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1 INTRODUCTION 
TIMETABLING problems are complicated 

constraint satisfaction problems said to be Non-
Deterministic Polynomial-time (NP) hard. Many 

Institutions of higher learning use timetables to 
schedule classes, lectures, and examinations to assign 

appropriate venues and timeslots for such events in 

order to optimize available resources. Institutions of 
higher learning like Universities are generally 

concerned with a large number of examination courses 
to be allocated to fewer examination halls/venues 

within a short period of the exam. This often leads to 
poorly designed timetables that are expensive 

considering the time and other resources expended in 

developing them.  
“Timetabling is the allocation, subject to 

constraints, of given resources to objects being placed 
in space and time, to satisfy as nearly as possible a set 

of desirable objectives” (Wren, 1996). The main 
objective when designing an examination timetable is 

to develop an optimized most appropriate schedule for 

a set of examinations that satisfies pre-defined 

constraints (Arogundade, Akinwale, and Aweda, 
2010). Hence, the construction of a University 

examination timetable is a complex problem due to 
the high number of constraints required, large class 

sizes, venue capacity, and their availability, etc. 

Burke, Kingston and De Werra (2004) defined the 
timetabling problem as “A timetabling problem is a 

problem with four parameters: T, a finite set of times; 
R, a finite set of resources; M, a finite set of meetings; 

and C, a finite set of constraints”. It has created the 
challenge of assigning venues and time slots to events 

to satisfy the constraints maximally. This has been an 
interesting research area in operation research and 

artificial intelligence for the last decade (Bargetto, 

Della and Salassa, 2016).  
University timetabling is the most widely studied 

among other timetabling problems since it is a 
required and time-consuming task which occurs 

regularly per semester, be it lectures, examinations, 
seminar or faculty scheduling. Timetabling problems 

in academic institutions is  however broadly divided 
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into two: (i) examination and (ii) course scheduling. 

While the examination scheduling problem is 
concerned with assigning exams to venues over a 

certain period, the time is fixed within a week for 
course scheduling.  

The constraints to be satisfied in timetabling are 
usually of two types: Hard and Soft Constraints. Hard 

constraints must be met; they are also called 

unavoidable constraints while soft constraints may not 
be satisfied but it is preferably not to be violated. 

However, meeting them is essential to having a good 
and feasible timetable (Van Staereling, 2012). 

Constraints’ affecting University’s examination 
timetable include: 

1. The population of students (class domicile); 
2. Incapacitated exam venues; 

3. The limited time frame for examination per day 

(timeslots); 
4. Not assigning exams with common resources 

simultaneously. 
This research study is concerned with the 

allocation of semester examinations taken by student 
populations to limited available examination venues  

within specific time slots. This is a problem that no 

efficient algorithm has been able to solve optimally 
(Esraa and Ghada, 2016) and it occurs because: 

1. There are challenges of insufficient resources 
such as exam venues (number and capacity) and 

timeslots to carter for the entire student 
population; 

2. Satisfying all the constraints is becoming 

increasingly difficult; 
3. There are very few venues/halls available during 

the short period of examination. 
THIS study aims to develop an automatic 

examination timetable system for a University that 
will enhance course allocation to examination 

halls/venues and minimizes course un-allocation, 
clashes, duplication and multiple examinations in the 

University timetable. This system is expected to meet 

all the timetable constraints (soft and hard) optimally 
through a combination of Genetic Algorithm (GA) and 

Tabu Search (TS) memory that is enhanced with 
course sandwiching. The motivation for the study is 

the present method of manual scheduling of 
examination timetabling which is becoming more 

cumbersome and expensive as the University is 

growing. 
THE rest of the paper is organized as follows: 

Section 2 presents a brief literature review on the 
subject area and previous related study, while Section 

3 represents the research approach and methodology 
employed in the development of the automatic 

University examination timetabling system. Section 4 

discusses the results obtained while the paper 
concludes with directions for future studies in Section 

5. 

2 LITERATURE REVIEW 
A brief literature review and closely related works 

are presented in this section. 

2.1 Timetabling Problems 
Timetabling problems are complicated Scheduling 

problems which belong to a broad class of 

combinational optimization problems aimed at finding 

an optimal matching of tasks to different sets of 
resources (Anisha, Ganapathy, Harshita and Rishabh, 

2015); (Mousavi and Zandieh, 2016); (Sadhasivam 
and Thangaraj, 2016) and (Srivastav and Agrawal, 

2017). Merlot, Boland, Hughes, and Stuckey (2003) 
developed a “hybrid approach for solving the final 

examination timetabling problem that generates an 
initial feasible timetable using constraint programming 

and then applied simulated annealing with hill 

climbing to obtain a better solution”.  
TS approach was explored by Gaspero and Schaerf 

(2000) using graph coloring-based heuristics. Wilke 
and Ostler (2008) considered four algorithms, namely: 

TS, Simulated Annealing, GA, and Branch & Bound 
for solving a typical school timetable problem and 

evaluated their performance. Results showed that 

Simulated Annealing gave the best trade-off between 
accuracy and execution time while TS, GA, Branch & 

Bound were next in performance.  
Ruey-Maw and Hsiao-Fang (2013) employed 

constriction Particle Swarm Optimization (PSO) with 
a local search for the timetable problem. Burke and 

Bykov (2016) developed an adaptive method that was 

general and fast to arrange heuristic for ordering the 
next scheduled examinations. However, 

methodologies such as GAs, evolutionary techniques, 
and others have been implemented with mixed success 

(Anuja, Priyanka, Shruti, Sonali, Rupal, and Dinesh, 
2014). Unfortunately, many of the studies in the 

research area have been carried out with artificial data 
sets or on highly simplified real-world case studies 

(Mccollum, 2006).  

In developing countries especially sub-Saharan 
African countries, first-year students (100 level) may 

be up to 1500 students in a course, thus making the 
timetabling problem even more challenging.  

2.2 The Current Examination Timetabling 
System in the University under Study 

A public University in Nigeria is used as the case 
study for this paper as the present method of 

examination timetabling as described by Arogundade, 
Akinwale and Aweda (2010) as a grid with days of the 

week, venues and time periods on different axes. This 

approach facilitates visual checking for conflicts in the 
timetable schedule and allows for modification until 

the timetable is adjudged as satisfactory. However, it 
is a very cumbersome and time-consuming exercise 

which often leaves several constraints unsatisfied. As 
the University is growing larger, the final exam 
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timetable is preceded by three to four drafts that are 

released weeks before the start of the semester 
examination. Students and Departments are required 

to check the draft timetables for issues like non-
allocation, clashes, duplication and/or multiple courses 

on the timetable. This takes about two to three weeks 
and after every correction, an updated version is sent 

to the Departments for review until the start of the 

semester examination. Hence, the present approach is 
no longer sustainable as it can only suffice for small 

inputs. In this study, an automatic University 
examination timetabling system is proposed based on 

Genetic Algorithm and Tabu Search Memory with 
Course Sandwiching (GATS_CS). 

2.3 Genetic Algorithm 
Hamed, Kuan, and Adnan (2016) define a Genetic 

Algorithm (GA) as a powerful search technique that 

imitates the biological evolution and natural selection 
process. It has been applied to solve complex 

problems with large spaces in optimization (Bull, 
Martin and Beasley, 1993; Dipesh, Hiral, Mohammed, 

and Renuka, 2015). GA is a procedure used to 
discover the best solutions to search problems using 

the principles of evolutionary biology such as natural 

selection, mutation, genetic inheritance, and sexual 
reproduction. GA structure is governed by import laws 

of the theory of evolution of species and concreteness 
in two fundamental concepts: 

1. Selection; 
2. Reproduction (Jose, 2008). 

The major problem in optimization is how to 

satisfy constraints, in a problem that is defined by 
several solutions. The GA determines the overall 

solution or one that is acceptable within the time 
defined for the algorithm (Jose, 2008). GA is 

implemented basically with five components as stated 
by Gen, Cheng, and Lin (2008): 

1. A genetic representation of potential 

solutions to the problem; 
2. A way to create a population (an initial set of 

potential solutions); 
3. An evaluation function rating solution in 

terms of their fitness; 
4. Genetic operators that alter the genetic 

composition of offspring (crossover, 
mutation, selection, etc.); 

5. Parameter values that genetic algorithm uses 

(population size, probabilities of applying 
genetic operators, etc.). 

2.4 TABU Search 
Glover (1986) proposed an approach called Tabu 

Search (TS). TS was proposed as an alternative local 
search algorithm to solve several combinatorial 

optimization problems. The solution set must be finite 

or countable infinite (Michiels, Aarts and Korst, 2007) 
as many of such problems are expressed as a search 

for a specific permutation (Russell, Chiang, and 

Zepeda, 2008). Solution space of combinatorial 

optimization problems can typically be represented by 
sequences, permutations, graphs and partitions 

(Michiels, Aarts and Korst, 2007). Gendreau (2002) 
stated that the basic principle of TS “Is to pursue local 

search whenever it encounters a local optimum by 
allowing non-improving moves. Moving back to 

previously visited solutions is prevented using 

memories called Tabu lists that record the recent 
history of the search”. Thus, it is prevented from 

revisiting the previous solution by tracking them in 
memory. TS has several memory types such as Short-

term and Long-term (Harun, Engin, and Burak, 2008), 
Recency-based (Glover and Laguna, 1997), 

Frequency-based (Dréo, Petrowski, Siarry, and 
Taillard, 2006) memories, etc. It uses a Tabu list to 

track Tabu moves or attributes of moves. Short Tabu 

lists may not prevent cycling, thereby resulting in 
information loss while long Tabu lists may 

excessively prevent a neighborhood such that moves 
are limited to some extent (Harun, Engin, and Burak, 

2008). 

3 RESEARCH METHODOLOGY 
THIS section represents the research methodology 

employed in the development of GAT_CS, which 

includes: The Design objectives, Requirements 
gathering, System constraints, Design approach, 

System Parameters, and the primary data source. 

3.1 The Design Objective: Exam Timetable 
The objective of this study is to design and 

implement an examination timetable system for a 
public University in Nigeria. All courses are assigned 

to a hall with enough seats to accommodate the course 
registered students; this will address the hall 

congestion issue. Course allocation and hall 
scheduling are optimized based on the constraints 

presented to the system. 
The following are the components of the timetable: 

1. The course code; 

2. Total number of registered students; 
3. The hall assigned to each course; 

4. The examination session (morning or 
afternoon); 

5. The day scheduled for each exam. 

3.2 Requirements Gathering 
During the system design, the Timetable and 

Examination Committee of the University was 
approached for necessary information and answers 

were promptly provided with supporting documents. 
Some of the details required were: 

1. The number of halls in the University; 
2. The capacity of each hall in the University; 

3. The total number of courses to be examined 

in the semester exam; 
4. The number of sessions per day; 
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5. The number of weeks for examination. 

3.3 Constraints 
As mentioned in the preceding section, there is a 

need to consider some factors that must be fulfilled at 
all cost. These factors are known as hard constraints. 

Hard constraints play a major role in arriving at an 
optimized timetable. The other constraints to be 

considered are soft constraints which do not 

necessarily affect the quality of the timetable but has 
considerable influence on the output of the system. 

They are also known as optional constraints. 

 Hard Constraints (Compulsory) 3.3.1
The following hard constraints were modelled by 

GAT_CS: 

1. Exam Population (registered students for the 
exam) must be less than the hall capacity; 

2. Practical should be scheduled to hold in its 
corresponding hall; 

3. One hall must not be used more than twice in 
a day. 

4. Students in one level should not have more 

than one exam at a time (exam session). 

 Soft Constraints (Optional) 3.3.2
For the soft constraint students in one level should 

not have more than two (2) theory-based examinations 

in one day. 

3.4 Design Approach 
The proposed University timetable system is a 

combination of modified Genetic Algorithm (GA), 

Tabu Search (TS) memory and course sandwiching to 
enhance hall optimization and course allocation 

accuracy. The developed timetable examination 

system is named GATS_CS. GATS_CS is expected to 
improve the performance and time required to 

discover the optimum solution in an automatic 
University timetable. 

Direct encoding was used with each chromosome 
representing a candidate solution (i.e. a Timetable). 

The chromosome is a list that represents the number of 

courses to be scheduled (e.g. C); while an element in 
the list corresponds to the course examination to be 

scheduled (e.g. between 1 and C). For each value 
(gene) in the chromosome, the index of that value 

corresponds to the hall encoded with the number. 
Thus, for a chromosome [4, 8, 9, 7, 12, 6, 15], exam 4 

will take place at hall 1, exam 8 at hall 2 and exam 12 

at hall 5, respectively. 
The Concepts of Genetic Algorithm i.e. Selection 

and Evaluation was implemented while the memory 
properties of TS (Taburization) and course 

sandwiching replaced Crossover and Mutation 
Operators. The algorithm required for the developed 

system is presented in the sub-sections below. 

3.4.1 Selection Phase 
A specific number of timetable solutions are 

randomly generated as specified at the beginning of 
the execution. After the initialization of the 

population, the fitness of each timetable is evaluated 

using a simple objective or fitness function to 
ascertain the viability of the candidate timetable. A 

simple fitness function based majorly on the hard 
constraints is evaluated to prevent complex 

calculations and reduce execution time. The timetable 
with the least contradiction (i.e. that best satisfies the 

constraints) is selected as the best fit and is moved to 

the next phase of the algorithm. Fitness function f(𝑋1 ) 

is defined in Equation 1 for i=1… C. 

 f(𝑋1) =
𝐸𝑥𝑎𝑚 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑛1)

Hall capacity (ℎ𝑎)
∗ 100 (1) 

where 𝑋1 : First constraint; n i: the population of the 

exam at index i and ℎ𝑎 : The capacity of the hall 

assigned to an exam at index i. 

 f(𝑋2 ) = (Pj: Laba)   j = 1… L (2) 

where 𝑋2 : Second constraint; Pj: Practical exam at 
index j; Laba: Corresponding Laboratory and L: The 

total number of Labs. 

After the best-fit chromosome (Timetable) has 
been selected, it is then split into two memories: Short 

Tabu and Long Tabu (Tabu Lists) as described in 
(Harun, Engin, and Burak, 2008). The ‘Tabus’ are also 

used to a perform memory function. This splitting is 
done by calculating the degree of fitness of individual 

allocation (i.e. EXAM: HALL); the ones that perfectly 

fit (i.e. 100% fitness) are placed in the ‘Long Tabu’ 
restricting them from further changes while the ones 

that do not fit perfectly are placed in the ‘Short Tabu’ 
for further evaluation and optimization. The nature of 

both ‘Tabus’ at the end of the selection phase is shown 
below: 

TabuListShort = [exam 1, exam 2 … exam t] 

TabuListLong = [EXAM 1: HALL A, EXAM 2: 
HALL B … EXAM 3: HALL Z] 

The following are the steps required in the 
selection phase: 

Step 1: Generate a random population of courses 
(Chromosomes); 

Step 2:  Evaluate the Total fitness of the population 
based on the individual fitness of each course; 

Fitness  of each exam =
𝐻𝑎𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Exam Population
∗ 100    (3) 

Condition: Fitness =100% 

Step 3: Select the population based on its Total fitness. 
Find the selection algorithm below: 

Input: i, k, x, e, E, H 
Output: popFitness, BestFitPop 

Start 

1. Select   𝑥 ← 𝐼 [1…𝑛]𝑐
∈ ℤ+ 

2. for(1 ≤ 𝑖 ≤ 𝑁) 

3. Compute 𝑒𝑖 ∈ 𝐿: 𝑖 ∈ [𝐸, 𝐻] 
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4. for (1 ≤ 𝑘 ≤ 𝐻) 

5. Compute 𝑓(𝑥) ← 𝑖: 𝑘  ∀ (𝑖, 𝑘) ∈  [𝐸,𝐻] 
6. While (𝑖 = 𝑘) 

7. Compute 𝑓(𝑥) ← 𝐸[𝑖] + 𝐻[𝑘] 
8. Compute 𝐸[𝑖] ← 𝐻[𝑘] 
9. Compute 𝐸[𝑖] ← 𝑓(𝑥) 

10. Compute 𝑓(𝑥) ← 𝐻[𝑘] 
11. for (1 ≤ 𝑒𝑖 ≤ 𝐸(𝑛)) 

12. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑖 ∈
[𝐸, 𝐻] 

13. If (Fitness= 100%) ∋ 𝐸[𝑖]:𝐻[𝑖]∀ 𝑖 ∈ [𝐸, 𝐻] 
14. popFitness ← popFitness 

15. Else if  

16. popFitness ← popFitness+1 ∋ 𝐸[𝑖] <
𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻] 

17. Else if 
18. popFitness> 100% ∋ 𝐸[𝑖] > 𝐻[𝑖] ∀ 𝑖 ∈

[𝐸, 𝐻] 

19. popFitness← BestFitpop 

20. Else 
21. BestFitpop← BestFitpop ∋ 𝐸[𝑖] ←

𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻] 
End 

3.4.2 Optimization Phase 
The best solution (that has been split into short and 

long Tabu) from the selection phase is adjusted 

(mutated) to ensure the solution produced is the most 

optimal and the values in the short Tabu form the next 
population. The halls are re-allocated such that the 

exam population fits perfectly or slightly above 
perfect as specified at the beginning of the execution 

(i.e. 100% or 120%). This phase is divided into two 
categories: (1) Taburization and (2) Optimization. 

Taburization: This is the process involved in placing 

the allocations in its corresponding ‘Tabu’. The 
following are the steps required in the Taburization 

phase: 
Step 1: After selecting the population based on total 

fitness, the individual fitness of the allocated exams is 
used to place each chromosome (Courses) into its 

Corresponding ‘Tabu’. 

Step 2: The chromosomes that are optimal (i.e. meet 
up with the fitness condition) are placed in the Long 

Tabu List while those that are otherwise are put in the 
Short Tabu List. The Long Tabu List has the capacity 

to hold the courses for a long time while the Short 
Tabu is a memory structure to keep values stored in it 

for a temporary period. 
Find the Taburization algorithm below: 

Input: 𝐸[𝑖]: 𝐻[𝑖] ∀ 𝑖 ∈ [𝐸,𝐻] 
Output 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿 

 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆 
Initialize: LongTabu [ ] ← BestFitpop ← BestFitpop  

While 𝑛 = 𝐿 + 𝑆 ≡ 𝐸[𝑖 + 𝑗]: 𝐻[𝑖 + 𝑗] ∈ (𝐿 ∪ 𝑆) ⊂
𝑛∀ (𝐿, 𝑆) ∈ 𝑛 

1. for (1 ≤ 𝑖 ≤ 𝐸(𝑛)) 

2. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑗 ∈
[𝐸, 𝐻] 

3. If (100% ≤ popFitness ≤ 120%) ∋
𝐸[𝑖]: 𝐻[𝑖]∀ 𝑖 ∈ [𝐸, 𝐻] 

4. LongTabu [ ] ← 𝐸[𝑖]∀ 𝑖 = 1 to 𝐿 

5. Else  

6. ShortTabu [ ] ← 𝐸[𝑗] ∀ 𝑗 = 1 to 𝑆 

End While; 
Optimization: This is introduced by adjusting the 

fitness value such that much more allocations are done 
in the next generation. The following are the steps 

required in the selection phase: 

Step 1: Adjust the fitness condition to allow more 
optimal allocations (increase or decrease it); 

Step 2: Randomly allocate halls to exams; 
Step 3: Check if allocation meets up with the 

Optimal Condition (Satisfies the fitness 
condition); 

Step 4: Augment the Long Tabu List with 

Optimal solutions from Step 3. 
Only the Chromosomes in the Short Tabu List are 

used at this stage because they have not met with the 
fitness conditions. The optimization algorithm is 

below: 
Where U is the number of times the hall can be used. 

Input: 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆 

Output: 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿, 𝑈 

1. While 𝐸[𝑖 + 𝑗]: 𝐻[𝑖 + 𝑗] ∈ (𝐿 ∪ 𝑆) ⊂
𝐻[𝑘]:𝑈 

2. for(1 ≤ 𝑒𝑗 ≤ 𝐸(𝑛) 

3. Compute popFitness ← 𝐸: 𝐻 ∀ 𝑗 ∈
[𝐸, 𝐻] 

4. If (popFitness > 120%) 

5. LongTabu [ ] ← 𝐸[𝑗] 
6. Else 

7. ShortTabu [ ] ← 𝐸[𝑗] 

8. End While; 

3.4.3 Fine tuning Phase 
The solution produced in the optimization is now 

separated into the number of days required, as 

specified as one of the parameters at the beginning of 
execution. Some other examinations that need to be 

sandwiched (i.e. a situation where more than one hall 
is allocated for an examination when exam population 

size is far higher than the capacity of the largest hall) 
are also considered. This phase is also divided into 

two parts, Sandwiching (Optional) and Separating into 

Days. 
Sandwiching: This is the term used to describe the 

merging of two or more examinations to a venue such 
that a class population perfectly fits into the hall 

capacity. This process was introduced because some 
courses weren’t assigned in the timetable since the 

system couldn’t find a venue that fits the class size 

perfectly. Sandwiching is a major contribution of this 
paper, as observed from previous reviews. The ability 

of the timetable system to sandwich several courses 
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into a single examination hall increases the course 

allocation accuracy. The following are the steps 
required in the sandwiching phase: 

Step 1: If there are still courses in the Short Tabu 
List, merge more than one exam for unused halls; 

Step 2: Repeat Step1 until all courses in Short 
Tabu has been allocated to a Hall. The 

sandwiching algorithm is below: 

Input: 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ∀ 𝑗 = 1 to 𝑆 
Output: 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ∀ 𝑖 = 1 to 𝐿 

1. 𝐸[𝑖]: 𝐻[𝑖] ∈ LongTabu ← 𝐿∀ 𝑖 ∈ [𝐸, 𝐻] 
2. 𝐸[𝑗]:𝐻[𝑗] ∈ ShortTabu ← 𝑆  ∀ 𝑗 ∈ [𝐸, 𝐻] 
3. While, unused hall, 𝑈 ← 𝐻[𝑘] and  

𝐶𝑎𝑝𝐻[𝑘] ⊂ 𝑈 ∋ 𝐸[𝑗] ≡ 𝑈 − 𝐶𝑎𝑝𝐻[𝑘] ∀ 𝑘 ∈
[𝐻] 

4. LongTabu [ ] ← 𝐸[𝑗] 
5. End While; 

Separating course allocations into days: This is 

done by separating each allocated exam into days 
(Mondays-Fridays) with morning and afternoon 

sessions for three weeks (15 days) considering our 
case study as implemented below: 

1. Let  𝐷𝑇 ← ∑ 𝐷𝑖
𝑛
𝑖  for 𝑖 ≤ 5 

2. Suppose ∃ 𝐷1 to 𝐷5 ∈ 𝐷𝑇  

3. Then [𝐷1: Monday, 𝐷2: Tuesday, 𝐷3: Wednesday, 

𝐷4 : Thursday, 𝐷5: Friday] 
4. Compute 𝐶𝑇 ← ∑ 𝐶𝑖

𝑛
𝑖  

5. Since  𝐴𝑣 ← 𝐶𝑇/𝐷𝑇 {Where  𝐶𝑖 represents each 
course and 𝐶𝑇 represents the total number of 

courses} 

6. Then [𝐶𝑖: 𝐷𝑖] ≡ [𝐶1: 𝐷1,𝐶2: 𝐷2,   .  .  . , 𝐶𝑛: 𝐷𝑛] for 

𝑖 ≤ 𝑛 

3.5 Parameters and Steps for Proposed System 
The system will require certain inputs at the 

beginning of execution which will guide its 
operations. These inputs are the parameters of the 

system, and they include:  
1. Total Number of Examination Papers; 

2. Total Number of Halls; 

3. The number of Days for an exam schedule. 
The steps for the proposed design are as follows: 

Step 1:  Generate initial population; 
Step 2: Evaluate the fitness of chromosomes in the 

population (based on hall allocations); 
Step 3: Select the Best-Fit chromosome for 

Taburization and Optimization; 
Step 3a: Taburization: split Best-Fit chromosome  

and store in two TabuLists: Short and Long 

TabuList; 
Step 3b: Optimization: for values in the Short 

TabuList allocate hall that optimally fits the Exam, 
and augments Long TabuList with the latest 

allocation; 
Step 4: For Exam population that far exceeds the 

maximum capacity of the hall, Sandwich Exams and 

augment Long TabuList with the latest allocation; 
Step 5: End when the Termination condition is met. 

The flowchart for University timetable system 

based on Genetic algorithm, Tabu search and Course 
sandwiching (GATS_CS) is presented in Figure 1. 

3.6 Data Source 
The dataset for the examination timetabling was 

obtained from a large public University in Nigeria 
with 10 Colleges, 41 academic Departments, and 

about 16,000 full-time students offering several 

undergraduate academic programs. Examinations are 
written for three weeks (Mondays-Fridays), each day 

having morning and afternoon sessions while the 
timetable is done manually using a word processor. 

The dataset presented here is the undergraduate 
written examinations for the 2015/2016 academic 

session and it excludes the computer-based (CBT) 

exams. The Timetable and Examination Committee of 
the University provided the dataset and the general 

parameters are shown in Table 1. It should be noted 
that the sitting capacities represent the number of 

students that can write an exam in the hall under ideal 
examination conditions, it does not represent the 

actual sitting capacity of the hall.  
 

Table 1. The University Examination Timetable Parameters. 

Parameter 

First 

Semester 

2015/2016 

Second 

Semester 

2015/2016 

No. of Ex am Halls 39 39 

Total Ex am Sitting Capacity  

of Halls 

4,988 4,988 

No of Academic 

Departments 

41 41 

Total No. of Courses 

Ex amined  

483 408 

No. of Students Writing the 

Courses  

126,983 124,880 

4 IMPLEMENTATION AND VALIDATION OF 
GATS_CS 

IN this section, the GAT_CS timetabling system 

was implemented based on the proposed methods and 
algorithms while the system performance was 

validated and benchmarked with previous studies.  

4.1 Implementation 
This section provides the results obtained after 

implementing GATS_CS. As specified above the 
parameters of the algorithm are: 

1. The Total Number of Examination Papers; 
2. The Total Number of Halls; 

3. The number of Days for an exam schedule. 

Parameters 1 and 2 are entered into the system 
automatically through a file created for the program 

and read at the start of execution, this is known as 
“Initialize Population from file”. After the second 

generation, it was realized that some courses have not 
been allocated because their fitness does not meet the 

value specified in the program. The concept of 



INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING  391 

 

 

Figure 1. Flowchart for University timetable system based on Genetic algorithm, Tabu search and Course sandwiching (GATS_CS).  

 

sandwiching is then applied which hasn’t been 
realized before in previous studies, hence the low 

performance of such systems in allocating courses to 
halls.  

Sandwiching involves scheduling two or more 
examinations to hold in one hall to meet up with the 

fitness condition specified. This is necessary for 

situations when an examination has been allocated to a 
hall, but the space is big enough to accommodate 

other examinations. Thus, more than one examination 
will be sandwiched (allocated) to hold in a single hall. 

For example, an examination hall (MP01) with exam 
capacity of 400 will accommodate five examinations 

concurrently namely: MCE510, ECO412, CVE308, 

FRM508 and FSM410 with 40, 100, 40, 60 and 90 
students, respectively.  

After sandwiching has been implemented, the 
course allocations (which are now in the Long Tabu 

List) are now classified into fifteen pots 
(corresponding to the number of days provided as 

input at the beginning of execution) for onward 

separation into days. The classification is done to 
simplify separation into days.  

4.2 Validation 
The following metrics were used to validate the 

performance of GATS_CS: 
Allocation Accuracy (Acc): Total number of courses 

successfully allocated to an examination venue. 
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 𝐴𝑐𝑐 =
Total number of allocations

Total number of courses
∗ 100 (4) 

Un-allocation (UA): Total number of courses not 
successfully allocated to an examination venue. 

 𝑈𝐴 =
Total number of Un−allocations

Total number of courses
∗ 100 (5) 

Clash Courses (CC): A condition whereby two courses 

are allocated to the same venue at the same time. 

 𝐶𝐶 =
Total number of Clashes

Total number of courses
∗ 100 (6) 

Duplicated Courses (DC): A condition whereby a 

course appears more than once on the timetable. 

 𝐷𝐶 =
Total number of Duplicated Courses

Total number of courses
∗ 100 (7) 

Multiple exams (ME): A condition whereby a class 

has more than one exam at the same time in different 
venues. 

 𝑀𝐸 =
Total number of multiple courses

Total number of courses
∗ 100 (8) 

Table 2 shows simulation experiments for 
GATS_CS with an average of 10 independent runs 

and different iterations. The time of the first solution 

represents time taken by GATS_CS to represent the 
first solution, while the time of best solution is the 

time taken to obtain the optimal solution. Average 
time in seconds is the mean of both first and best time, 

which for 10 runs was between 22.5-29.5 and 20-26 
seconds in first and second semesters, respectively. 

From Table 3, results  show that GATS_CS 

provided optimal solutions  which were considerably 
better than those obtained in the worst solutions . 

Allocation accuracy increased while un-allocation, 
clashes, duplication, and multiple exams were reduced 

after subsequent runs. However, observation shows 
that the first solutions were not the worst solution in 

some cases. Figures 2 and 3 show the deviation due to 
improvements between worst and best solutions 

during simulation experiments. It was observed that 

apart from the increase in course allocation, reduction 
of clashing courses was more pronounced than others 

with -11.80 and -11.52 in first and second semesters, 
respectively.  

 

Table 2. GATS_CS Simulation Time with First, Best and Average Time in 2015/2016 Examinations. 

Runs 

First Semester Simulations Second Semester Simulations 

Iterations 

Time of  

first 

solution 

(secs) 

Time of 

best 

solution 

(secs) 

Avg. 

Time 

(secs) 

Iterations 

Time of  

first 

solution 

(secs) 

Time of 

best 

solution 

(secs) 

Avg. 

Time 

(secs) 

1 22530 14 45 29.5 26459 12 40 26 

2 26759 8 45 26.5 25963 13 38 25.5 

3 28241 5 41 23 26344 9 34 21.5 

4 22857 12 38 25 18321 7 33 20 

5 27266 11 40 25.5 22418 7 38 22.5 

6 22449 9 36 22.5 20011 11 39 25 

7 19520 6 46 26 18375 11 29 20 

8 21580 15 31 23 18909 7 37 22 

9 25202 9 42 25.5 27439 6 36 21 

10 28345 8 45 26.5 22863 8 35 21.5 

 
Table 3. GATS_CS Worst and Best Solutions in 2015/2016 Examination Timetable. 

Conditions 

First Semester Second Semester 

Worst solution Best solution Worst solution 
Best 

solution 

# % # % # % # % 

Allocation 399 82.61 464 96.07 365 89.46 404 99.02 

Un-allocation 45 9.32 19 3.93 26 6.37 4 0.98 

Clashes 67 13.87 10 2.07 53 12.99 6 1.47 

Duplication 21 4.35 13 2.69 16 3.92 8 1.96 

Multiple Ex ams 16 3.31 11 2.28 9 2.21 4 0.98 
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Figure 2. GATS_CS Worst and Best Solutions with the Improvement Obtained (Deviation) in First Semester Timetable.  

 
Figure 3. GATS_CS Worst and Best Solutions with the Improvement Obtained (Deviation) in Second Semester Timetable . 

From the results, it was observed that GATS_CS 

successfully allocated 96.07% and 99.02% of the total 
courses while 3.93% and 0.98% courses were un-

allocated in first and second semesters, respectively as 

shown in Table 4. Table 5 represents the performance 
of the present manual timetable system in the 

University with the results close to those obtained 
from GAT_CS especially with respect to course 

allocation and un-allocation. However, GATS_CS 
clearly outperforms the manual timetables in reducing 

course clashes, duplications, and multiple 
examinations considerably. Worth mentioning is the 

result of the manual timetable in Table 5 which is the 

final draft by the Timetable and Examination 
Committee after series of reviews from students and 

academic Departments  three to four weeks before the 
commencement of examination.  

Therefore, the results in Table 5 is not particularly 
impressive considering the cost in terms of time and 

the human resources expended to achieve it. 

The performance of GATS_CS was also 
benchmarked with three other timetable systems 

previously implemented. They are Abayomi-Alli 

(2019) Particle Swarm Optimization with Local 
Search (PSO_LS), Genetic Algorithm (GA) closely 

related to Arogundade, et al. (2010) and Lawal et al. 

(2014) University Examination Timetabling Using 
Tabu Search. Results obtained in Table 6 showed that 

GATS_CS outperformed PSO_LS and GA in 
Allocation, Un-allocation, and Clash rates; while 

PSO_LS outperformed GATS_CS and GA in 
Duplication and Multiple examination rates, 

respectively. Lawal, et al. (2014) outperformed 
GATS_CS in course clash (hall clash) and multiple 

exams (exam clash) with 0% to 2.07% and 0.7% to 

2.28%, respectively. However, the s tudy didn’t 
consider the percentage of allocated courses, 

unallocated courses and course duplications, which are 
the crux of the timetabling system evaluation. Results 

also showed that GAT_CS had faster simulation time 
in the range of 20-29.5 seconds as compared to an 

average of 252 seconds (4.2 minutes) reported in 

Lawal, et al. (2014). 
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Table 4. Summary of GATS_CS Performance on2015/2016 Examination Timetable. 

S/N 

Condition 

1st semester Total number of  

courses= 483 

2nd semester Total 

number of courses= 408 

No of courses  % No of courses  % 

1 Allocation 464 96.07 404 99.02 

2 Un-allocation 19 3.93 4 0.98 

3 Clash 10 2.07 6 1.47 

4 Duplication 13 2.69 8 1.96 

5 Multiple ex ams 11 2.28 4 0.98 

 

Table 5. Performance of the Final Drafts of the 2015/2016 Manual Examination Timetables. 

S/N Condition 

1st semester 2nd Semester 

No of 

Courses 

Accuracy 

(%) 

No of 

Courses 

Accuracy 

(%) 

1 Allocation 465 96.27 397 97.3 

2 Un-allocation 18 3.73 11 2.70 

3 Clash 40 8.28 23 5.64 

4 Duplication 30 6.21 19 4.66 

5 Multiple ex ams 14 2.90 6 1.47 

 
Table 6. Comparing GATS_CS with PSO_LS and GA Based Timetable Systems. 

S/N Condition 

1st Semester  2nd Semester  

GATS_CS PSO_LS GA GATS_CS PSO_LS GA 

Score 

(%) 

Score 

(%) 

Score 

(%) 

Score 

(%) 

Score 

(%) 

Score 

(%) 

1 Allocation 96.07 84.1 68.3 99.02 76.2 72 

2 Un-allocation 3.93 15.9 31.7 0.98 23.3 28 

3 Clash 2.07 10.2 15.3 1.47 2.5 17.4 

4 Duplication 2.69 0 8.2 1.96 0 9.6 

5 Multiple ex ams 2.28 0 5.1 0.98 0 3.3 

 

5 CONCLUSION 
IN this study, the problem tackled is a complex one 

considering the number of students writing the 
examination within the three weeks, the number of 

examination halls/venues available and their exam 

sitting capacities. The aim of GATS_CS timetable 
system was to solve the Universities  examination 

timetabling problem automatically and efficiently 
using an enhanced combination of Genetic Algorithm 

and Tabu Search memory with a newly proposed and 
developed course sandwiching algorithm. Results 

obtained were quite promising in terms of course 

allocation to exam halls, optimizing large halls by 
allocating multiple examinations into them without 

exceeding the hall capacity with minimal errors. 
However, the system isn’t 100% accurate because of 

issues like duplication of courses, course clashes and 
multiple allocations of courses but the results obtained 

were promising, way faster and less cumbersome than 

the present manual timetable approach. For future 
research directions, some constraints worth 

considering are issues with: 
1. Courses electives; 

2. Students re-writing failed courses; 
3. Students offering courses at lower levels; 

All these would be considered as part of future 
research directions in University examination 

timetabling system while trying to increase the course 

allocation rates and reducing clashes, duplications, 
and multiple examinations. Future University 

timetabling systems could also consider research into 
(1) Computer-based examinations (e-exams) and (2) 

Lecturers (invigilator) scheduling.  
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