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1 INTRODUCTION 
THE differential evolution (DE) algorithm is a 

population-based stochastic search technique (Storn & 
Price (1997)) and has been shown to be a simple yet 

powerful evolutionary algorithm for many real-world 
optimization problems, such as; function optimization, 

pattern recognition, power dispatch, antenna design, 

chemical processes and control systems (Xue et. al. 
(2015); Zhang &Sanderson (2009); Das and 

Suganthan (2011); Li et. al. (2013); Lu et. al. (2014)). 
In the DE algorithm, the five widely-used mutation 

strategies are “DE/rand/1”, “DE/best/1”, “DE/rand/2”, 
“DE/best/2”, and “DE/current-to-best/1” (Zhang & 

Sanderson (2009); Das & Suganthan (2011); Lu et. al. 
(2014)). The target vectors generated by a greedy 

mutation strategy, such as; “DE/best/1”, “DE/current-

to-best/1”, and “DE/best/2”, are generally attracted by 
the same best vector found so far by the entire 

population. The fact may lead to problems such as; 
premature convergence due to the resultant reduced 

population diversity, especially when solving 

multimodal problems. Two less greedy and more 

explorative variants of the “DE/current-to-best/1” 
mutation strategy, “DE/current-to-pbest/1” (Zhang & 

Sanderson (2009)) and “DE/current-to-gr_best/1” 
(Islam et. al. (2012)), were proposed to overcome the 

premature convergence, where pbest represents a 
randomly selected vector from the p top-ranked 

individuals at the current generation and gr_best 

means the best of the q% vectors randomly chosen 
from the current population. The central idea of these 

two strategies is to utilize the best or near-best 
member selected from a dynamically small pool to 

perturb the target vector. Such a scheme could 
preserve the diversity of the population so that the 

problem of premature convergence can be alleviated. 
Inspired by the above two mutation variants, this study 

attempts to develop another kind of less greedy and 

more explorative mutation strategy. Different from 
them, the proposed scheme substitutes the mean of the 

p top-best individuals (𝑝best̅̅ ̅̅ ̅̅ ̅) for the best vector in
“DE/best/1”. Such a mutation strategy is termed 

“DE/ 𝑝best̅̅ ̅̅ ̅̅ ̅ /1” in this study. Analogously to
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“DE/current-to-pbest/1” and “DE/current-to-gr_best/ 

1”, the target solutions generated by the proposed 
mutation strategy are not always attracted towards the 

same best vector found so far by the entire population, 
and this feature is helpful in avoiding a premature 

convergence at a local optimum. 
The performance of the DE algorithm is also 

sensitive to the settings of the control parameters (e.g., 

the scale factor 𝐹 and the crossover rate 𝐶𝑟). The best 
settings of the control parameters may be different for 

different problems. To successfully solve a specific 

optimization problem, it is generally necessary to fine-
tune the control parameters by a time-consuming trial-

and-error procedure (Qin et. al. (2009)). To solve this 
problem and make the performance of the DE more 

robust, several adaptive or self-adaptive mechanisms 
have been proposed to automatically find the proper 

trial vector generation strategies or suitable parameter 
settings during the search process (Zhang & 

Sanderson (2009); Das & Suganthan (2011); Lu et. al. 

(2014); Abbasa et. al. (2018)). If well designed, the 
strategy or parameter adaptation can improve the 

search performance and the robustness of an 
algorithm. JADE (Zhang & Sanderson (2009)), self-

adaptive differential evolution (SaDE) Qin et. al. 
(2009)), modified DE with p-best crossover 

(MDE_pBX) (Islam et. al. (2012)), jDE (Brest et. al. 

(2006)) and the ensemble of control parameters and 
mutation strategies with DE (EPSDE) (Mallipeddi et. 

al. (2011)) are well-known adaptive DE (ADE) 
variants. Empirical studies have shown that the 

parameter adaptation technique can lead to these ADE 
variants with superior performance. Among the 

previous ADE variants, both JADE and MDE_pBX 

generate new 𝐹  values according to a truncated 
Cauchy distribution with a scale parameter 𝛾𝐹 of 0.1 

and new 𝐶𝑟 values according to a normal distribution 

with standard deviation 𝜎𝐶𝑟  of 0.1. In addition, the 

location parameter of the Cauchy distribution (𝜇𝐹) and 

the mean of normal distribution (𝜇𝐶𝑟 ) are updated 

using new successful 𝐹 and 𝐶𝑟 values, respectively, at 
each generation. The main difference between them is 

that the updating rules of 𝜇𝐹  and 𝜇𝐶𝑟  for JADE and 

MDE_pBX are in different manners discussed later in 
the next section. Note that both the scale parameter 𝛾𝐹 

(JADE) and the standard deviation 𝜎𝐶𝑟  (MDE_pBX) 

remain constant during the search process. This gives 

rise to propose the motivation to a novel self-
adaptation scheme that can simultaneously adapt 𝜇𝐹 

and 𝜇𝐶𝑟  as well as 𝛾𝐹  and 𝜎𝐶𝑟  during the search 

process. The central idea of the proposed adaptation 

scheme is also inherited from JADE and MDE_pBX. 
That is, new 𝐹  values are generated according to a 

truncated Cauchy distribution and new 𝐶𝑟  values 

according to a normal distribution. However, in this 
study, 𝜇𝐹 and 𝛾𝐹  are updated using new successful 𝐹 

values at each generation, while 𝜇𝐶𝑟  and 𝜎𝐶𝑟  using 

new successful 𝐶𝑟  values. Such a modification 

attempts to further improve the robustness and 

convergence performance of DE algorithm. 
Integrating the proposed mutation strategy 

“DE/ 𝑝best̅̅ ̅̅ ̅̅ ̅ /1” with the aforementioned parameter 
adaptation scheme forms a new ADE variant termed 

ADE_ 𝑝̅ BM (ADE with mean-of-pbest mutation 

strategy) hereafter. In order to demonstrate the search 
effectiveness, the developed ADE_𝑝̅BM algorithm is 

compared with four state-of-the-art ADE variants over 

a set of 12 benchmark functions on real parameter 
optimization.  

Owing to the proportional-integral-derivative 

(PID) controllers with the advantage of a simple 

structure, good stability, and h igh reliab ility, they 

are still widely applied in the industrial p rocesses 

now (Tabatabaei & Barati-Boldaji (2017); Kim et. 

al. (2018)). This study therefore focuses on the 

optimization of the PID controller system by using the 
DE algorithm. Three PID control gains  are; 

proportional gain 𝐾𝑃, integral gain 𝐾𝐼  and derivative 

gain 𝐾𝐷  , which are determined by the proposed 

ADE_𝑝̅BM and the four ADE variants such that the 
pre-defined objective function is minimized. 

The remainder of this study is organized as 

follows: Section 2 briefly represents some background 
material of DE algorithms and PID controller design, 

the proposed mutation strategy “DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1”. The 
corresponding parameter adaptation scheme is 

described in Section 3. Section 4 represents the search 
performance of the proposed algorithm for 12 

benchmark functions and two PID controller design 

problems. Section 5 concludes this study. 

2 PRELIMINARIES 

2.1 Differential Evolution Algorithm 
ASSUME that a population contains 𝑁𝑝 individuals 

and each individual is in the form of a 𝐷-dimensional 

vector as; 𝐱 𝑖,𝐺 = (𝑥1𝑖,𝐺 ,𝑥2𝑖,𝐺 ,… , 𝑥𝐷𝑖,𝐺) , where 𝐺 

denotes at the generation 𝐺 and i = 1, 2, …, 𝑁𝑝. Note 

that an individual (target vector) represents a potential 

solution of the optimization problem. The DE 
algorithm begins with a randomly generated 

population within the search space. After initialization, 
the DE iteratively uses the trial vector generation 

strategy (i.e., mutation and crossover operations) and 
the selection operation to evolve the population until a 

stopping criterion is met. 
Mutation: The following are five most frequently 

used mutation strategies for generating a mutant 

vector 𝐯𝑖,𝐺  (Zhang & Sanderson (2009); Das & 

Suganthan (2011); Lu et. al. (2014)): 

“DE/rand/1”: 

 𝐯𝑖 ,𝐺 = 𝐱𝑟1,𝐺+ 𝐹(𝐱𝑟2,𝐺 −𝐱𝑟3,𝐺), (1) 

“DE/best/1”: 

 𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺 +𝐹(𝐱𝑟1,𝐺− 𝐱𝑟2,𝐺), (2) 
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“DE/current-to-best/1” 

(“DE/target-to-best/1” or “DE/rand-to-best/1”): 

 𝐯𝑖,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺− 𝐱 𝑖,𝐺) 

 +𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺), (3) 

“DE/rand/2”: 

 𝐯𝑖,𝐺 = 𝐱𝑟1,𝐺+𝐹(𝐱𝑟2,𝐺−𝐱𝑟3,𝐺) 

 +𝐹(𝐱𝑟4,𝐺−𝐱𝑟5,𝐺), (4) 

“DE/best/2”: 

 𝐯𝑖,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺 +𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺) 

 +𝐹(𝐱𝑟4,𝐺−𝐱𝑟5,𝐺), (5) 

where the indices r1, r2, r3, r4, and r5 are distinct 
integers randomly generated from the set {1, 2, …, 

𝑁𝑝}\{i}, (𝐱𝑟1,𝐺−𝐱𝑟2,𝐺)  or (𝐱𝑟2,𝐺−𝐱𝑟3,𝐺) is a diff-

erence vector to mutate the base vector and the  𝐱𝑏𝑒𝑠𝑡,𝐺 

represents the best vector at the 𝐺-th generation. The 

parameter F is called the scale factor for scaling the 

difference vector and typically ranged on interval [0.4, 
1.0] according to (Das & Suganthan (2011)). 

Crossover: After mutation, the crossover operation 

is applied to each pair of a target vector 𝐱 𝑖,𝐺 and its 

corresponding mutant vector 𝐯𝑖,𝐺  to generate a trial 

vector 𝐮𝑖,𝐺 = (𝑢1𝑖,𝐺 ,𝑢2𝑖,𝐺 ,… ,𝑢𝐷𝑖,𝐺). The widely used 

one is the binomial crossover operation defined as 
follows: 

 𝑢𝑗𝑖,𝐺 = {
𝑣𝑗𝑖,𝐺 , if (𝑟𝑎𝑛𝑑𝑗≤ 𝐶𝑟) or (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑗𝑖,𝐺 , otherwise
 (6) 

where j = 1, 2, …, D and 𝐶𝑟 is the crossover rate 

within the range (0,1). In (6), 𝑟𝑎𝑛𝑑𝑗  is a random 

number within the range of (0, 1) and 𝑗𝑟𝑎𝑛𝑑 ∈
{1,2,… , 𝐷} is a randomly chosen index, which ensures 

that the trial vector 𝐮𝑖,𝐺 gets at least one element from 

𝐯𝑖 ,𝐺. 

Selection: The selection operation selects the better 

one from the target vector 𝐱 𝑖,𝐺 and the trial vector 𝐮𝑖,𝐺, 

according to their fitness values is as follows: 

 𝐱 𝑖,𝐺+1= {
𝐮𝑖 ,𝐺 , if  𝑓(𝐮𝑖,𝐺) ≤ 𝑓(𝐱 𝑖,𝐺)
𝐱 𝑖,𝐺 , otherwise

 (7) 

Using this greedy selection scheme, all individuals of 
the next generation are better than the individuals of 

the current population. 

2.2 DE with Self-adaptation Schemes 
There are many ADE variants in the DE literature. 

This section briefly reviews jDE (Brest et. al. (2006)), 
JADE (Zhang & Sanderson (2009)), and MDE_pBX 

(Islam et. al. (2012)), since they will be compared 
with the proposed approach later in this study. 

1) jDE: The scale factor and crossover rate are 

encoded with the individual. Brest et al. (2006) 
believed that better control parameter values lead to 

better individuals that in turn are more likely to 

survive. The control parameters are updated as 

follows: 

 𝐹𝑖,𝐺+1= {
𝑟𝑎𝑛𝑑(0.1,1), if 𝑟𝑎𝑛𝑑1≤ 𝜏1
𝐹𝑖,𝐺 ,                 otherwise      

 (8) 

 𝐶𝑟𝑖 ,𝐺+1= {
𝑟𝑎𝑛𝑑(0,1), if 𝑟𝑎𝑛𝑑2≤ 𝜏2
𝐶𝑟𝑖,𝐺 ,            otherwise      

 (9) 

where rand(a, b) is a uniform random number 

between a and b, 1 = 0.1 and 2 = 0.1. By this way, a 

successful F and Cr value has the probability of 0.9 to 
be selected to generate an offspring at the next 

generation. Here a successful F and Cr value means 
that the offspring generated with this F and Cr value 

successfully enters the next generation. 

2) JADE: Zhang and Sanderson (2009) 
implemented the following two mutation strategies: 

“DE/current-to-pbest/1 (without archive)”: 

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

−𝐱 𝑖,𝐺)+𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺),(10) 

“DE/current-to-pbest/1 (with archive)”: 

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

−𝐱 𝑖,𝐺)+𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺),(11) 

where 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 is a pbest solution, which is randomly 

chosen as one of the top 100p% individuals in the 

current population with p  (0, 1]. Note that the 

parameter p determines the greediness of the mutation 
strategy. Denote A as the archive used to store the 

inferior solutions recently explored in the evolutionary 

search and P as the current population. Vectors 𝐱 𝑖,𝐺, 

𝐱𝑟1,𝐺, 𝐱𝑟2,𝐺, and 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 are randomly chosen from the 

current population P, but 𝐱𝑟2,𝐺  is randomly chosen 

from the union, 𝐏∪ 𝐀, of the current population and  

archive.  

At each generation, the mutation factor 𝐹𝑖 of each 

target vector 𝐱 𝑖 is independently generated according 

to a Cauchy distribution as; 

 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝜇𝐹 ,0.1), (12) 

and then truncated to be 1 if 𝐹𝑖 > 1 or regenerated if 

𝐹𝑖 ≤ 0. Denote 𝑆𝐹 as the set of all successful mutation 

factors at current generation G. The location 
parameter 𝜇𝐹 is initialized to be 0.5 and then updated 

at the end of each generation by 

 𝜇𝐹 = 𝑐1 ∙ 𝜇𝐹 + (1 − 𝑐1) ∙ 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (13) 

where 𝑐1 ∈ [0,1]  controls the rate of parameter 

adaptation and 𝑚𝑒𝑎𝑛𝐿(∙) is the Lehmer mean given by 

 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹) = ∑ 𝐹2𝐹∈𝑆𝐹
∑ 𝐹𝐹∈𝑆𝐹
⁄ . (14) 

Analogously, the crossover rate 𝐶𝑟𝑖  of each 

individual is independently generated according to a 

Gaussian distribution as; 

 𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝐶𝑟 , 0.1), (15) 

and then truncated to [0, 1]. Denote 𝑆𝐶𝑟 as the set of 

all successful crossover rates at current generation G. 
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The mean 𝜇𝐶𝑟  is also initialized to be 0.5 and then 

updated at the end of each generation by 

 𝜇𝐶𝑟 = 𝑐2 ∙ 𝜇𝐶𝑟 + (1 − 𝑐2) ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑟), (16) 

where 𝑐2 ∈ [0,1]  controls the rate of parameter 

adaptation and 𝑚𝑒𝑎𝑛𝐴(∙) is the arithmetic mean. 

As JADE (Zhang & Sanderson (2009)), the Cauchy 

distribution is more helpful than the Normal 
distribution to diversify the mutation factors and thus 

avoid premature convergence, which often occurs in 
greedy mutation strategies if the mutation factors are 

highly concentrated around a certain value, besides, an 
arithmetic mean of 𝑆𝐹 tends to be smaller than the 

optimal value of the mutation factor and thus it might 

cause premature convergence at the end. The Lehmer 
mean in (13) therefore is helpful to propagate larger 

mutation factors, which in turn improves the progress 
rate. 

3) MDE_pBX: Unlike JADE, Islam et. al. (2012) 

developed the following novel mutation and crossover 
strategies: 

“DE/current-to-gr_best/1”: 

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺− 𝐱 𝑖,𝐺)+ 𝐹(𝐱𝑟1,𝐺−𝐱𝑟2,𝐺) 

  (17) 

where 𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺  is the best of the q% vectors 

randomly chosen from the current population and q  
(0, 100), whereas 𝐱𝑟1,𝐺  and 𝐱𝑟2,𝐺  are two dintinct 

vectors and none of them is equal to 𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺 or the 

target vector 𝐱 𝑖,𝐺 to ensure that none of the vectors is 

equal in (17). Besides, the p-best crossover operation 

incorporates a greedy parent selection strategy with 
the conventional binomial crossover scheme of DE. 

Parameter p is linearly decreased over generations as 

 𝑝 = 𝑐𝑒𝑖𝑙 [
𝑁𝑝

2
∙ (1 −

𝐺−1

𝐺𝑚𝑎𝑥
)], (18) 

where 𝐺𝑚𝑎𝑥  represents the maximal number of 

generations and 𝑐𝑒𝑖𝑙(∙)  is the “ceiling” function 

returning the lowest integer greater than its argument. 

In MDE_pBX, the control parameters, 𝐹𝑖 and 𝐶𝑟𝑖 , 
of each target vector are also generated according to 

(12) and (15), respectively. The location parameter 𝜇𝐹 

is still initialized to be 0.5, but is updated at the end of 
each generation by 

 𝜇𝐹 = 𝑤𝐹 ∙ 𝜇𝐹 + (1 −𝑤𝐹) ∙𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐹), (19) 

where the weight term 𝑤𝐹 = 0.8 + 0.2 ∙ 𝑟𝑎𝑛𝑑(0,1) 
and 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(∙) stands for the power mean given by 

 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐹)= ∑ (𝐹𝑛 |𝑆𝐹|⁄ )
1

𝑛𝐹∈𝑆𝐹
, (20) 

with |𝑆𝐹|  denoting the cardinality of the set 𝑆𝐹 . 

However, the initial value of mean 𝜇𝐶𝑟  becomes 0.6 

and then it is updated at the end of each generation by 

 𝜇𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜇𝐶𝑟 + (1 −𝑤𝐶𝑟) ∙ 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐶𝑟), 

  (21) 

where the weight term of 𝑤𝐶𝑟 = 0.9+ 0.1 ∙
𝑟𝑎𝑛𝑑(0,1)  and the definition of power mean 

𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐶𝑟) is analogous to (20). 

2.3 PID Controller Design 
Figure 1 illustrates a standard control system with a 

PID controller, where 𝑟(𝑡) and 𝑦(𝑡) are the reference 

(desired) signal and the system output, respectively. 

The continuous-time form of a PID controller is 
described as follows: 

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+𝐾𝐷

𝑑

𝑑𝑡
𝑒(𝑡), (22) 

where 𝑒(𝑡) is the error signal between the desired and 

actual outputs, 𝑢(𝑡) is the PID control force (output), 

and 𝐾𝑃 ,𝐾𝐼 ,  and  𝐾𝐷  are PID parameters (Alfi and 

Modares (2011)). In the simulation, the PID control 
law can be discretized as follows: 

𝑢(𝑘) = 𝐾𝑃𝑒(𝑘) +𝐾𝐼𝑇𝑠∑𝑒(𝑗)

𝑘

𝑗=1

+ 

 𝐾𝐷[𝑒(𝑘) − 𝑒(𝑘 − 1)]/𝑇𝑠  (23) 

where 𝑇𝑠 is the sampling time (Zeng et. al. (2014)). 

In the control system design, the objective is 
generally to minimize the cost function, such as the 

integral of absolute error ∫|𝑒(𝑡)|𝑑𝑡 (IAE), integral of 

time-weighted absolute error ∫ 𝑡|𝑒(𝑡)|𝑑𝑡 (ITAE) or 

sum of squared error ∫ 𝑒2(𝑡)𝑑𝑡 (SSE), for measuring 

the control performance. Rather than using IAE, ITAE 
or SSE, this study selects (24) as the cost function to 

determine the performance of PID controller. 
𝐽(𝑡) = 

{
 
 

 
 ∫

[𝑤1|𝑒(𝑡)| +𝑤2𝑢
2(𝑡)]𝑑𝑡

∞

0
+𝑤3𝑡𝑟 ,                         

                        if ∆𝑦(𝑡) ≥ 0                        

∫ [𝑤1|𝑒(𝑡)| +𝑤2𝑢
2(𝑡)+ 𝑤4|∆𝑦(𝑡)|]𝑑𝑡

∞

0
+ 𝑤3𝑡𝑟,

 if ∆𝑦(𝑡) < 0

  

  (24) 

where ∆𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 −𝑇𝑠), 𝑤𝑖, 𝑖 = 1, 2,3, 4, are 
weight coefficients and 𝑤4 ≫ 𝑤1  (Zheng et. al. 

(2009); Zeng et. al. (2014)). As seen, cost function 

(24) could minimize the IAE. At the same time, the 
square of the controller output 𝑢2(𝑡) is included to 

avoid exporting a large control value as well as the 

rise time tr is added to hasten the transient response. 
Besides, in order to avoid overshooting, a penalty 

value is adopted in the fitness function. That is, once 

overshooting occurs ∆𝑦(𝑡) < 0 , the value of the 
overshooting (a penalty value |∆𝑦(𝑡)|) is added to the 

cost function. 

 

PID 
controller Plantr y

e u

+ _

 
Figure 1. PID Control System. 
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3 ADE_𝒑̅BM ALGORITHM 
THIS section describes the proposed ADE_𝑝̅BM 

algorithm, which includes a novel mutation strategy 

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1” and a modified parameter adaptation 
scheme. 

3.1 Mean-of-pbest Mutation Strategy 
In the greedy mutation strategies, such as DE/best/k 

and DE/current-to-best/k, the best solution will guide 
the direction of the evolutionary search. The fact may 

lead to the problem of premature convergence caused 
by the reduced population diversity. “DE/current-to-

pbest/1” (Zhang & Sanderson (2009)) and 

“DE/current-to-gr_best/1” (Islam et. al. (2012)) are 
two simple but effective mutation strategies to solve 

the above problem. Originated from these two 
methodologies, this study develops another kind of 

less greedy and more explorative mutation strategy. 
The new mutation strategy is to replace the best 

solution in “DE/best/1” with the mean of p top-ranked 

vectors (𝑝best̅̅ ̅̅ ̅̅ ̅ ). Such a mutation strategy, termed 

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1”, is proposed to serve as the basis of the 

ADE in this study. 

Denote, 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

, 𝑘 = 1,2,… ,𝑝,  as the kth best 

vector at the G-th generation. Under this denotation, 

𝐱𝑏𝑒𝑠𝑡(𝑘−1),𝐺
𝑝

 is better than 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

,  i.e., 

𝑓(𝐱𝑏𝑒𝑠𝑡(𝑘−1),𝐺
𝑝

) ≤ 𝑓(𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

) , where 𝑓(∙)  is the 

fitness function. It is also obvious that 𝐱𝑏𝑒𝑠𝑡(1),𝐺
𝑝

=

𝐱𝑏𝑒𝑠𝑡,𝐺, while 𝑘 = 1. Once all the p-top best vectors 

are determined, the mean of those vectors can be 
represented by 

 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

=
1

𝑝
∑ 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺

𝑝𝑝
𝑘=1 . (25) 

As seen, the mean-of-pbest vector 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 involves not 

only the best solution information but also the 
information of other top-ranked solutions. 

The proposed mutation strategy is a generalization 

of “DE/best/1”, where 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 plays the role of the 

single best solution in DE/best/1 as follows: 

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1”: 

 𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

+ 𝐹(𝐱𝑟1,𝐺−𝐱𝑟2,𝐺), (26) 

with the help of the above strategy, the target solutions 

are not always attracted towards the single best vector, 

and this feature is helpful in avoiding a premature 
convergence at a local optima. In order to guarantee 

the proposed DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1 and not to attract towards 
the single best vector, the limitation of (26) is 

𝑁𝑝 ≥ 𝑝 ≥ 2 . Note that the parameter p also 

determines the greediness of the mutation strategy as 

in JADE and MDE_pBX. 

3.2 DE with Self-adaptation Schemes 
Analogous to JADE ((Zhang & Sanderson (2009)) 

and MDE_pBX (Islam et. al. (2012)), the adaptation 

of control parameters used in this study is also based 

on the following principle: “Better control parameters 

tend to generate individuals that are more likely to 
survive and thus these values should be propagated to 

the following generations”. The basic approach to 
implement this principle is to record recent successful 

scale factors and crossover rates and then use them to 
guide the generation of new 𝐹𝑖 ’s and 𝐶𝑟𝑖 ’s, 

respectively. The main difference between them is that 

the scale parameter 𝛾𝐹 of Cauchy distribution and the 

standard deviation 𝜎𝐶𝑟 of the Gaussian distribution are 

adaptable in the proposed schemes but 𝛾𝐹 and 𝜎𝐶𝑟 are 
constant in JADE and MDE_pBX. 

Crossover Rate Adaptation: At every generation, 
the crossover rate 𝐶𝑟𝑖  of each individual is 

independently generated according to a Gaussian 

distribution as; 

 𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝐶𝑟 , 𝜎𝐶𝑟), (27) 

and then truncated to [0, 1]. The mean 𝜇𝐶𝑟  is 

initialized to be 0.5 and then updated at the end of 

each generation by 

 𝜇𝐶𝑟 = 𝑤̂𝐶𝑟 ∙ 𝜇𝐶𝑟 + (1 − 𝑤̂𝐶𝑟) ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑟), (28) 

where 𝑚𝑒𝑎𝑛𝐴(∙) is the arithmetic mean and the weight 

term 𝑤̂𝐶𝑟  is randomly generated by 

 𝑤̂𝐶𝑟 = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). (29) 

While the standard deviation of the members in 𝑆𝐶𝑟 
plays the role of the mean value in (28), the adaptation 
of 𝜎𝐶𝑟  can be developed in a similar way. In this 

study, the standard deviation 𝜎𝐶𝑟  is initialized to be 

0.1 and then updated at the end of each generation as 

 𝜎𝐶𝑟 = ŵ𝐶𝑟 ∙ 𝜎𝐶𝑟 + (1 − 𝑤̂𝐶𝑟) ∙ 𝑠𝑡𝑑(𝑆𝐶𝑟), (30) 

where 𝑠𝑡𝑑(∙) is the standard deviation. Note that 𝜎𝐶𝑟 is 

truncated to be 0.1 if 𝜎𝐶𝑟 > 0.1, i.e., 𝜎𝐶𝑟 ∈ (0, 0.1]. If 

𝑆𝐶𝑟  is empty at a specific generation, 𝜇𝐶𝑟  remains 

changeless at that generation but 𝜎𝐶𝑟 is reset to be 0.1. 

Scale Factor Adaptation: At each generation, the 
scale factor 𝐹𝑖  of each target vector 𝐱 𝑖  is 

independently generated according to a Cauchy 

distribution as; 

 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝜇𝐹 ,𝛾𝐹), (31) 

and then truncated to be 1 if 𝐹𝑖 > 1 or regenerated if 

𝐹𝑖 ≤ 0. That is 𝐹𝑖 ∈ (0, 1]. The location parameter 𝜇𝐹 

is initialized to be 0.5 and then updated at the end of 
each generation by 

 𝜇𝐹 = 𝑤̂𝐹 ∙ 𝜇𝐹 + (1 − 𝑤̂𝐹) ∙𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (32) 

where 𝑚𝑒𝑎𝑛𝐿(∙) is the Lehmer mean and 

 𝑤̂𝐹 = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). (33) 

In the Cauchy distribution, the scale parameter 

specifies the half-width at half-maximum, as the 

standard deviation in the Gaussian distribution. Thus 
the proposed adaptation of 𝛾𝐹 is similar to (30). That 

http://en.wikipedia.org/wiki/Scale_parameter
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is, the scale parameter 𝛾𝐹 is initialized to be 0.1 and 

then updated at the end of each generation as ; 

 𝛾𝐹 = 𝑤̂𝐹 ∙ 𝛾𝐹 + (1 − 𝑤̂𝐹) ∙ 𝑠𝑡𝑑(𝑆𝐹), (34) 

The scale parameter is  truncated to be 0.1 if 

𝛾𝐹 > 0.1. In another words, 𝛾𝐹 ∈ (0, 0.1]. Similarly, if 

the set 𝑆𝐹  is empty at a specific generation, the 

location para-meter 𝜇𝐹  remains changeless at that 
generation but the scale parameter 𝛾𝐹 is reseted to be 

0.1. 

Explanations: The proposed adaptation of the 
control parameters is also based on the adaptation 

principle used in JADE and MDE_pBX. As seen in 

(28) and (32) they are analogous to (16) and (13), 
respectively. Besides, this study also uses the same 

idea to implement the adaptations of the standard 
deviation 𝜎𝐶𝑟  (30) and scale parameter 𝛾𝐹  (34). 

However, the different adaptive DE algorithm has 

different settings for the weight terms. JADE utilizes 
the constant weight term, i.e., 𝑐 = 0.9 in (13) and (16) 

(Zhang and Sanderson (2009)). The experimental 

results in MDE_pBX indicates that small random 
perturbations to the weight term 𝑤 in (19) and (21) are 

very effective in improving the search performance on 

a wide variety of functions (Islam et. al. (2012)). 
Howerer, the magnitude of random perturbation, i.e., 

0.2 for the scalar factor 𝐹  and 0.1 for the crossover 

rate 𝐶𝑟, must be properly specified in advance. In 
order to reduce the effect of the setting parameter 

caused by the user, the proposed weight term is simply 

set to be in the form of 𝑤̂ = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). It is 
almost parameter free. Since 0.5 ∙ 𝑟𝑎𝑛𝑑(0,1) < 0.5 , 

we have 𝑤̂ > (1− 𝑤̂) . Such a relationship is 

consistent with that used in JADE and MDE_pBX. 

For example; 𝑐1 > 1− 𝑐1  if 𝑐1= 0.9  in (13) and 

𝑤𝐶𝑟 > 1 −𝑤𝐶𝑟  in (21). Our experiment results also 
reveal that the proposed weight terms not only are 

insensitive to different problems according to their 
role of controlling the rate of the parameter adaptation 

but also enable ADE_ 𝑝̅BM to perform better than 

JADE and MDE_pBX on a wide variety of functions 
and PID controller design problems. 

3.3 DE with Self-adaptation Schemes 
Table 1 represents the procedure used for 

implementing the proposed ADE_𝑝̅BM algorithm. All 

the parameters of the Cauchy and Gaussian 

distribution functions are updated at the end of each 
generation according to the record of recent successful 

control parameters. Analogously to JADE and 
MDE_pBX, the basic approach to implement the  

 

Table 1. Pseudo Code of the ADE_𝒑̅BM Algorithm. 

Line Procedure of the ADE_𝑝̅BM 

1 Begin 
2 Set 𝜇𝐹 = 0.5, 𝛾𝐹 = 0.1 , 𝜇𝐶𝑟 = 0.5, 𝜎𝐶𝑟 = 0.1 

3 Initialize a random population 

  {𝐱 𝑖,0|𝑖 = 1,2,… ,𝑁𝑝} 

4 For G = 1 to Gmax 

5  𝑆𝐹 = ∅, 𝑆𝐶𝑟 = ∅ 

6  Find the best vector 𝐱𝑏𝑒𝑠𝑡,𝐺 

7  Determine the mean of p-top best vectors 

   𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

= ∑ 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝𝑝

𝑘=1 𝑝⁄  

8  For i = 1 to 𝑁𝑝  

9  Generate 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦 (𝜇𝐹 , 𝛾𝐹), 
  𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇𝐶𝑟, 𝜎𝐶𝑟) 

10  Randomly generate two integers r1 and r2 in 

the range [1, 𝑁𝑝], and r1  r2  i 

11  𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

+ 𝐹(𝐱𝑟1,𝐺− 𝐱𝑟2,𝐺) 

12  Randomly generate a integer 𝑗𝑟𝑎𝑛𝑑  in the 

range [1, D] 

13   For j = 1 to D 

14  If 𝑗 = 𝑗𝑟𝑎𝑛𝑑  or 𝑟𝑎𝑛𝑑 (0,1) < 𝐶𝑟𝑖 
15  𝑢𝑗𝑖,𝐺 = 𝑣𝑗𝑖,𝐺 

16  Else  
17  𝑢𝑗𝑖,𝐺 = 𝑥𝑗𝑖,𝐺 

18  End If 
19   End for 
20   If 𝑓(𝐮𝑖,𝐺) ≤ 𝑓(𝐱 𝑖,𝐺)  

21  𝐱 𝑖,𝐺+1 = 𝐮𝑖,𝐺; 𝐹𝑖 → 𝑆𝐹, 𝐶𝑟𝑖 → 𝑆𝐶𝑟 

22  Else  
23  𝐱 𝑖,𝐺+1 = 𝐱 𝑖,𝐺 

24   End If 
25  End for 
26  If 𝑆𝐹 ≠ ∅ and 𝑆𝐶𝑟 ≠ ∅ 

27  𝜇𝐹 = 𝑤𝐹 ∙ 𝜇𝐹 + (1 − 𝑤𝐹) ∙ 𝑚𝑒𝑎𝑛𝐿 (𝑆𝐹), 

 𝛾𝐹 = 𝑤𝐹 ∙ 𝛾𝐹 + (1 − 𝑤𝐹) ∙ 𝑠𝑡𝑑(𝑆𝐹)  

28  𝜇𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜇𝐶𝑟 +(1 − 𝑤𝐶𝑟) ∙ 
   𝑚𝑒𝑎𝑛𝐴 (𝑆𝐶𝑟),  

𝜎𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜎𝐶𝑟 + (1 − 𝑤𝐶𝑟) ∙ 𝑠𝑡𝑑(𝑆𝐶𝑟) 

29  Else  
30  𝛾𝐹 = 0.1, 𝜎𝐶𝑟 = 0.1 

31  End If 
32 End for 
33 End 

adaptation of the control parameters is to record recent 

successful scale factors and crossover rates , then use 
them to guide the generation of new 𝐹𝑖’s and 𝐶𝑟𝑖 ’s, 

respectively. However, rather than using 𝛾𝐹 = 0.1 and 

𝜎𝐶𝑟 = 0.1  in the probability distribution functions, 

both scale parameter 𝛾𝐹 and standard deviation 𝜎𝐶𝑟 are 

adaptable in the proposed ADE_𝑝̅BM algorithm. The 

adaptations of 𝛾𝐹 and 𝜎𝐶𝑟  are helpful to improve the 
solution accuracy and reliability of the ADE 

algorithm, shown later in the next section. 
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Table 2. Comparison of Weight Terms and Initial Value 

Settings. 

 JADE MDE_pBX ADE_𝑝̅BM 

Weight terms: 

𝜇𝐹  
𝑐1
= 0.9 

𝑤𝐹 = 0.8 

+0.2 ∙ 𝑟𝑎𝑛𝑑 (0,1) 
𝑤𝐹 = 1 

−0.5  ∙ 𝑟𝑎𝑛𝑑 (0,1) 

𝛾𝐹      
the same value as 

in 𝜇𝐹  

𝜇𝐶𝑟 
𝑐2
= 0.9 

𝑤𝐶𝑟 = 0.9 

+0.1 ∙ 𝑟𝑎𝑛𝑑 (0,1) 
𝑤𝐶𝑟 = 1− 

0.5 ∙ 𝑟𝑎𝑛𝑑 (0,1) 

𝜎𝐶𝑟      
the same value as 

in 𝜇𝐶𝑟 

Initial value settings: 

𝜇𝐹  0.5 0.5 0.5 

𝛾𝐹  0.1 0.1 0.1 

𝜇𝐶𝑟 0.5 0.6 0.5 

𝜎𝐶𝑟  0.1 0.1 0.1 

Note: boldface indicates the number being a constant 

4 SIMULATION RESULTS  
IN this Section, the ADE_ 𝑝̅ BM is applied to 

optimize a set of 12 benchmark functions selected 
from (Brest et. al. (2006)) and design the optimal PID 

controller for two single-variable plants. The 
performance of the proposed ADE_𝑝̅BM algorithm is 

compared with four state-of-the-art ADE variants: jDE 

(Brest et. al. (2006)), SaDE ((Qin et. al. (2009)), 
JADE (Zhang & Sanderson (2009)), and MDE-pBX 

(Islam et. al. (2012)). Besides, in the simulations, all 

the programs coded by Matlab version R2010a were 
executed by a personal computer with Intel(R) 

Core(TM) i5-3470 CPU @ 3.20/3.60 GHz processor, 
8.0-GB RAM and Windows 7 operating system with 

service pack 1. 

4.1 Global Optimization Problems 
Table 2 represents the selected benchmark 

functions and detailed descriptions about those 
benchmark functions can be found in (Brest et. al. 

(2006)).  

Dimensions (D), search spaces, global optimum 
values (fmin), and the maximum number of generations 

(Gmax) for each test function are also listed in the same 
table. Population size 𝑁𝑝 for the ADE variants has 

been kept to 100 irrespective of problem dimension D. 

The settings of weight terms and initial values of all 

adjustable parameters used in JADE, MDE_pBX and 
ADE_ 𝑝̅ BM are given in Table 3. Other specific 

parameters of state-of-the-art ADE variants and 

ADE_𝑝̅BM are listed as follows: 
1) jDE with 𝐹𝑙= 0.1, 𝐹𝑢 = 0.9, and 𝜏1= 𝜏2 = 0.1  

(Brest et. al. (2006)). 

2) JADE with 𝑐 = 0.9, 𝑝 = 0.05, and optional 

external archive (Zhang and Sanderson (2009)). 
3) MDE_pBX with 𝑞 = 15%  and 𝑛 = 1.5  Islam 

et. al. (2012)). 

4) ADE_𝑝̅BM with 𝑝 = 5. 

Each algorithm was run as 50 independent trials on 
every benchmark function and their results are used in 

the comparison. This study also selects a threshold 
value for each benchmark function to compare the 

convergence speeds and reliabilities between different 
ADE algorithms, except function f7, for functions with 

minimum at zero, this threshold is at 10−5 . The 

threshold of f7 is 10−3. For function f8, this value is 

chosen to be −12,000. 
In order to demonstrate the benefit of the proposed 

adaptations of 𝛾𝐹  and 𝜎𝐶𝑟 , the results obtained by 

ADE_𝑝̅BM with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1 are given in 

Table 3. Twelve Selected Benchmark Functions. 

Function D Search range 𝑓𝑚𝑖𝑛  Gmax 

𝑓1(𝐱) = ∑ 𝑥𝑖
2𝐷

𝑖=𝑖   30 [−100, 100]𝐷  0 1,500 

𝑓2 (𝐱) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝐷
𝑖=1

𝐷
𝑖=1   30 [−10, 10]𝐷 0 2,000 

𝑓3 (𝐱) = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝐷
𝑖=1   30 [−100, 100]𝐷  0 5,000 

𝑓4(𝐱) = max  {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷}  30 [−100, 100]𝐷  0 5,000 

𝑓5 (𝐱) = ∑ [100(𝑥𝑖+1− 𝑥𝑖
2)2+ (𝑥𝑖 − 1)

2]𝐷−1
𝑖=1   30 [−30, 30]𝐷 0 20,000 

𝑓6 (𝐱) = ∑ (⌊𝑥𝑖 + 0.5⌋)
2𝐷

𝑖=1   30 [−100, 100]𝐷  0 1,500 

𝑓7 (𝐱) = ∑ 𝑖𝑥𝑖
4𝐷

𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1)  30 [−1.28, 1.28]𝐷 0 3,000 

𝑓8 (𝐱) = −∑ (𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖 |)
𝐷
𝑖   30 [−500, 500]𝐷  -12569.5 9,000 

𝑓9(𝐱) = ∑ [𝑥𝑖
2− 10 cos(2𝜋𝑥𝑖) + 10]

𝐷
𝑖=1   30 [−5.12, 5.12]𝐷 0 5,000 

𝑓10(𝐱) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 )  

– 𝑒𝑥𝑝 (
1

𝐷
∑ cos(2𝜋𝑥𝑖)
𝐷
𝑖=1

)+ 20 + 𝑒  

30 [−32, 32]𝐷 0 1,500 

𝑓11(𝐱) =
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝐷

𝑖=1 + 1  30 [−600, 600]𝐷  0 2,000 

𝑓12(𝐱) =
𝜋

𝐷
{10 sin2(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 + 10 sin2 (𝜋𝑦𝑖+1)]
𝐷
𝑖=1   

 +(𝑦𝐷 − 1)
2} + ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝐷
𝑖=1   

 𝑦𝑖 = 1 +
1

4
(𝑥𝑖+ 1), 𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚)  

   = {
𝑘(𝑥𝑖− 𝑎)

𝑚, 𝑥𝑖 > 𝑎
0,−𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑥𝑖 < −𝑎

  

30 [−50, 50]𝐷 0 1,500 
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the last column of Tables 4 and 5. The shaded 

numbers in the last column represent that ADE_𝑝̅BM 

with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1 , which performs better 

than the ADE_𝑝̅BM with adaptable 𝛾𝐹 and 𝜎𝐶𝑟 on the 

corresponding item. Note that, unless otherwise stated, 
the following comparisons do not take those numerical 

results into consideration. 

4.1.1 Comparisons on Solution Accuracy and 
Reliability 

For each function in every ADE variant, the mean 
and standard deviation of all successful runs are 

presented in Table 4. The success rate of each 
algorithm is also given in the table and it is useful to 

compare the reliability of the different algorithms. The 

success of an algorithm means that this algorithm can 

result in a function value no worse than the predefined 
threshold, with the number of generations less than the 

corresponding maximum number. The success rate is 
calculated as the number of successful runs divided by 

the total number of runs. For clarity, boldface 
indicates the best result(s) among all of the ADE 

variants, and rows. “No. of best” and “No. of 100%” 
represent the numbers of the best mean values and 

100% successful runs, respectively, the corresponding 

algorithm can attain. The proposed ADE_ 𝑝̅ BM 
obtains the best accuracy on 8 out of 12 functions and 

yields 100% success rate on 10 functions, while SaDE 

performs the best accuracy on 7 functions and 

Table 4. Comparisons of Solution Accuracy and Success Rate for each ADE Variant. 

  jDE SaDE JADE MDE_pBx ADE_𝑝̅BM ADE_𝑝̅BM 

Function   
𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

𝛾𝐹  and 𝜎𝐶𝑟 : 

adaptable 

𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

f1 

Mean 1.0293e-15(+) 5.4254e-38(+) 1.7826e-64(+) 2.9293e-22(+) 2.3496e-97 3.9786e-119 

Std. Dev. 4.55e-16 5.37e-38 3.27e-64 2.06e-22 6.94e-97 1.28e-118 

Rate (%) 100 100 100 100 100 100 

f2 

Mean 1.2974e-13(+) 9.9708e-27(+) 1.8412e-47(+) 1.8566e-15(+) 2.0556e-66 1.7184e-51 

Std. Dev. 3.79e-14 6.41e-27 1.82e-47 1.05e-15 1.04e-65 5.46e-51 

Rate (%) 100 100 100 100 100 100 

f3 

Mean (+) 6.9257e-36(+) 6.0877e-53(+) 2.9038e-28(+) 1.4531e-30 9.7286-69 

Std. Dev.  1.194e-35 1.08e-52 5.15e-28 6.15e-30 2.98e-68 

Rate (%) 0 100 100 100 100 100 

f4 

Mean 1.0494e-08(+) 2.8600e-24(+) 1.8922e-12(+) 6.2056e-16(+) 5.5128e-09 1.8568e-11 

Std. Dev. 3.71e-09 1.94e-24 3.03e-12 8.21e-16 2.66e-08 3.90e-11 

Rate (%) 100 100 100 100 100 100 

f5 

Mean 0() 6.5263e-30() (+) 0() 2.9997e-27 1.2402e-26 

Std. Dev. 0 8.566e-30  0 5.73e-27 3.75e-26 

Rate (%) 100 100 2 100 100 90 

f6 

Mean 0(=) 0(=) 0(=) 0(=) 0 0 

Std. Dev. 0 0 0 0 0 0 

Rate (%) 100 100 100 100 100 42 

f7 

Mean (+) 8.3274e-04(+) 7.1478e-04(+) 7.8805e-04(+) 6.1142e-04 6.6889e-04 

Std. Dev.  1.40e-04 2.26e-04 1.59e-04 1.39e-04 1.79e-04 

Rate (%) 0 48 26 38 84 56 

f8 

Mean -1.2569e+04() -1.2569e+04() -1.2538e+04(=) (+) -1.2493e+04 -1.2384e+04 

Std. Dev. 7.34e-12 7.34e-12 5.24e+01  1.14e+02 1.15e+02 

Rate (%) 100 100 100 2 100 100 

f9 

Mean 0() 0() 0() 0() 0 4.8009e-17 

Std. Dev. 0 0 0 0 0 2.92e-16 

Rate (%) 100 100 100 96 78 74 

f10 

Mean 9.0786e-09(+) 4.4408e-15(=) 6.2172e-15(+) 6.9841e-12(+) 4.4408e-15 8.9557e-15 

Std. Dev. 1.88e-09 0 1.81e-15 2.83e-12 0 4.67e-15 

Rate (%) 100 100 48 100 100 96 

f11 

Mean 0(=) 0(=) 0(=) 0(+) 0 5.8432e-18 

Std. Dev. 0 0 0 0 0 2.51e-17 

Rate (%) 100 100 100 92 100 76 

f12 

Mean 8.0439e-17(+) 1.5705e-32(=) 1.5705e-32(=) 1.9951e-23(+) 1.5705e-32 2.4036-32 

Std. Dev. 4.10e-17 5.52e-48 5.52e-48 1.89e-23 5.52e-48 2.27e-32 

Rate (%) 100 100 100 100 100 88 

No. of best  5 7 5 4 8  

No. of 100% 10 11 9 8 10  

w/t/l 7/2/3 5/4/3 7/4/1 9/1/2   

“+”, “” and “=” indicate ADE_𝑝̅BM is respectively better than, worse than, or similar to its competitor according to 

Wilcoxon’s rank sum test at  = 0.05. 
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achieves 100% success rate on 11 functions. As seen, 
ADE_𝑝̅BM and SaDE are the best two algorithms. In 

order to compare the significance between the two 

algorithms, the Wilcoxon’s rank sum test is also used 
(Yu et. al. (2014)). In the last row of Table 4, 

according to the Wilcoxon’s test, the results are 
summarized as “w/t/l,” which denotes that ADE_𝑝̅BM 

wins w functions, ties in t function, and loses in l 

functions, compared with its competitors. For example, 
with SaDE, ADE_𝑝̅BM wins in 5 functions, ties in 4 

functions, and loses 3 functions according to the 

Wilcoxon’s test at  = 0.05. The fact reveals that the 
proposed ADE_ 𝑝̅BM performs slightly better than 

SaDE. 

Table 4 also shows the benefit of the proposed 
adaptations of 𝛾𝐹  and 𝜎𝐶𝑟  on solution accuracy and 

reliability. As far as the solution accuracy is 

considered, ADE_𝑝̅BM with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1 

outperforms ADE_ 𝑝̅BM with adaptable 𝛾𝐹  and 𝜎𝐶𝑟 
only on three functions f1, f3, and f4. However, the 

former performs significantly worse than the latter on 

the reliability (success rate). The fact could reveal that 
the adaptations of 𝛾𝐹  and 𝜎𝐶𝑟  actually enhance the 

solution accuracy and reliability of the proposed 

ADE_𝑝̅BM algorithm. 

4.1.2 Comparisons on Convergence Speed 
Figure 2 depicts the convergence graphs for the 

median run of the ADE algorithms on 12 functions. 

As evident from the convergence characteristics, the 
overall convergence speed of ADE_𝑝̅BM seems to be 

the best among the contestant ADE algorithms. 

However, compared to JADE and MDE_pBX, 
ADE_𝑝̅BM requires two extra operations to perform 

the adaptations of 𝛾𝐹 and  𝜎𝐶𝑟, i.e., (30) and (34), that 

cost computational time. The evidence that resulted 

from Figure 2 therefore cannot imply that the 
ADE_𝑝̅BM actually uses a lesser computational time. 

In order to truly demonstrate the convergence 

speed of the algorithms, Table 5 lists the average 
number of generations and the corresponding 

computational time of each ADE variant required to 
reach the respective predefined threshold. Boldface 

indicates the fastest convergence speed among all of 
the ADE variants. Row “No. of fastest” represents the 

numbers of the fastest convergence speed the 

corresponding algorithm can, others on 9 out of 12 
functions, but slower than JADE only on the 

remaining three problems. 
To sum up, the proposed ADE_𝑝̅BM performs the 

best accuracy on 8 functions, yields 100% success rate 

on 10 functions, and attains the fastest convergence 
speed on 9 functions. That is to say, ADE_𝑝̅BM can 

perform better accuracy, reliability and efficiency than 

the other ADE variants on a wide variety of functions. 
 

Table 5. Comparisons of Convergence Speed for each ADE Variant. 

  jDE SaDE JADE MDE_pBx ADE_𝑝̅BM ADE_𝑝̅BM 

Function   
𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

𝛾𝐹  and 𝜎𝐶𝑟 : 

adaptable 

𝛾𝐹 = 0.1, 

𝜎𝐶𝑟 = 0.1 

𝑓1 
Mean Gens 742.02 328.26 206.46 523.56 137.88 112.34 

T ime (sec) 0.2171 3.8153 0.0757 0.2160 0.0627 0.0376 

𝑓2  
Mean Gens 951.08 474.44 291.50 822.04 200.04 174.78 

T ime (sec) 0.2864 5.6459 0.1100 0.3461 0.0920 0.0591 

𝑓3  
Mean Gens  1129.18 779.32 1359.10 743.68 784.08 

T ime (sec)  14.7294 0.3134 0.6604 0.3570 0.2945 

𝑓4 
Mean Gens 3483.54 1253.92 2220.34 1670.60 1212.62 2233.52 

T ime (sec) 1.0207 16.3032 0.7967 0.6867 0.5186 0.7177 

𝑓5  
Mean Gens 6719.04 2330.16  2065.38 1547.10 1096.71 

T ime (sec) 2.0953 33.1901  0.8545 0.5367 0.3424 

𝑓6  
Mean Gens 354.40 154.36 126.66 251.44 63.50 106.04 

T ime (sec) 0.1106 1.9295 0.0461 0.1035 0.0221 0.0347 

𝑓7  
Mean Gens  2374.12 2232.38 2165.05 1652.47 1504.50 

T ime (sec)  28.2102 1.5039 1.5744 1.1055 0.9465 

𝑓8  
Mean Gens 1618.54 510.48 760.40  1226.94 925.24 

T ime (sec) 0.6387 6.9842 0.3386  0.5180 0.3630 

𝑓9 
Mean Gens 3513.54 1198.70 1479.22 2537.97 1752.38 1919.18 

T ime (sec) 1.2138 15.5204 0.5591 1.1518 0.6692 0.6599 

𝑓10 
Mean Gens 1038.84 459.54 324.04 761.70 201.60 157.27 

T ime (sec) 0.3573 5.7434 0.1211 0.3465 0.0785 0.0508 

𝑓11 
Mean Gens 794.82 356.92 358.16 529.13 156.22 119.13 

T ime (sec) 0.3239 4.9679 0.1652 0.2698 0.0687 0.0470 

𝑓12 
Mean Gens 657.32 269.52 188.68 455.32 124.58 145.93 

T ime (sec) 0.2895 3.7472 0.0889 0.2458 0.0599 0.0614 

No. of fastest    3  9  
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 (e) (f) 
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Figure 2. PID control system. The Convergence Curve  of Median Run of Five Algorithms over  12 Test Functions.  (a) f1. (b) f2. 

(c) f3. (d) f4.  
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 (i) (j) 

  
 (k) (l) 
(Continued.) Figure 2. PID control system. Convergence  Curve  of Median Run of Five  Algorithms over  12 Test  Functions.  (e) 

f5. (f) f6. (g) f7. (h) f7. (i) f9. (j) f10. (k) f11. (l) f12. 

 

4.2 PID Controller Designs 
Two single-variable plants are chosen to 

demonstrate the search performance of the proposed 
ADE_ 𝑝̅ BM algorithm in the tuning of the PID 

parameters. The transfer functions of the chosen plants 

are given as follows: 

 Plant 1:  𝐺1(𝑠) =
1.6

𝑠2+2.584𝑠+1.6
, (35) 

 Plant 2:  𝐺2(𝑠) =
15

50𝑠3+43𝑠2+3𝑠+1
, (36) 

With the system sampling time being 0.05 second 

and the range of the control value u being [−10,10], 
other relevant system variables are; 𝐾𝑃 ∈ [0,20] , 
𝐾𝐼 ∈ [0,20] , and 𝐾𝐷 ∈ [0,10]. In order to compare 

with the simulation results obtained in (Zheng et. al. 

(2009); Zeng et. al. (2014)), this study adopts the same 
fitness function, i.e., the cost function given in (24), 

and the corresponding weight coefficients are also set 

as; 𝑤1 = 0.999, 𝑤2 = 0.001, 𝑤3 = 2.0, and 𝑤4 = 50. 
In the simulations, the step response of each PID 

control system tuned by ADE_𝑝̅BM is compared with 

that tuned by the previous four state-of-the-art ADE 
variants as well as the self-organizing genetic 

algorithm (SOGA) (Zheng et. al. (2009)), adaptive 
genetic algorithm (AGA) (Zhang et. al. (2007)), 

probability-based binary particle swarm optimization 

(PBPSO) (Menhas et. al. (2014)) and binary-coded 
extremal optimization algorithm (BCEO) (Zeng et. al. 

(2014)). For each algorithm, the population size is 50 
and the maximum number of generations is 100. 

Except for these two parameters, other relevant 
parameters of ADE_𝑝̅BM and four contestants ADE 

variants are the same as previous settings. The 

following parameters are used for SOGA; the size of 
the dominant population is 10, the crossover rate 𝑃𝑐  is 

0.6, and the mutation rate function is defined as: 

 𝑃𝑚(𝑡) =
𝛼[𝑡−(𝑘+0.5)𝑇𝑐]

2

𝑇𝑐
2

, (37) 

where 𝑡  is the current generation number, 𝑇𝑐 = 50 

indicates the mutation period, 𝛼 = 4  represents a 

mutation turning coefficient, and 𝑘 is the number of 

the period. The parameters of AGA are 𝑃𝑐 = 0.7 and 

𝑃𝑚 = 0.01. Each algorithm ran for 20 independent 

trials on every transfer function and the median run of 
each algorithm is used in the comparison. The 

performance of these algorithms are evaluated by the 
indices including the best fitness (𝐽𝑏𝑒𝑠𝑡 ), maximal 

overshoot (PO%), rising time (𝑇𝑟𝑖𝑠𝑒), steady-state error 

( 𝑒𝑠𝑠% ), settling time with 0.1%  error (𝑇𝑠𝑒𝑡
0.1 ) and 

running time (𝑇𝑟𝑢𝑛). 
The optimal parameters of PID controllers and the 

experimental results obtained by different algorithms 

for plant 1 are shown in Table 6. Note that boldface 
and italic (if have) in the table indicate the best and 

near-best results, respectively. In addition, the optimal 

PID parameters attained by SOGA, AGA, PBPSO and 
BCEO are previous findings given by Zeng et. al. 
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(2014)). The corresponding running times therefore 

are not shown in the table. Figure 3 depicts step 
responses for plant 1 under different algorithms-based 

PID controllers. Since the optimal parameters of the 
PID controllers and the corresponding best fitness 

values obtained by different ADE variants are almost 
the same, their step response curves are close to each 

other. Therefore Figure 3 only illustrates the step 

response obtained by the proposed ADE_𝑝̅BM. It can 
be seen from Figure 3 and Table 6 that the PID 

controller tuned by ADE_ 𝑝̅BM has the minimum 

overshoot, the smallest settling time and the least 
running time as well as the near-best fitness and a 

small steady-state error of 1.4× 10−5%. The results 

indicate that ADE_𝑝̅BM can attain better transient and 

steady-state performances. 

 
Figure 3. Step Response for Pl ant  1 with Different 

Algorithm-based PID Controllers. 

The parameters of the PID controllers and the 

experimental results for plant 2 are given in Table 7, 
while the corresponding step responses are depicted in 

Figure 4. Although 𝑇𝑟𝑖𝑠𝑒  and 𝑒𝑠𝑠%  obtained by 

MDE_pBX are all smaller than those by other 
algorithms, MDE_pBX performs a large PO% and a 

big 𝐽𝑏𝑒𝑠𝑡. Compared with the others, it can be observed 

that the PID controllers tuned by ADE_ 𝑝̅BM and 

SaDE show almost the same performance indices 
including  𝐽𝑏𝑒𝑠𝑡 , PO% , 𝑇𝑟𝑖𝑠𝑒, 𝑒𝑠𝑠% , 𝑇𝑠𝑒𝑡

0.1, and 𝑇𝑟𝑢𝑛 . 

Overall speaking, they are the best two algorithms but 

ADE_𝑝̅BM is slightly better than SaDE. 

5 CONCLUSIONS 
BY replacing the best solution in “DE/best/1” with 

the mean of p top-ranked vectors, this study proposed 

a less greedy and more explorative mutation strategy 

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1” to avoid premature convergence at local 

optima. Besides, the parameter adaptation of 

ADE_𝑝̅BM was implemented by evolving the scale 
factor 𝐹 and crossover rate 𝐶𝑟 based on their historical 

record of success. Four parameters, 𝜎𝐶𝑟, 𝜇𝐶𝑟 , 𝛾𝐹, and 

𝜇𝐹 , are updated at the end of each generation 

according to the record of recent successful control 
parameters. The purpose of this parameter adaptation 

mechanism is to improve the solution accuracy and 

robustness of the algorithm. The results of global 
optimization problems show that the ADE_ 𝑝̅ BM 

could perform better accuracy, reliability and 

efficiency than the four state-of-the-art adaptive DE 
variants on a wide variety of functions. 

 
Table 6. Optimal Parameters of the PID Controllers and Performance Indices: Plant 1 

Algorithm 𝐾𝑃  𝐾𝐼  𝐾𝐷 𝐽𝑏𝑒𝑠𝑡  PO%  𝑇𝑟𝑖𝑠𝑒 𝑒𝑠𝑠%  𝑇𝑠𝑒𝑡
0.1

 𝑇𝑟𝑢𝑛  

jDE 15.5558 2.6382 3.5242 9.6329 3.14e-3 0.65 3.14e-3 1.35 33.5734 

SaDE 15.6506 2.6405 3.5522 9.6074 3.22e-4 0.65 2.89e-5 1.35 34.0621 

JADE 15.6657 2.6394 3.5539 9.6142 8.14e-4 0.65 8.14e-4 1.35 34.0727 

MDE_pBX 15.6574 2.6404 3.5537 9.6073 2.15e-4 0.65 1.08e-8 1.35 34.1400 

ADE_𝑝̅BM 15.6119 2.6412 3.5428 9.6092 1.74e-4 0.65 1.43e-5 1.35 33.5433 

SOGA 19.390 4.119 5.151 14.2753 2.81e+0 0.90 5.14e-1 >10  

AGA 15.2884 2.7566 3.4506 9.8644 2.12e-1 0.65 4.70e-2 5.75  

PBPSO 19.9990 42174 3.9562 22.2145 1.67e+1 0.60 2.29e-1 >10  

BCEO 17.5171 2.639 3.9296 9.7605 7.70e-3 0.65 1.58e-3 1.55  

 

Table 7. Optimal Parameters of the PID Controllers and Performance Indices: Plant 2 

Algorithm 𝐾𝑃  𝐾𝐼  𝐾𝐷 𝐽𝑏𝑒𝑠𝑡  PO%  𝑇𝑟𝑖𝑠𝑒 𝑒𝑠𝑠% 𝑇𝑠𝑒𝑡
0.1

 𝑇𝑟𝑢𝑛  

jDE 1.2805 0.0245 3.7686 83.2111 4.37 3.90 5.55e-3 33.1 98.1229 

SaDE 0.8640 0.0220 2.8985 80.4329 2.09 4.50 3.89e-4 28.4 97.1462 

JADE 1.0531 0.0231 3.3087 81.0380 3.05 4.20 9.88e-4 29.8 96.5950 

MDE_pBX 1.7466 0.2183 5.3817 103.7465 22.03 3.35 3.19e-6 39.4 98.2078 

ADE_𝑝̅BM 0.9175 0.0221 3.0456 80.4897 2.17 4.45 1.40e-4 27.7 96.7331 

SOGA 2.98 0.096 12.7 156.5308 8.45 8.45 4.54e-1 >100  

AGA 1.3294 0.1955 4.6921 108.0184 22.97 3.75 2.09e-5 43.15  

PBPSO 4.0043 0.0355 10.0 165.4567 11.13 5.70 2.37e-1 >100  

BCEO 1.7986 0.0196 6.3441 92.7663 0.49 7.75 1.22e-3 29.95  
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(a) ADE Algorithms                                                                     (b) ADE_𝒑̅BM, GAs, PSO and BCEO 

 
Figure 4. Step Response for Plant 2 with Different Algorithm-based PID Controllers. 

On the other hand, as far as the PID controller 
designs on two single-variable plants are considered, 

the results also show that the ADE_𝑝̅BM can attain 

better transient and steady-state performance than 
other ADE variants. 
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