expected to
improve the performance and time required to

discover the optimum solution in an automatic
University timetable.

Direct encoding was used with each chromosome
representing a candidate solution (i.e. a Timetable).

The chromosome is a list that represents the number of

courses to be scheduled (e.g. C); while an element in
the list corresponds to the course examination to be

scheduled (e.g. between 1 and C). For each value
(gene) in the chromosome, the index of that value

corresponds to the hall encoded with the number.
Thus, for a chromosome [4, 8, 9, 7, 12, 6, 15], exam 4

will take place at hall 1, exam 8 at hall 2 and exam 12

at hall 5, respectively.
The Concepts of Genetic Algorithm i.e. Selection

and Evaluation was implemented while the memory
properties of TS (Taburization) and course

sandwiching replaced Crossover and Mutation
Operators. The algorithm required for the developed

system is presented in the sub-sections below.

3.4.1 Selection Phase
A specific number of timetable solutions are

randomly generated as specified at the beginning of
the execution. After the initialization of the

population, the fitness of each timetable is evaluated

using a simple objective or fitness function to
ascertain the viability of the candidate timetable. A

simple fitness function based majorly on the hard
constraints is evaluated to prevent complex

calculations and reduce execution time. The timetable
with the least contradiction (i.e. that best satisfies the

constraints) is selected as the best fit and is moved to

the next phase of the algorithm. Fitness function f(𝑋1)

is defined in Equation 1 for i=1… C.

 f(𝑋1) =
𝐸𝑥𝑎𝑚 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑛1)

Hall capacity (ℎ𝑎)
∗ 100 (1)

where 𝑋1 : First constraint; n i: the population of the

exam at index i and ℎ𝑎 : The capacity of the hall

assigned to an exam at index i.

 f(𝑋2) = (Pj: Laba) j = 1… L (2)

where 𝑋2 : Second constraint; Pj: Practical exam at
index j; Laba: Corresponding Laboratory and L: The

total number of Labs.

After the best-fit chromosome (Timetable) has
been selected, it is then split into two memories: Short

Tabu and Long Tabu (Tabu Lists) as described in
(Harun, Engin, and Burak, 2008). The ‘Tabus’ are also

used to a perform memory function. This splitting is
done by calculating the degree of fitness of individual

allocation (i.e. EXAM: HALL); the ones that perfectly

fit (i.e. 100% fitness) are placed in the ‘Long Tabu’
restricting them from further changes while the ones

that do not fit perfectly are placed in the ‘Short Tabu’
for further evaluation and optimization. The nature of

both ‘Tabus’ at the end of the selection phase is shown
below:

TabuListShort = [exam 1, exam 2 … exam t]

TabuListLong = [EXAM 1: HALL A, EXAM 2:
HALL B … EXAM 3: HALL Z]

The following are the steps required in the
selection phase:

Step 1: Generate a random population of courses
(Chromosomes);

Step 2: Evaluate the Total fitness of the population
based on the individual fitness of each course;

Fitness of each exam =
𝐻𝑎𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Exam Population
∗ 100 (3)

Condition: Fitness =100%

Step 3: Select the population based on its Total fitness.
Find the selection algorithm below:

Input: i, k, x, e, E, H
Output: popFitness, BestFitPop

Start

1. Select 𝑥 ← 𝐼 [1…𝑛]𝑐
∈ ℤ+

2. for(1 ≤ 𝑖 ≤ 𝑁)

3. Compute 𝑒𝑖 ∈ 𝐿: 𝑖 ∈ [𝐸, 𝐻]

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 389

4. for (1 ≤ 𝑘 ≤ 𝐻)

5. Compute 𝑓(𝑥) ← 𝑖: 𝑘 ∀ (𝑖, 𝑘) ∈ [𝐸,𝐻]
6. While (𝑖 = 𝑘)

7. Compute 𝑓(𝑥) ← 𝐸[𝑖] + 𝐻[𝑘]
8. Compute 𝐸[𝑖] ← 𝐻[𝑘]
9. Compute 𝐸[𝑖] ← 𝑓(𝑥)

10. Compute 𝑓(𝑥) ← 𝐻[𝑘]
11. for (1 ≤ 𝑒𝑖 ≤ 𝐸(𝑛))

12. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑖 ∈
[𝐸, 𝐻]

13. If (Fitness= 100%) ∋ 𝐸[𝑖]:𝐻[𝑖]∀ 𝑖 ∈ [𝐸, 𝐻]
14. popFitness ← popFitness

15. Else if

16. popFitness ← popFitness+1 ∋ 𝐸[𝑖] <
𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻]

17. Else if
18. popFitness> 100% ∋ 𝐸[𝑖] > 𝐻[𝑖] ∀ 𝑖 ∈

[𝐸, 𝐻]

19. popFitness← BestFitpop

20. Else
21. BestFitpop← BestFitpop ∋ 𝐸[𝑖] ←

𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻]
End

3.4.2 Optimization Phase
The best solution (that has been split into short and

long Tabu) from the selection phase is adjusted

(mutated) to ensure the solution produced is the most

optimal and the values in the short Tabu form the next
population. The halls are re-allocated such that the

exam population fits perfectly or slightly above
perfect as specified at the beginning of the execution

(i.e. 100% or 120%). This phase is divided into two
categories: (1) Taburization and (2) Optimization.

Taburization: This is the process involved in placing

the allocations in its corresponding ‘Tabu’. The
following are the steps required in the Taburization

phase:
Step 1: After selecting the population based on total

fitness, the individual fitness of the allocated exams is
used to place each chromosome (Courses) into its

Corresponding ‘Tabu’.

Step 2: The chromosomes that are optimal (i.e. meet
up with the fitness condition) are placed in the Long

Tabu List while those that are otherwise are put in the
Short Tabu List. The Long Tabu List has the capacity

to hold the courses for a long time while the Short
Tabu is a memory structure to keep values stored in it

for a temporary period.
Find the Taburization algorithm below:

Input: 𝐸[𝑖]: 𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻]
Output 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿

 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆
Initialize: LongTabu [] ← BestFitpop ← BestFitpop

While 𝑛 = 𝐿 + 𝑆 ≡ 𝐸[𝑖 + 𝑗]: 𝐻[𝑖 + 𝑗] ∈ (𝐿 ∪ 𝑆) ⊂
𝑛∀ (𝐿, 𝑆) ∈ 𝑛

1. for (1 ≤ 𝑖 ≤ 𝐸(𝑛))

2. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑗 ∈
[𝐸, 𝐻]

3. If (100% ≤ popFitness ≤ 120%) ∋
𝐸[𝑖]: 𝐻[𝑖]∀ 𝑖 ∈ [𝐸, 𝐻]

4. LongTabu [] ← 𝐸[𝑖]∀ 𝑖 = 1 to 𝐿

5. Else

6. ShortTabu [] ← 𝐸[𝑗] ∀ 𝑗 = 1 to 𝑆

End While;
Optimization: This is introduced by adjusting the

fitness value such that much more allocations are done
in the next generation. The following are the steps

required in the selection phase:

Step 1: Adjust the fitness condition to allow more
optimal allocations (increase or decrease it);

Step 2: Randomly allocate halls to exams;
Step 3: Check if allocation meets up with the

Optimal Condition (Satisfies the fitness
condition);

Step 4: Augment the Long Tabu List with

Optimal solutions from Step 3.
Only the Chromosomes in the Short Tabu List are

used at this stage because they have not met with the
fitness conditions. The optimization algorithm is

below:
Where U is the number of times the hall can be used.

Input: 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆

Output: 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿, 𝑈

1. While 𝐸[𝑖 + 𝑗]: 𝐻[𝑖 + 𝑗] ∈ (𝐿 ∪ 𝑆) ⊂
𝐻[𝑘]:𝑈

2. for(1 ≤ 𝑒𝑗 ≤ 𝐸(𝑛)

3. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑗 ∈
[𝐸, 𝐻]

4. If (popFitness > 120%)

5. LongTabu [] ← 𝐸[𝑗]
6. Else

7. ShortTabu [] ← 𝐸[𝑗]

8. End While;

3.4.3 Fine tuning Phase
The solution produced in the optimization is now

separated into the number of days required, as

specified as one of the parameters at the beginning of
execution. Some other examinations that need to be

sandwiched (i.e. a situation where more than one hall
is allocated for an examination when exam population

size is far higher than the capacity of the largest hall)
are also considered. This phase is also divided into

two parts, Sandwiching (Optional) and Separating into

Days.
Sandwiching: This is the term used to describe the

merging of two or more examinations to a venue such
that a class population perfectly fits into the hall

capacity. This process was introduced because some
courses weren’t assigned in the timetable since the

system couldn’t find a venue that fits the class size

perfectly. Sandwiching is a major contribution of this
paper, as observed from previous reviews. The ability

of the timetable system to sandwich several courses

390 ABAYOMI-ALLI A. ET AL.

into a single examination hall increases the course

allocation accuracy. The following are the steps
required in the sandwiching phase:

Step 1: If there are still courses in the Short Tabu
List, merge more than one exam for unused halls;

Step 2: Repeat Step1 until all courses in Short
Tabu has been allocated to a Hall. The

sandwiching algorithm is below:

Input: 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆
Output: 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿

1. 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ← 𝐿∀ 𝑖 ∈ [𝐸, 𝐻]
2. 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ← 𝑆 ∀ 𝑗 ∈ [𝐸, 𝐻]
3. While, unused hall, 𝑈 ← 𝐻[𝑘] and

𝐶𝑎𝑝𝐻[𝑘] ⊂ 𝑈 ∋ 𝐸[𝑗] ≡ 𝑈 − 𝐶𝑎𝑝𝐻[𝑘] ∀ 𝑘 ∈
[𝐻]

4. LongTabu [] ← 𝐸[𝑗]
5. End While;

Separating course allocations into days: This is

done by separating each allocated exam into days
(Mondays-Fridays) with morning and afternoon

sessions for three weeks (15 days) considering our
case study as implemented below:

1. Let 𝐷𝑇 ← ∑ 𝐷𝑖
𝑛
𝑖 for 𝑖 ≤ 5

2. Suppose ∃ 𝐷1 to 𝐷5 ∈ 𝐷𝑇

3. Then [𝐷1: Monday, 𝐷2: Tuesday, 𝐷3: Wednesday,

𝐷4 : Thursday, 𝐷5: Friday]
4. Compute 𝐶𝑇 ← ∑ 𝐶𝑖

𝑛
𝑖

5. Since 𝐴𝑣 ← 𝐶𝑇/𝐷𝑇 {Where 𝐶𝑖 represents each
course and 𝐶𝑇 represents the total number of

courses}

6. Then [𝐶𝑖: 𝐷𝑖] ≡ [𝐶1: 𝐷1,𝐶2: 𝐷2, . . . , 𝐶𝑛: 𝐷𝑛] for

𝑖 ≤ 𝑛

3.5 Parameters and Steps for Proposed System
The system will require certain inputs at the

beginning of execution which will guide its
operations. These inputs are the parameters of the

system, and they include:
1. Total Number of Examination Papers;

2. Total Number of Halls;

3. The number of Days for an exam schedule.
The steps for the proposed design are as follows:

Step 1: Generate initial population;
Step 2: Evaluate the fitness of chromosomes in the

population (based on hall allocations);
Step 3: Select the Best-Fit chromosome for

Taburization and Optimization;
Step 3a: Taburization: split Best-Fit chromosome

and store in two TabuLists: Short and Long

TabuList;
Step 3b: Optimization: for values in the Short

TabuList allocate hall that optimally fits the Exam,
and augments Long TabuList with the latest

allocation;
Step 4: For Exam population that far exceeds the

maximum capacity of the hall, Sandwich Exams and

augment Long TabuList with the latest allocation;
Step 5: End when the Termination condition is met.

The flowchart for University timetable system

based on Genetic algorithm, Tabu search and Course
sandwiching (GATS_CS) is presented in Figure 1.

3.6 Data Source
The dataset for the examination timetabling was

obtained from a large public University in Nigeria
with 10 Colleges, 41 academic Departments, and

about 16,000 full-time students offering several

undergraduate academic programs. Examinations are
written for three weeks (Mondays-Fridays), each day

having morning and afternoon sessions while the
timetable is done manually using a word processor.

The dataset presented here is the undergraduate
written examinations for the 2015/2016 academic

session and it excludes the computer-based (CBT)

exams. The Timetable and Examination Committee of
the University provided the dataset and the general

parameters are shown in Table 1. It should be noted
that the sitting capacities represent the number of

students that can write an exam in the hall under ideal
examination conditions, it does not represent the

actual sitting capacity of the hall.

Table 1. The University Examination Timetable Parameters.

Parameter

First

Semester

2015/2016

Second

Semester

2015/2016

No. of Ex am Halls 39 39

Total Ex am Sitting Capacity

of Halls

4,988 4,988

No of Academic

Departments

41 41

Total No. of Courses

Ex amined

483 408

No. of Students Writing the

Courses

126,983 124,880

4 IMPLEMENTATION AND VALIDATION OF
GATS_CS

IN this section, the GAT_CS timetabling system

was implemented based on the proposed methods and
algorithms while the system performance was

validated and benchmarked with previous studies.

4.1 Implementation
This section provides the results obtained after

implementing GATS_CS. As specified above the
parameters of the algorithm are:

1. The Total Number of Examination Papers;
2. The Total Number of Halls;

3. The number of Days for an exam schedule.

Parameters 1 and 2 are entered into the system
automatically through a file created for the program

and read at the start of execution, this is known as
“Initialize Population from file”. After the second

generation, it was realized that some courses have not
been allocated because their fitness does not meet the

value specified in the program. The concept of

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 391

Figure 1. Flowchart for University timetable system based on Genetic algorithm, Tabu search and Course sandwiching (GATS_CS).

sandwiching is then applied which hasn’t been
realized before in previous studies, hence the low

performance of such systems in allocating courses to
halls.

Sandwiching involves scheduling two or more
examinations to hold in one hall to meet up with the

fitness condition specified. This is necessary for

situations when an examination has been allocated to a
hall, but the space is big enough to accommodate

other examinations. Thus, more than one examination
will be sandwiched (allocated) to hold in a single hall.

For example, an examination hall (MP01) with exam
capacity of 400 will accommodate five examinations

concurrently namely: MCE510, ECO412, CVE308,

FRM508 and FSM410 with 40, 100, 40, 60 and 90
students, respectively.

After sandwiching has been implemented, the
course allocations (which are now in the Long Tabu

List) are now classified into fifteen pots
(corresponding to the number of days provided as

input at the beginning of execution) for onward

separation into days. The classification is done to
simplify separation into days.

4.2 Validation
The following metrics were used to validate the

performance of GATS_CS:
Allocation Accuracy (Acc): Total number of courses

successfully allocated to an examination venue.

392 ABAYOMI-ALLI A. ET AL.

 𝐴𝑐𝑐 =
Total number of allocations

Total number of courses
∗ 100 (4)

Un-allocation (UA): Total number of courses not
successfully allocated to an examination venue.

 𝑈𝐴 =
Total number of Un−allocations

Total number of courses
∗ 100 (5)

Clash Courses (CC): A condition whereby two courses

are allocated to the same venue at the same time.

 𝐶𝐶 =
Total number of Clashes

Total number of courses
∗ 100 (6)

Duplicated Courses (DC): A condition whereby a

course appears more than once on the timetable.

 𝐷𝐶 =
Total number of Duplicated Courses

Total number of courses
∗ 100 (7)

Multiple exams (ME): A condition whereby a class

has more than one exam at the same time in different
venues.

 𝑀𝐸 =
Total number of multiple courses

Total number of courses
∗ 100 (8)

Table 2 shows simulation experiments for
GATS_CS with an average of 10 independent runs

and different iterations. The time of the first solution

represents time taken by GATS_CS to represent the
first solution, while the time of best solution is the

time taken to obtain the optimal solution. Average
time in seconds is the mean of both first and best time,

which for 10 runs was between 22.5-29.5 and 20-26
seconds in first and second semesters, respectively.

From Table 3, results show that GATS_CS

provided optimal solutions which were considerably
better than those obtained in the worst solutions .

Allocation accuracy increased while un-allocation,
clashes, duplication, and multiple exams were reduced

after subsequent runs. However, observation shows
that the first solutions were not the worst solution in

some cases. Figures 2 and 3 show the deviation due to
improvements between worst and best solutions

during simulation experiments. It was observed that

apart from the increase in course allocation, reduction
of clashing courses was more pronounced than others

with -11.80 and -11.52 in first and second semesters,
respectively.

Table 2. GATS_CS Simulation Time with First, Best and Average Time in 2015/2016 Examinations.

Runs

First Semester Simulations Second Semester Simulations

Iterations

Time of

first

solution

(secs)

Time of

best

solution

(secs)

Avg.

Time

(secs)

Iterations

Time of

first

solution

(secs)

Time of

best

solution

(secs)

Avg.

Time

(secs)

1 22530 14 45 29.5 26459 12 40 26

2 26759 8 45 26.5 25963 13 38 25.5

3 28241 5 41 23 26344 9 34 21.5

4 22857 12 38 25 18321 7 33 20

5 27266 11 40 25.5 22418 7 38 22.5

6 22449 9 36 22.5 20011 11 39 25

7 19520 6 46 26 18375 11 29 20

8 21580 15 31 23 18909 7 37 22

9 25202 9 42 25.5 27439 6 36 21

10 28345 8 45 26.5 22863 8 35 21.5

Table 3. GATS_CS Worst and Best Solutions in 2015/2016 Examination Timetable.

Conditions

First Semester Second Semester

Worst solution Best solution Worst solution
Best

solution

% # % # % # %

Allocation 399 82.61 464 96.07 365 89.46 404 99.02

Un-allocation 45 9.32 19 3.93 26 6.37 4 0.98

Clashes 67 13.87 10 2.07 53 12.99 6 1.47

Duplication 21 4.35 13 2.69 16 3.92 8 1.96

Multiple Ex ams 16 3.31 11 2.28 9 2.21 4 0.98

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 393

Figure 2. GATS_CS Worst and Best Solutions with the Improvement Obtained (Deviation) in First Semester Timetable.

Figure 3. GATS_CS Worst and Best Solutions with the Improvement Obtained (Deviation) in Second Semester Timetable .

From the results, it was observed that GATS_CS

successfully allocated 96.07% and 99.02% of the total
courses while 3.93% and 0.98% courses were un-

allocated in first and second semesters, respectively as

shown in Table 4. Table 5 represents the performance
of the present manual timetable system in the

University with the results close to those obtained
from GAT_CS especially with respect to course

allocation and un-allocation. However, GATS_CS
clearly outperforms the manual timetables in reducing

course clashes, duplications, and multiple
examinations considerably. Worth mentioning is the

result of the manual timetable in Table 5 which is the

final draft by the Timetable and Examination
Committee after series of reviews from students and

academic Departments three to four weeks before the
commencement of examination.

Therefore, the results in Table 5 is not particularly
impressive considering the cost in terms of time and

the human resources expended to achieve it.

The performance of GATS_CS was also
benchmarked with three other timetable systems

previously implemented. They are Abayomi-Alli

(2019) Particle Swarm Optimization with Local
Search (PSO_LS), Genetic Algorithm (GA) closely

related to Arogundade, et al. (2010) and Lawal et al.

(2014) University Examination Timetabling Using
Tabu Search. Results obtained in Table 6 showed that

GATS_CS outperformed PSO_LS and GA in
Allocation, Un-allocation, and Clash rates; while

PSO_LS outperformed GATS_CS and GA in
Duplication and Multiple examination rates,

respectively. Lawal, et al. (2014) outperformed
GATS_CS in course clash (hall clash) and multiple

exams (exam clash) with 0% to 2.07% and 0.7% to

2.28%, respectively. However, the s tudy didn’t
consider the percentage of allocated courses,

unallocated courses and course duplications, which are
the crux of the timetabling system evaluation. Results

also showed that GAT_CS had faster simulation time
in the range of 20-29.5 seconds as compared to an

average of 252 seconds (4.2 minutes) reported in

Lawal, et al. (2014).

82.61

9.32

13.87

4.35

3.31

96.07

3.93

2.07

2.69

2.28

13.46

-5.38

-11.80

-1.66

-1.04

-20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00

Allocation

Un-allocation

Clashes

Duplication

Multiple Exams

Deviation Best solution Worst Solution

89.46

6.37

12.99

3.92

2.21

99.02

0.98

1.47

1.96

0.98

9.56

-5.39

-11.52

-1.96

-1.23

-20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00

Allocation

Un-allocation

Clashes

Duplication

Multiple Exams

Deviation Best solution Worst Solution

394 ABAYOMI-ALLI A. ET AL.

Table 4. Summary of GATS_CS Performance on2015/2016 Examination Timetable.

S/N

Condition

1st semester Total number of

courses= 483

2nd semester Total

number of courses= 408

No of courses % No of courses %

1 Allocation 464 96.07 404 99.02

2 Un-allocation 19 3.93 4 0.98

3 Clash 10 2.07 6 1.47

4 Duplication 13 2.69 8 1.96

5 Multiple ex ams 11 2.28 4 0.98

Table 5. Performance of the Final Drafts of the 2015/2016 Manual Examination Timetables.

S/N Condition

1st semester 2nd Semester

No of

Courses

Accuracy

(%)

No of

Courses

Accuracy

(%)

1 Allocation 465 96.27 397 97.3

2 Un-allocation 18 3.73 11 2.70

3 Clash 40 8.28 23 5.64

4 Duplication 30 6.21 19 4.66

5 Multiple ex ams 14 2.90 6 1.47

Table 6. Comparing GATS_CS with PSO_LS and GA Based Timetable Systems.

S/N Condition

1st Semester 2nd Semester

GATS_CS PSO_LS GA GATS_CS PSO_LS GA

Score

(%)

Score

(%)

Score

(%)

Score

(%)

Score

(%)

Score

(%)

1 Allocation 96.07 84.1 68.3 99.02 76.2 72

2 Un-allocation 3.93 15.9 31.7 0.98 23.3 28

3 Clash 2.07 10.2 15.3 1.47 2.5 17.4

4 Duplication 2.69 0 8.2 1.96 0 9.6

5 Multiple ex ams 2.28 0 5.1 0.98 0 3.3

5 CONCLUSION
IN this study, the problem tackled is a complex one

considering the number of students writing the
examination within the three weeks, the number of

examination halls/venues available and their exam

sitting capacities. The aim of GATS_CS timetable
system was to solve the Universities examination

timetabling problem automatically and efficiently
using an enhanced combination of Genetic Algorithm

and Tabu Search memory with a newly proposed and
developed course sandwiching algorithm. Results

obtained were quite promising in terms of course

allocation to exam halls, optimizing large halls by
allocating multiple examinations into them without

exceeding the hall capacity with minimal errors.
However, the system isn’t 100% accurate because of

issues like duplication of courses, course clashes and
multiple allocations of courses but the results obtained

were promising, way faster and less cumbersome than

the present manual timetable approach. For future
research directions, some constraints worth

considering are issues with:
1. Courses electives;

2. Students re-writing failed courses;
3. Students offering courses at lower levels;

All these would be considered as part of future
research directions in University examination

timetabling system while trying to increase the course

allocation rates and reducing clashes, duplications,
and multiple examinations. Future University

timetabling systems could also consider research into
(1) Computer-based examinations (e-exams) and (2)

Lecturers (invigilator) scheduling.

6 ACKNOWLEDGEMENT
THE authors will like to thank the Timetable and

Examination Committee of the case study University

for providing the relevant data for the study. We also
appreciate all the anonymous reviewers for providing

constructive and generous feedback all throughout the

review process.

7 REFERENCES
Abayomi-Alli O., Abayomi-Alli A., Misra S.,

Damasevicius R. and Maskeliunas R. (2019).
“Automatic Examination Timetable Scheduling

Using Particle Swarm Optimization and Local
Search Algorithm”, Shukla R. K. et al. (eds.),

Data, Engineering and Applications, Springer

Nature, Singapore Pte Ltd, DOI.:10.1007/978-
981-13-6347-4_11

Ahmed, K. and Keedwell, E. (2016). “A Hidden
Markov Approach to the Problem of Heuristic

Selection in Hyper-Heuristics with a Case Study

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 395

in High School Timetabling Problems”,

Evolutionary Computation: pp. 1-29.
Anisha, J., Ganapathy, A., Harshita, G. and Rishabh,

B. (2015). “A Literature Review on Timetable
Generation Algorithms Based on Genetic

Algorithm and Heuristic Approach”,
International Journal of Advanced Research in

Computer and Communication Engineering ,

2(1):159-163.
Anuja, C., Priyanka, K., Shruti, D., Sonali, I., Rupal,

R. and Dinesh, G. (2014). “Timetable Generation
System”, International Journal of Computer

Science and Mobile Computing , 3(2):410-414.
Arindam, C. and Kajal, D. (2010). “Fuzzy Genetic

Heuristic for University Course Timetable
Problem”, International Journal of Advances in

Soft Computing and its Applications, 2(1):101-

150.
Arogundade, O., Akinwale A., Aweda, O. (2010). “A

Genetic Algorithm Approach for a Real-World
University Examination Timetabling Problem”,

International Journal of Computer Applications,
12(5):1-4.

Bargetto, R., Della, C., and Salassa (2016). “A

Metaheuristic Approach for an Examination
Scheduling Problem”, International Conference

on the Practice and Theory of Automated
Timetabling, Udine Italy: pp. 23-26.

Beasley, D., Bull, D., and Martin, R. (1993). “An
Overview of Genetic Algorithms: Fundamentals”,

University Computing, 15(2):58-69.

Burke, E. K., and Bykov, Y. (2008). “An Adaptive
Fle-Deluge Approach to University Exam

Timetabling”, Informs Journal on Computing ,
28(4):781- 794.

Darwin, C. R. (1859). The Origin of Species. Vol. XI.
The Harvard Classics. New York: P. F. Collier

and Son, 1909–14; www.bartleby.com/11/. [10th
May 2017].

Daskalaki, S., Birbas, E., and Housos, E. (2004). “An

Integer Programming Formulation for a Case
Study in University Timetabling”, European

Journal of Operational Research , 153(1):117–
135.

Dipesh, M., Hiral, D., Mohammed, S. and Renuka, N.
(2015). “Automatic Timetable Generation using

Genetic Algorithm”, International Journal of

Advanced Research in Computer and
Communication Engineering , 4(2):245-248.

Dréo, J., Petrowski, A., Siarry, P. and Taillard, E.
(2006). “Metaheuristics or Hard Optimization:

Methods and Case Studies”, Springer-Verlag
Berlin, Heidelberg, Germany.

Esraa, A. and Ghada, A. (2016). “A Utilization-based

Genetic Algorithm for Solving the University
Timetabling Problem”, Alexandria Engineering

Journals, 55(2):1395-1409.
Gaspero, L. and Schaerf, A. (2000). “Tabu Search

Techniques for Examination Timetabling”, LCNS

Archive Selected Papers from The Third

International Conference on Practice and Theory
of Automated Time Tabling , Springer-Berlin

Heidelberg, Konstanz Germany, (2079):104-117.
Gen, M., Cheng, R. and Lin, L. (2008). “Network

Models and Optimization: Multi-objective
Genetic Algorithm Approach”, Springer

London:1- 47.

Gen, M. and Cheng, R. (1997). “Genetic Algorithms
and Engineering Design”, Wiley Interscience

Publication: 1-2.
Gendreau, M. (2002). “An Introduction to Tabu

Search”, International Series in Operations
Research and Management Sciences, (57):37-54.

Glover, F. and Laguna, M. (1997). “Tabu Search”,
Springer US. (1):19-382.

Glover, F. (1986). “Future Paths for Integer

Programming and Links to Artificial
Intelligence", Computers and Operation

Research, (13):533-549.
Hamed, P., Kuan, Y. and Adnan, H. (2016). “A

Hybrid Genetic Algorithm with a Knowledge-
Based Operator for Solving the Job Shop

Scheduling Problems”, Journal of Optimization,

(2016):1-13.
Harun, P., Engin, B. and Burak, E. (2008). “Tabu

Search: A Comparative Study”, Tabu Search, I-
Tech, Vienna Austria:1-29.

Jose, J.M. (2008). “A System of Automatic
Construction of Exam Timetable using Genetic

Algorithms”, I-CSRS: 319-336.

Joseph, M. and Jonathan, A. (2012). “Implementation
of a Time Table Generator using Visual

Basic.Net”, ARPN Journal of Engineering and
Applied Sciences, 7(5):548-552.

Lawal, H. D., Adeyanju I. A., Omidiora, E. O.,
Arulogun O. T., and Omotosho O. I. (2014).

“University Examination Timetabling Using
Tabu Search”, International Journal of Scientific

& Engineering Research, 5(10):785-788

Mccollum (2006). “University Timetabling: Bridging
the Gap”, Proceeding of the 6

th
 International

Conference Practice and Theory of Automated
Timetabling: pp. 15-35.

Merlot, L., Boland, N., Hughes, B. and Stuckey, P.
(2003). “An Hybrid Algorithm for the

Examination Timetabling Problem”, LNCS,

(2740):207-231.
Michiels, W., Aarts, E., and Korst, J. (2007).

“Theoretical Aspects of Local Search,
Monographs in Theoretical Computer Science”,

EATCS Series, Springer Berlin Heidelberg:1-238.
Mousavi S. M. and Zandieh M. (2018). “An Efficient

Hybrid Algorithm for a Bi-objectives Hybrid

Flow Shop Scheduling”, Intelligent Automation
and Soft Computing, 24(1):9-16.

Radomir, P. and Jaroslav, R. (2013). “Self-Learning
Genetic Algorithm for a Timetabling Problem

with Fuzzy Constraints”, International Journal of

396 ABAYOMI-ALLI A. ET AL.

Innovative Computing, Information and Control ,

9(11):4565-4582.
Rawats, S. R. (2010). “A Timetable Prediction for

Technical Education System using Genetic
Algorithm”, Journal of Theoretical and Applied

Information Technology, 13(1):59-64.
Ruey-Maw, C. and Hsiao-Fang, S., (2013). “Solving

University Course Timetabling Problems Using

Constriction Particle Swarm Optimization with
Local Search Algorithms”, MPDI, (6):227-244

Russell, R., Chiang, W. and Zepeda, D. (2008).
“Integrating Multi-Product Production and

Distribution in Newspaper Logistics”, Computers
and Operations Research, 35(5):1576-1588.

Sadhasivam, N. and Thangaraj, P. (2016). “Design of
an improved PSO algorithm for workflow

scheduling in cloud computing environment”,

Intelligent Automation and Soft Computing ,
23(3):493-500.

Srivastav, A. and Agrawal S. (2017). “Multi-Objective
Optimization of Slow Moving Inventory System

Using Cuckoo Search”, Intelligent Automation
and Soft Computing, 24(2):343-350.

Van Staereling, I.V. H. (2012). “School Timetabling

in Theory and Practice”, Faculty of Sciences, VU
University, Amsterdam:1-50.

Wilke, P. and Ostler, J. (2008). “Solving the School
Time Tabling Problem using Tabu Search,

Simulated Annealing, Genetic and Branch and
Bound Algorithms”, Proceedings of the 7th

International Conference on the Practice and

Theory of Automated Timetabling , 23(1):14-16
Wren, A. (1996). “Scheduling, Timetabling and

Rostering – A Special Relationship”, In LNCS:
Practice and Theory of Automated Timetabling ,

(1153):46-75.

8 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

9 NOTES ON CONTRIBUTORS
Abayomi-Alli Adebayo
graduated B.Tech. and Ph.D

Degrees from Ladoke Akintola
University of Technology,

Ogbomoso, Nigeria in Computer
Engineering and Computer

Science, respectively while his

M.Sc. Degree in Computer
Science was from University of Ibadan, Ibadan,

Nigeria. He is a Senior Lecturer at the Federal
University of Agriculture, Abeokuta, Nigeria. His

research interest are Pattern recognition, Machine
learning, and Soft computing.

Sanjay Misra is a Professor in

Computer (Software) Engineering
at Covenant University, Nigeria.

He has authored more than 250
research papers and received

several awards. He has delivered
more than 60 keynote/invited

speeches at international conferences and institutions

spanning across 45 countries. His research interest
covers Software Engineering, Project management,

Quality assurance, HCI, AI, Cognitive Informatics and
Web Engineering.

Luis Fernández-Sanz is an

Associate Professor at the
Department of Computer Science

of the University of Alcalá (UAH).

He earned a Degree in Computing
at Polytechnic University of

Madrid (UPM) and Ph.D. in
Computing with a special award at the University of

the Basque Country. He has over 20 years of research
and teaching experience at UPM, Universidad

Europea de Madrid and UAH. His general research

interests are software quality and engineering,
accessibility, e-learning, and ICT professionalism and

education

Abayomi-Alli Olusola obtained a
B.Sc. Degree in Electronics and

Computer Engineering from the

Lagos State University, Nigeria
and M.Sc. Degree in Computer

Science from the Federal
University of Agriculture,

Abeokuta, Nigeria. She is presently on her Ph.D. and
also a faculty in the Department of Electrical and

Information Engineering, Covenant University, Ota,
Nigeria. Her research interest includes information

security, text mining and Soft computing.

Edun Rebecca Abisola obtained a

B.Sc. Degree in Computer Science
from the Federal University of

Agriculture, Abeokuta, Nigeria in
2017. Her research interest

includes optimization and

application of nature-inspired
algorithms.

