
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 3, 407–420
DOI: 10.32604/iasc.2020.013917

 mfyeh@mail.lhu.edu.tw CONTACT Ming-Feng Yeh

Optimized PID Controller using Adaptive Differential Evolution with Mean-
of-pbest Mutation Strategy

Ti-Hung Chen1 and Ming-Feng Yeh2,*
1Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan,
ROC
2Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan, Taiwan, ROC.

KEY WORDS: Differential evolution, mutation strategy, parameter adaptation scheme, PID control

1 INTRODUCTION
THE differential evolution (DE) algorithm is a

population-based stochastic search technique (Storn &
Price (1997)) and has been shown to be a simple yet

powerful evolutionary algorithm for many real-world
optimization problems, such as; function optimization,

pattern recognition, power dispatch, antenna design,

chemical processes and control systems (Xue et. al.
(2015); Zhang &Sanderson (2009); Das and

Suganthan (2011); Li et. al. (2013); Lu et. al. (2014)).
In the DE algorithm, the five widely-used mutation

strategies are “DE/rand/1”, “DE/best/1”, “DE/rand/2”,
“DE/best/2”, and “DE/current-to-best/1” (Zhang &

Sanderson (2009); Das & Suganthan (2011); Lu et. al.
(2014)). The target vectors generated by a greedy

mutation strategy, such as; “DE/best/1”, “DE/current-

to-best/1”, and “DE/best/2”, are generally attracted by
the same best vector found so far by the entire

population. The fact may lead to problems such as;
premature convergence due to the resultant reduced

population diversity, especially when solving

multimodal problems. Two less greedy and more

explorative variants of the “DE/current-to-best/1”
mutation strategy, “DE/current-to-pbest/1” (Zhang &

Sanderson (2009)) and “DE/current-to-gr_best/1”
(Islam et. al. (2012)), were proposed to overcome the

premature convergence, where pbest represents a
randomly selected vector from the p top-ranked

individuals at the current generation and gr_best

means the best of the q% vectors randomly chosen
from the current population. The central idea of these

two strategies is to utilize the best or near-best
member selected from a dynamically small pool to

perturb the target vector. Such a scheme could
preserve the diversity of the population so that the

problem of premature convergence can be alleviated.
Inspired by the above two mutation variants, this study

attempts to develop another kind of less greedy and

more explorative mutation strategy. Different from
them, the proposed scheme substitutes the mean of the

p top-best individuals (𝑝best̅̅ ̅̅ ̅̅ ̅) for the best vector in
“DE/best/1”. Such a mutation strategy is termed

“DE/ 𝑝best̅̅ ̅̅ ̅̅ ̅ /1” in this study. Analogously to

ABSTRACT

On the basis of JADE (adaptive differential evolution with optional external
archive) and the modified differential evolution with p-best crossover
(MDE_pBX), this study attempts to propose a modified mutation strategy
termed “DE/(𝑝best̅̅ ̅̅ ̅̅ ̅) ̅/1” for the differential evolution (DE) algorithm, where
“(𝑝best̅̅ ̅̅ ̅̅ ̅) ̅” represents the mean of p top-best vectors. Two modified parameter
adaptation mechanisms are also proposed to update the crossover rate and the
scale factor, respectively, in an adaptive manner. The DE variant with the
proposed mutation strategy and two modified adaptation mechanisms is termed
adaptive differential evolution with mean-of-pbest mutation strategy, denoted
by ADE_𝑝̅BM. In this study, the proposed two schemes are used not only to
preserve the diversity of the population and prevent the premature
convergence but also improve the search performance. The results of global
optimization problems and the PID controller designs show that ADE_𝑝̅BM is
comparable to or better than the four state-of-the-art adaptive DE variants in
terms of accuracy, reliability and efficiency.

408 CHEN and YEH

“DE/current-to-pbest/1” and “DE/current-to-gr_best/

1”, the target solutions generated by the proposed
mutation strategy are not always attracted towards the

same best vector found so far by the entire population,
and this feature is helpful in avoiding a premature

convergence at a local optimum.
The performance of the DE algorithm is also

sensitive to the settings of the control parameters (e.g.,

the scale factor 𝐹 and the crossover rate 𝐶𝑟). The best
settings of the control parameters may be different for

different problems. To successfully solve a specific

optimization problem, it is generally necessary to fine-
tune the control parameters by a time-consuming trial-

and-error procedure (Qin et. al. (2009)). To solve this
problem and make the performance of the DE more

robust, several adaptive or self-adaptive mechanisms
have been proposed to automatically find the proper

trial vector generation strategies or suitable parameter
settings during the search process (Zhang &

Sanderson (2009); Das & Suganthan (2011); Lu et. al.

(2014); Abbasa et. al. (2018)). If well designed, the
strategy or parameter adaptation can improve the

search performance and the robustness of an
algorithm. JADE (Zhang & Sanderson (2009)), self-

adaptive differential evolution (SaDE) Qin et. al.
(2009)), modified DE with p-best crossover

(MDE_pBX) (Islam et. al. (2012)), jDE (Brest et. al.

(2006)) and the ensemble of control parameters and
mutation strategies with DE (EPSDE) (Mallipeddi et.

al. (2011)) are well-known adaptive DE (ADE)
variants. Empirical studies have shown that the

parameter adaptation technique can lead to these ADE
variants with superior performance. Among the

previous ADE variants, both JADE and MDE_pBX

generate new 𝐹 values according to a truncated
Cauchy distribution with a scale parameter 𝛾𝐹 of 0.1

and new 𝐶𝑟 values according to a normal distribution

with standard deviation 𝜎𝐶𝑟 of 0.1. In addition, the

location parameter of the Cauchy distribution (𝜇𝐹) and

the mean of normal distribution (𝜇𝐶𝑟) are updated

using new successful 𝐹 and 𝐶𝑟 values, respectively, at
each generation. The main difference between them is

that the updating rules of 𝜇𝐹 and 𝜇𝐶𝑟 for JADE and

MDE_pBX are in different manners discussed later in
the next section. Note that both the scale parameter 𝛾𝐹

(JADE) and the standard deviation 𝜎𝐶𝑟 (MDE_pBX)

remain constant during the search process. This gives

rise to propose the motivation to a novel self-
adaptation scheme that can simultaneously adapt 𝜇𝐹

and 𝜇𝐶𝑟 as well as 𝛾𝐹 and 𝜎𝐶𝑟 during the search

process. The central idea of the proposed adaptation

scheme is also inherited from JADE and MDE_pBX.
That is, new 𝐹 values are generated according to a

truncated Cauchy distribution and new 𝐶𝑟 values

according to a normal distribution. However, in this
study, 𝜇𝐹 and 𝛾𝐹 are updated using new successful 𝐹

values at each generation, while 𝜇𝐶𝑟 and 𝜎𝐶𝑟 using

new successful 𝐶𝑟 values. Such a modification

attempts to further improve the robustness and

convergence performance of DE algorithm.
Integrating the proposed mutation strategy

“DE/ 𝑝best̅̅ ̅̅ ̅̅ ̅ /1” with the aforementioned parameter
adaptation scheme forms a new ADE variant termed

ADE_ 𝑝̅ BM (ADE with mean-of-pbest mutation

strategy) hereafter. In order to demonstrate the search
effectiveness, the developed ADE_𝑝̅BM algorithm is

compared with four state-of-the-art ADE variants over

a set of 12 benchmark functions on real parameter
optimization.

Owing to the proportional-integral-derivative

(PID) controllers with the advantage of a simple

structure, good stability, and h igh reliab ility, they

are still widely applied in the industrial p rocesses

now (Tabatabaei & Barati-Boldaji (2017); Kim et.

al. (2018)). This study therefore focuses on the

optimization of the PID controller system by using the
DE algorithm. Three PID control gains are;

proportional gain 𝐾𝑃, integral gain 𝐾𝐼 and derivative

gain 𝐾𝐷 , which are determined by the proposed

ADE_𝑝̅BM and the four ADE variants such that the
pre-defined objective function is minimized.

The remainder of this study is organized as

follows: Section 2 briefly represents some background
material of DE algorithms and PID controller design,

the proposed mutation strategy “DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1”. The
corresponding parameter adaptation scheme is

described in Section 3. Section 4 represents the search
performance of the proposed algorithm for 12

benchmark functions and two PID controller design

problems. Section 5 concludes this study.

2 PRELIMINARIES

2.1 Differential Evolution Algorithm
ASSUME that a population contains 𝑁𝑝 individuals

and each individual is in the form of a 𝐷-dimensional

vector as; 𝐱 𝑖,𝐺 = (𝑥1𝑖,𝐺 ,𝑥2𝑖,𝐺 ,… , 𝑥𝐷𝑖,𝐺) , where 𝐺

denotes at the generation 𝐺 and i = 1, 2, …, 𝑁𝑝. Note

that an individual (target vector) represents a potential

solution of the optimization problem. The DE
algorithm begins with a randomly generated

population within the search space. After initialization,
the DE iteratively uses the trial vector generation

strategy (i.e., mutation and crossover operations) and
the selection operation to evolve the population until a

stopping criterion is met.
Mutation: The following are five most frequently

used mutation strategies for generating a mutant

vector 𝐯𝑖,𝐺 (Zhang & Sanderson (2009); Das &

Suganthan (2011); Lu et. al. (2014)):

“DE/rand/1”:

 𝐯𝑖 ,𝐺 = 𝐱𝑟1,𝐺+ 𝐹(𝐱𝑟2,𝐺 −𝐱𝑟3,𝐺), (1)

“DE/best/1”:

 𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺 +𝐹(𝐱𝑟1,𝐺− 𝐱𝑟2,𝐺), (2)

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 409

“DE/current-to-best/1”

(“DE/target-to-best/1” or “DE/rand-to-best/1”):

 𝐯𝑖,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺− 𝐱 𝑖,𝐺)

 +𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺), (3)

“DE/rand/2”:

 𝐯𝑖,𝐺 = 𝐱𝑟1,𝐺+𝐹(𝐱𝑟2,𝐺−𝐱𝑟3,𝐺)

 +𝐹(𝐱𝑟4,𝐺−𝐱𝑟5,𝐺), (4)

“DE/best/2”:

 𝐯𝑖,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺 +𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺)

 +𝐹(𝐱𝑟4,𝐺−𝐱𝑟5,𝐺), (5)

where the indices r1, r2, r3, r4, and r5 are distinct
integers randomly generated from the set {1, 2, …,

𝑁𝑝}\{i}, (𝐱𝑟1,𝐺−𝐱𝑟2,𝐺) or (𝐱𝑟2,𝐺−𝐱𝑟3,𝐺) is a diff-

erence vector to mutate the base vector and the 𝐱𝑏𝑒𝑠𝑡,𝐺

represents the best vector at the 𝐺-th generation. The

parameter F is called the scale factor for scaling the

difference vector and typically ranged on interval [0.4,
1.0] according to (Das & Suganthan (2011)).

Crossover: After mutation, the crossover operation

is applied to each pair of a target vector 𝐱 𝑖,𝐺 and its

corresponding mutant vector 𝐯𝑖,𝐺 to generate a trial

vector 𝐮𝑖,𝐺 = (𝑢1𝑖,𝐺 ,𝑢2𝑖,𝐺 ,… ,𝑢𝐷𝑖,𝐺). The widely used

one is the binomial crossover operation defined as
follows:

 𝑢𝑗𝑖,𝐺 = {
𝑣𝑗𝑖,𝐺 , if (𝑟𝑎𝑛𝑑𝑗≤ 𝐶𝑟) or (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑗𝑖,𝐺 , otherwise
 (6)

where j = 1, 2, …, D and 𝐶𝑟 is the crossover rate

within the range (0,1). In (6), 𝑟𝑎𝑛𝑑𝑗 is a random

number within the range of (0, 1) and 𝑗𝑟𝑎𝑛𝑑 ∈
{1,2,… , 𝐷} is a randomly chosen index, which ensures

that the trial vector 𝐮𝑖,𝐺 gets at least one element from

𝐯𝑖 ,𝐺.

Selection: The selection operation selects the better

one from the target vector 𝐱 𝑖,𝐺 and the trial vector 𝐮𝑖,𝐺,

according to their fitness values is as follows:

 𝐱 𝑖,𝐺+1= {
𝐮𝑖 ,𝐺 , if 𝑓(𝐮𝑖,𝐺) ≤ 𝑓(𝐱 𝑖,𝐺)
𝐱 𝑖,𝐺 , otherwise

 (7)

Using this greedy selection scheme, all individuals of
the next generation are better than the individuals of

the current population.

2.2 DE with Self-adaptation Schemes
There are many ADE variants in the DE literature.

This section briefly reviews jDE (Brest et. al. (2006)),
JADE (Zhang & Sanderson (2009)), and MDE_pBX

(Islam et. al. (2012)), since they will be compared
with the proposed approach later in this study.

1) jDE: The scale factor and crossover rate are

encoded with the individual. Brest et al. (2006)
believed that better control parameter values lead to

better individuals that in turn are more likely to

survive. The control parameters are updated as

follows:

 𝐹𝑖,𝐺+1= {
𝑟𝑎𝑛𝑑(0.1,1), if 𝑟𝑎𝑛𝑑1≤ 𝜏1
𝐹𝑖,𝐺 , otherwise

 (8)

 𝐶𝑟𝑖 ,𝐺+1= {
𝑟𝑎𝑛𝑑(0,1), if 𝑟𝑎𝑛𝑑2≤ 𝜏2
𝐶𝑟𝑖,𝐺 , otherwise

 (9)

where rand(a, b) is a uniform random number

between a and b, 1 = 0.1 and 2 = 0.1. By this way, a

successful F and Cr value has the probability of 0.9 to
be selected to generate an offspring at the next

generation. Here a successful F and Cr value means
that the offspring generated with this F and Cr value

successfully enters the next generation.

2) JADE: Zhang and Sanderson (2009)
implemented the following two mutation strategies:

“DE/current-to-pbest/1 (without archive)”:

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

−𝐱 𝑖,𝐺)+𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺),(10)

“DE/current-to-pbest/1 (with archive)”:

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

−𝐱 𝑖,𝐺)+𝐹(𝐱𝑟1,𝐺 −𝐱𝑟2,𝐺),(11)

where 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 is a pbest solution, which is randomly

chosen as one of the top 100p% individuals in the

current population with p  (0, 1]. Note that the

parameter p determines the greediness of the mutation
strategy. Denote A as the archive used to store the

inferior solutions recently explored in the evolutionary

search and P as the current population. Vectors 𝐱 𝑖,𝐺,

𝐱𝑟1,𝐺, 𝐱𝑟2,𝐺, and 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 are randomly chosen from the

current population P, but 𝐱𝑟2,𝐺 is randomly chosen

from the union, 𝐏∪ 𝐀, of the current population and

archive.

At each generation, the mutation factor 𝐹𝑖 of each

target vector 𝐱 𝑖 is independently generated according

to a Cauchy distribution as;

 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝜇𝐹 ,0.1), (12)

and then truncated to be 1 if 𝐹𝑖 > 1 or regenerated if

𝐹𝑖 ≤ 0. Denote 𝑆𝐹 as the set of all successful mutation

factors at current generation G. The location
parameter 𝜇𝐹 is initialized to be 0.5 and then updated

at the end of each generation by

 𝜇𝐹 = 𝑐1 ∙ 𝜇𝐹 + (1 − 𝑐1) ∙ 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (13)

where 𝑐1 ∈ [0,1] controls the rate of parameter

adaptation and 𝑚𝑒𝑎𝑛𝐿(∙) is the Lehmer mean given by

 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹) = ∑ 𝐹2𝐹∈𝑆𝐹
∑ 𝐹𝐹∈𝑆𝐹
⁄ . (14)

Analogously, the crossover rate 𝐶𝑟𝑖 of each

individual is independently generated according to a

Gaussian distribution as;

 𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝐶𝑟 , 0.1), (15)

and then truncated to [0, 1]. Denote 𝑆𝐶𝑟 as the set of

all successful crossover rates at current generation G.

410 CHEN and YEH

The mean 𝜇𝐶𝑟 is also initialized to be 0.5 and then

updated at the end of each generation by

 𝜇𝐶𝑟 = 𝑐2 ∙ 𝜇𝐶𝑟 + (1 − 𝑐2) ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑟), (16)

where 𝑐2 ∈ [0,1] controls the rate of parameter

adaptation and 𝑚𝑒𝑎𝑛𝐴(∙) is the arithmetic mean.

As JADE (Zhang & Sanderson (2009)), the Cauchy

distribution is more helpful than the Normal
distribution to diversify the mutation factors and thus

avoid premature convergence, which often occurs in
greedy mutation strategies if the mutation factors are

highly concentrated around a certain value, besides, an
arithmetic mean of 𝑆𝐹 tends to be smaller than the

optimal value of the mutation factor and thus it might

cause premature convergence at the end. The Lehmer
mean in (13) therefore is helpful to propagate larger

mutation factors, which in turn improves the progress
rate.

3) MDE_pBX: Unlike JADE, Islam et. al. (2012)

developed the following novel mutation and crossover
strategies:

“DE/current-to-gr_best/1”:

𝐯𝑖 ,𝐺 = 𝐱 𝑖,𝐺 +𝐹(𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺− 𝐱 𝑖,𝐺)+ 𝐹(𝐱𝑟1,𝐺−𝐱𝑟2,𝐺)

 (17)

where 𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺 is the best of the q% vectors

randomly chosen from the current population and q 
(0, 100), whereas 𝐱𝑟1,𝐺 and 𝐱𝑟2,𝐺 are two dintinct

vectors and none of them is equal to 𝐱𝑔𝑟_𝑏𝑒𝑠𝑡,𝐺 or the

target vector 𝐱 𝑖,𝐺 to ensure that none of the vectors is

equal in (17). Besides, the p-best crossover operation

incorporates a greedy parent selection strategy with
the conventional binomial crossover scheme of DE.

Parameter p is linearly decreased over generations as

 𝑝 = 𝑐𝑒𝑖𝑙 [
𝑁𝑝

2
∙ (1 −

𝐺−1

𝐺𝑚𝑎𝑥
)], (18)

where 𝐺𝑚𝑎𝑥 represents the maximal number of

generations and 𝑐𝑒𝑖𝑙(∙) is the “ceiling” function

returning the lowest integer greater than its argument.

In MDE_pBX, the control parameters, 𝐹𝑖 and 𝐶𝑟𝑖 ,
of each target vector are also generated according to

(12) and (15), respectively. The location parameter 𝜇𝐹

is still initialized to be 0.5, but is updated at the end of
each generation by

 𝜇𝐹 = 𝑤𝐹 ∙ 𝜇𝐹 + (1 −𝑤𝐹) ∙𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐹), (19)

where the weight term 𝑤𝐹 = 0.8 + 0.2 ∙ 𝑟𝑎𝑛𝑑(0,1)
and 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(∙) stands for the power mean given by

 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐹)= ∑ (𝐹𝑛 |𝑆𝐹|⁄)
1

𝑛𝐹∈𝑆𝐹
, (20)

with |𝑆𝐹| denoting the cardinality of the set 𝑆𝐹 .

However, the initial value of mean 𝜇𝐶𝑟 becomes 0.6

and then it is updated at the end of each generation by

 𝜇𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜇𝐶𝑟 + (1 −𝑤𝐶𝑟) ∙ 𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐶𝑟),

 (21)

where the weight term of 𝑤𝐶𝑟 = 0.9+ 0.1 ∙
𝑟𝑎𝑛𝑑(0,1) and the definition of power mean

𝑚𝑒𝑎𝑛𝑝𝑜𝑤𝑒𝑟(𝑆𝐶𝑟) is analogous to (20).

2.3 PID Controller Design
Figure 1 illustrates a standard control system with a

PID controller, where 𝑟(𝑡) and 𝑦(𝑡) are the reference

(desired) signal and the system output, respectively.

The continuous-time form of a PID controller is
described as follows:

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+𝐾𝐷

𝑑

𝑑𝑡
𝑒(𝑡), (22)

where 𝑒(𝑡) is the error signal between the desired and

actual outputs, 𝑢(𝑡) is the PID control force (output),

and 𝐾𝑃 ,𝐾𝐼 , and 𝐾𝐷 are PID parameters (Alfi and

Modares (2011)). In the simulation, the PID control
law can be discretized as follows:

𝑢(𝑘) = 𝐾𝑃𝑒(𝑘) +𝐾𝐼𝑇𝑠∑𝑒(𝑗)

𝑘

𝑗=1

+

 𝐾𝐷[𝑒(𝑘) − 𝑒(𝑘 − 1)]/𝑇𝑠 (23)

where 𝑇𝑠 is the sampling time (Zeng et. al. (2014)).

In the control system design, the objective is
generally to minimize the cost function, such as the

integral of absolute error ∫|𝑒(𝑡)|𝑑𝑡 (IAE), integral of

time-weighted absolute error ∫ 𝑡|𝑒(𝑡)|𝑑𝑡 (ITAE) or

sum of squared error ∫ 𝑒2(𝑡)𝑑𝑡 (SSE), for measuring

the control performance. Rather than using IAE, ITAE
or SSE, this study selects (24) as the cost function to

determine the performance of PID controller.
𝐽(𝑡) =

{

 ∫

[𝑤1|𝑒(𝑡)| +𝑤2𝑢
2(𝑡)]𝑑𝑡

∞

0
+𝑤3𝑡𝑟 ,

 if ∆𝑦(𝑡) ≥ 0

∫ [𝑤1|𝑒(𝑡)| +𝑤2𝑢
2(𝑡)+ 𝑤4|∆𝑦(𝑡)|]𝑑𝑡

∞

0
+ 𝑤3𝑡𝑟,

 if ∆𝑦(𝑡) < 0

 (24)

where ∆𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 −𝑇𝑠), 𝑤𝑖, 𝑖 = 1, 2,3, 4, are
weight coefficients and 𝑤4 ≫ 𝑤1 (Zheng et. al.

(2009); Zeng et. al. (2014)). As seen, cost function

(24) could minimize the IAE. At the same time, the
square of the controller output 𝑢2(𝑡) is included to

avoid exporting a large control value as well as the

rise time tr is added to hasten the transient response.
Besides, in order to avoid overshooting, a penalty

value is adopted in the fitness function. That is, once

overshooting occurs ∆𝑦(𝑡) < 0 , the value of the
overshooting (a penalty value |∆𝑦(𝑡)|) is added to the

cost function.

PID
controller Plantr y

e u

+ _

Figure 1. PID Control System.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 411

3 ADE_𝒑̅BM ALGORITHM
THIS section describes the proposed ADE_𝑝̅BM

algorithm, which includes a novel mutation strategy

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1” and a modified parameter adaptation
scheme.

3.1 Mean-of-pbest Mutation Strategy
In the greedy mutation strategies, such as DE/best/k

and DE/current-to-best/k, the best solution will guide
the direction of the evolutionary search. The fact may

lead to the problem of premature convergence caused
by the reduced population diversity. “DE/current-to-

pbest/1” (Zhang & Sanderson (2009)) and

“DE/current-to-gr_best/1” (Islam et. al. (2012)) are
two simple but effective mutation strategies to solve

the above problem. Originated from these two
methodologies, this study develops another kind of

less greedy and more explorative mutation strategy.
The new mutation strategy is to replace the best

solution in “DE/best/1” with the mean of p top-ranked

vectors (𝑝best̅̅ ̅̅ ̅̅ ̅). Such a mutation strategy, termed

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1”, is proposed to serve as the basis of the

ADE in this study.

Denote, 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

, 𝑘 = 1,2,… ,𝑝, as the kth best

vector at the G-th generation. Under this denotation,

𝐱𝑏𝑒𝑠𝑡(𝑘−1),𝐺
𝑝

 is better than 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

, i.e.,

𝑓(𝐱𝑏𝑒𝑠𝑡(𝑘−1),𝐺
𝑝

) ≤ 𝑓(𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝

) , where 𝑓(∙) is the

fitness function. It is also obvious that 𝐱𝑏𝑒𝑠𝑡(1),𝐺
𝑝

=

𝐱𝑏𝑒𝑠𝑡,𝐺, while 𝑘 = 1. Once all the p-top best vectors

are determined, the mean of those vectors can be
represented by

 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

=
1

𝑝
∑ 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺

𝑝𝑝
𝑘=1 . (25)

As seen, the mean-of-pbest vector 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 involves not

only the best solution information but also the
information of other top-ranked solutions.

The proposed mutation strategy is a generalization

of “DE/best/1”, where 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

 plays the role of the

single best solution in DE/best/1 as follows:

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1”:

 𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

+ 𝐹(𝐱𝑟1,𝐺−𝐱𝑟2,𝐺), (26)

with the help of the above strategy, the target solutions

are not always attracted towards the single best vector,

and this feature is helpful in avoiding a premature
convergence at a local optima. In order to guarantee

the proposed DE/𝑝best̅̅ ̅̅ ̅̅ ̅ /1 and not to attract towards
the single best vector, the limitation of (26) is

𝑁𝑝 ≥ 𝑝 ≥ 2 . Note that the parameter p also

determines the greediness of the mutation strategy as

in JADE and MDE_pBX.

3.2 DE with Self-adaptation Schemes
Analogous to JADE ((Zhang & Sanderson (2009))

and MDE_pBX (Islam et. al. (2012)), the adaptation

of control parameters used in this study is also based

on the following principle: “Better control parameters

tend to generate individuals that are more likely to
survive and thus these values should be propagated to

the following generations”. The basic approach to
implement this principle is to record recent successful

scale factors and crossover rates and then use them to
guide the generation of new 𝐹𝑖 ’s and 𝐶𝑟𝑖 ’s,

respectively. The main difference between them is that

the scale parameter 𝛾𝐹 of Cauchy distribution and the

standard deviation 𝜎𝐶𝑟 of the Gaussian distribution are

adaptable in the proposed schemes but 𝛾𝐹 and 𝜎𝐶𝑟 are
constant in JADE and MDE_pBX.

Crossover Rate Adaptation: At every generation,
the crossover rate 𝐶𝑟𝑖 of each individual is

independently generated according to a Gaussian

distribution as;

 𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝐶𝑟 , 𝜎𝐶𝑟), (27)

and then truncated to [0, 1]. The mean 𝜇𝐶𝑟 is

initialized to be 0.5 and then updated at the end of

each generation by

 𝜇𝐶𝑟 = 𝑤̂𝐶𝑟 ∙ 𝜇𝐶𝑟 + (1 − 𝑤̂𝐶𝑟) ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑟), (28)

where 𝑚𝑒𝑎𝑛𝐴(∙) is the arithmetic mean and the weight

term 𝑤̂𝐶𝑟 is randomly generated by

 𝑤̂𝐶𝑟 = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). (29)

While the standard deviation of the members in 𝑆𝐶𝑟
plays the role of the mean value in (28), the adaptation
of 𝜎𝐶𝑟 can be developed in a similar way. In this

study, the standard deviation 𝜎𝐶𝑟 is initialized to be

0.1 and then updated at the end of each generation as

 𝜎𝐶𝑟 = ŵ𝐶𝑟 ∙ 𝜎𝐶𝑟 + (1 − 𝑤̂𝐶𝑟) ∙ 𝑠𝑡𝑑(𝑆𝐶𝑟), (30)

where 𝑠𝑡𝑑(∙) is the standard deviation. Note that 𝜎𝐶𝑟 is

truncated to be 0.1 if 𝜎𝐶𝑟 > 0.1, i.e., 𝜎𝐶𝑟 ∈ (0, 0.1]. If

𝑆𝐶𝑟 is empty at a specific generation, 𝜇𝐶𝑟 remains

changeless at that generation but 𝜎𝐶𝑟 is reset to be 0.1.

Scale Factor Adaptation: At each generation, the
scale factor 𝐹𝑖 of each target vector 𝐱 𝑖 is

independently generated according to a Cauchy

distribution as;

 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦(𝜇𝐹 ,𝛾𝐹), (31)

and then truncated to be 1 if 𝐹𝑖 > 1 or regenerated if

𝐹𝑖 ≤ 0. That is 𝐹𝑖 ∈ (0, 1]. The location parameter 𝜇𝐹

is initialized to be 0.5 and then updated at the end of
each generation by

 𝜇𝐹 = 𝑤̂𝐹 ∙ 𝜇𝐹 + (1 − 𝑤̂𝐹) ∙𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (32)

where 𝑚𝑒𝑎𝑛𝐿(∙) is the Lehmer mean and

 𝑤̂𝐹 = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). (33)

In the Cauchy distribution, the scale parameter

specifies the half-width at half-maximum, as the

standard deviation in the Gaussian distribution. Thus
the proposed adaptation of 𝛾𝐹 is similar to (30). That

http://en.wikipedia.org/wiki/Scale_parameter

412 CHEN and YEH

is, the scale parameter 𝛾𝐹 is initialized to be 0.1 and

then updated at the end of each generation as ;

 𝛾𝐹 = 𝑤̂𝐹 ∙ 𝛾𝐹 + (1 − 𝑤̂𝐹) ∙ 𝑠𝑡𝑑(𝑆𝐹), (34)

The scale parameter is truncated to be 0.1 if

𝛾𝐹 > 0.1. In another words, 𝛾𝐹 ∈ (0, 0.1]. Similarly, if

the set 𝑆𝐹 is empty at a specific generation, the

location para-meter 𝜇𝐹 remains changeless at that
generation but the scale parameter 𝛾𝐹 is reseted to be

0.1.

Explanations: The proposed adaptation of the
control parameters is also based on the adaptation

principle used in JADE and MDE_pBX. As seen in

(28) and (32) they are analogous to (16) and (13),
respectively. Besides, this study also uses the same

idea to implement the adaptations of the standard
deviation 𝜎𝐶𝑟 (30) and scale parameter 𝛾𝐹 (34).

However, the different adaptive DE algorithm has

different settings for the weight terms. JADE utilizes
the constant weight term, i.e., 𝑐 = 0.9 in (13) and (16)

(Zhang and Sanderson (2009)). The experimental

results in MDE_pBX indicates that small random
perturbations to the weight term 𝑤 in (19) and (21) are

very effective in improving the search performance on

a wide variety of functions (Islam et. al. (2012)).
Howerer, the magnitude of random perturbation, i.e.,

0.2 for the scalar factor 𝐹 and 0.1 for the crossover

rate 𝐶𝑟, must be properly specified in advance. In
order to reduce the effect of the setting parameter

caused by the user, the proposed weight term is simply

set to be in the form of 𝑤̂ = 1 −0.5 ∙ 𝑟𝑎𝑛𝑑(0,1). It is
almost parameter free. Since 0.5 ∙ 𝑟𝑎𝑛𝑑(0,1) < 0.5 ,

we have 𝑤̂ > (1− 𝑤̂) . Such a relationship is

consistent with that used in JADE and MDE_pBX.

For example; 𝑐1 > 1− 𝑐1 if 𝑐1= 0.9 in (13) and

𝑤𝐶𝑟 > 1 −𝑤𝐶𝑟 in (21). Our experiment results also
reveal that the proposed weight terms not only are

insensitive to different problems according to their
role of controlling the rate of the parameter adaptation

but also enable ADE_ 𝑝̅BM to perform better than

JADE and MDE_pBX on a wide variety of functions
and PID controller design problems.

3.3 DE with Self-adaptation Schemes
Table 1 represents the procedure used for

implementing the proposed ADE_𝑝̅BM algorithm. All

the parameters of the Cauchy and Gaussian

distribution functions are updated at the end of each
generation according to the record of recent successful

control parameters. Analogously to JADE and
MDE_pBX, the basic approach to implement the

Table 1. Pseudo Code of the ADE_𝒑̅BM Algorithm.

Line Procedure of the ADE_𝑝̅BM

1 Begin
2 Set 𝜇𝐹 = 0.5, 𝛾𝐹 = 0.1 , 𝜇𝐶𝑟 = 0.5, 𝜎𝐶𝑟 = 0.1

3 Initialize a random population

 {𝐱 𝑖,0|𝑖 = 1,2,… ,𝑁𝑝}

4 For G = 1 to Gmax

5 𝑆𝐹 = ∅, 𝑆𝐶𝑟 = ∅

6 Find the best vector 𝐱𝑏𝑒𝑠𝑡,𝐺

7 Determine the mean of p-top best vectors

 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

= ∑ 𝐱𝑏𝑒𝑠𝑡(𝑘),𝐺
𝑝𝑝

𝑘=1 𝑝⁄

8 For i = 1 to 𝑁𝑝

9 Generate 𝐹𝑖 = 𝐶𝑎𝑢𝑐ℎ𝑦 (𝜇𝐹 , 𝛾𝐹),
 𝐶𝑟𝑖 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇𝐶𝑟, 𝜎𝐶𝑟)

10 Randomly generate two integers r1 and r2 in

the range [1, 𝑁𝑝], and r1  r2  i

11 𝐯𝑖 ,𝐺 = 𝐱𝑏𝑒𝑠𝑡,𝐺
𝑝

+ 𝐹(𝐱𝑟1,𝐺− 𝐱𝑟2,𝐺)

12 Randomly generate a integer 𝑗𝑟𝑎𝑛𝑑 in the

range [1, D]

13 For j = 1 to D

14 If 𝑗 = 𝑗𝑟𝑎𝑛𝑑 or 𝑟𝑎𝑛𝑑 (0,1) < 𝐶𝑟𝑖
15 𝑢𝑗𝑖,𝐺 = 𝑣𝑗𝑖,𝐺

16 Else
17 𝑢𝑗𝑖,𝐺 = 𝑥𝑗𝑖,𝐺

18 End If
19 End for
20 If 𝑓(𝐮𝑖,𝐺) ≤ 𝑓(𝐱 𝑖,𝐺)

21 𝐱 𝑖,𝐺+1 = 𝐮𝑖,𝐺; 𝐹𝑖 → 𝑆𝐹, 𝐶𝑟𝑖 → 𝑆𝐶𝑟

22 Else
23 𝐱 𝑖,𝐺+1 = 𝐱 𝑖,𝐺

24 End If
25 End for
26 If 𝑆𝐹 ≠ ∅ and 𝑆𝐶𝑟 ≠ ∅

27 𝜇𝐹 = 𝑤𝐹 ∙ 𝜇𝐹 + (1 − 𝑤𝐹) ∙ 𝑚𝑒𝑎𝑛𝐿 (𝑆𝐹),

 𝛾𝐹 = 𝑤𝐹 ∙ 𝛾𝐹 + (1 − 𝑤𝐹) ∙ 𝑠𝑡𝑑(𝑆𝐹)

28 𝜇𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜇𝐶𝑟 +(1 − 𝑤𝐶𝑟) ∙
 𝑚𝑒𝑎𝑛𝐴 (𝑆𝐶𝑟),

𝜎𝐶𝑟 = 𝑤𝐶𝑟 ∙ 𝜎𝐶𝑟 + (1 − 𝑤𝐶𝑟) ∙ 𝑠𝑡𝑑(𝑆𝐶𝑟)

29 Else
30 𝛾𝐹 = 0.1, 𝜎𝐶𝑟 = 0.1

31 End If
32 End for
33 End

adaptation of the control parameters is to record recent

successful scale factors and crossover rates , then use
them to guide the generation of new 𝐹𝑖’s and 𝐶𝑟𝑖 ’s,

respectively. However, rather than using 𝛾𝐹 = 0.1 and

𝜎𝐶𝑟 = 0.1 in the probability distribution functions,

both scale parameter 𝛾𝐹 and standard deviation 𝜎𝐶𝑟 are

adaptable in the proposed ADE_𝑝̅BM algorithm. The

adaptations of 𝛾𝐹 and 𝜎𝐶𝑟 are helpful to improve the
solution accuracy and reliability of the ADE

algorithm, shown later in the next section.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 413

Table 2. Comparison of Weight Terms and Initial Value

Settings.

 JADE MDE_pBX ADE_𝑝̅BM

Weight terms:

𝜇𝐹
𝑐1
= 0.9

𝑤𝐹 = 0.8

+0.2 ∙ 𝑟𝑎𝑛𝑑 (0,1)
𝑤𝐹 = 1

−0.5 ∙ 𝑟𝑎𝑛𝑑 (0,1)

𝛾𝐹  
the same value as

in 𝜇𝐹

𝜇𝐶𝑟
𝑐2
= 0.9

𝑤𝐶𝑟 = 0.9

+0.1 ∙ 𝑟𝑎𝑛𝑑 (0,1)
𝑤𝐶𝑟 = 1−

0.5 ∙ 𝑟𝑎𝑛𝑑 (0,1)

𝜎𝐶𝑟  
the same value as

in 𝜇𝐶𝑟

Initial value settings:

𝜇𝐹 0.5 0.5 0.5

𝛾𝐹 0.1 0.1 0.1

𝜇𝐶𝑟 0.5 0.6 0.5

𝜎𝐶𝑟 0.1 0.1 0.1

Note: boldface indicates the number being a constant

4 SIMULATION RESULTS
IN this Section, the ADE_ 𝑝̅ BM is applied to

optimize a set of 12 benchmark functions selected
from (Brest et. al. (2006)) and design the optimal PID

controller for two single-variable plants. The
performance of the proposed ADE_𝑝̅BM algorithm is

compared with four state-of-the-art ADE variants: jDE

(Brest et. al. (2006)), SaDE ((Qin et. al. (2009)),
JADE (Zhang & Sanderson (2009)), and MDE-pBX

(Islam et. al. (2012)). Besides, in the simulations, all

the programs coded by Matlab version R2010a were
executed by a personal computer with Intel(R)

Core(TM) i5-3470 CPU @ 3.20/3.60 GHz processor,
8.0-GB RAM and Windows 7 operating system with

service pack 1.

4.1 Global Optimization Problems
Table 2 represents the selected benchmark

functions and detailed descriptions about those
benchmark functions can be found in (Brest et. al.

(2006)).

Dimensions (D), search spaces, global optimum
values (fmin), and the maximum number of generations

(Gmax) for each test function are also listed in the same
table. Population size 𝑁𝑝 for the ADE variants has

been kept to 100 irrespective of problem dimension D.

The settings of weight terms and initial values of all

adjustable parameters used in JADE, MDE_pBX and
ADE_ 𝑝̅ BM are given in Table 3. Other specific

parameters of state-of-the-art ADE variants and

ADE_𝑝̅BM are listed as follows:
1) jDE with 𝐹𝑙= 0.1, 𝐹𝑢 = 0.9, and 𝜏1= 𝜏2 = 0.1

(Brest et. al. (2006)).

2) JADE with 𝑐 = 0.9, 𝑝 = 0.05, and optional

external archive (Zhang and Sanderson (2009)).
3) MDE_pBX with 𝑞 = 15% and 𝑛 = 1.5 Islam

et. al. (2012)).

4) ADE_𝑝̅BM with 𝑝 = 5.

Each algorithm was run as 50 independent trials on
every benchmark function and their results are used in

the comparison. This study also selects a threshold
value for each benchmark function to compare the

convergence speeds and reliabilities between different
ADE algorithms, except function f7, for functions with

minimum at zero, this threshold is at 10−5 . The

threshold of f7 is 10−3. For function f8, this value is

chosen to be −12,000.
In order to demonstrate the benefit of the proposed

adaptations of 𝛾𝐹 and 𝜎𝐶𝑟 , the results obtained by

ADE_𝑝̅BM with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1 are given in

Table 3. Twelve Selected Benchmark Functions.

Function D Search range 𝑓𝑚𝑖𝑛 Gmax

𝑓1(𝐱) = ∑ 𝑥𝑖
2𝐷

𝑖=𝑖 30 [−100, 100]𝐷 0 1,500

𝑓2 (𝐱) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝐷
𝑖=1

𝐷
𝑖=1 30 [−10, 10]𝐷 0 2,000

𝑓3 (𝐱) = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1)

2𝐷
𝑖=1 30 [−100, 100]𝐷 0 5,000

𝑓4(𝐱) = max {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷} 30 [−100, 100]𝐷 0 5,000

𝑓5 (𝐱) = ∑ [100(𝑥𝑖+1− 𝑥𝑖
2)2+ (𝑥𝑖 − 1)

2]𝐷−1
𝑖=1 30 [−30, 30]𝐷 0 20,000

𝑓6 (𝐱) = ∑ (⌊𝑥𝑖 + 0.5⌋)
2𝐷

𝑖=1 30 [−100, 100]𝐷 0 1,500

𝑓7 (𝐱) = ∑ 𝑖𝑥𝑖
4𝐷

𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1) 30 [−1.28, 1.28]𝐷 0 3,000

𝑓8 (𝐱) = −∑ (𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖 |)
𝐷
𝑖 30 [−500, 500]𝐷 -12569.5 9,000

𝑓9(𝐱) = ∑ [𝑥𝑖
2− 10 cos(2𝜋𝑥𝑖) + 10]

𝐷
𝑖=1 30 [−5.12, 5.12]𝐷 0 5,000

𝑓10(𝐱) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1)

– 𝑒𝑥𝑝 (
1

𝐷
∑ cos(2𝜋𝑥𝑖)
𝐷
𝑖=1

)+ 20 + 𝑒

30 [−32, 32]𝐷 0 1,500

𝑓11(𝐱) =
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝐷

𝑖=1 + 1 30 [−600, 600]𝐷 0 2,000

𝑓12(𝐱) =
𝜋

𝐷
{10 sin2(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 + 10 sin2 (𝜋𝑦𝑖+1)]
𝐷
𝑖=1

 +(𝑦𝐷 − 1)
2} + ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝐷
𝑖=1

 𝑦𝑖 = 1 +
1

4
(𝑥𝑖+ 1), 𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚)

 = {
𝑘(𝑥𝑖− 𝑎)

𝑚, 𝑥𝑖 > 𝑎
0,−𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑥𝑖 < −𝑎

30 [−50, 50]𝐷 0 1,500

414 CHEN and YEH

the last column of Tables 4 and 5. The shaded

numbers in the last column represent that ADE_𝑝̅BM

with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1 , which performs better

than the ADE_𝑝̅BM with adaptable 𝛾𝐹 and 𝜎𝐶𝑟 on the

corresponding item. Note that, unless otherwise stated,
the following comparisons do not take those numerical

results into consideration.

4.1.1 Comparisons on Solution Accuracy and
Reliability

For each function in every ADE variant, the mean
and standard deviation of all successful runs are

presented in Table 4. The success rate of each
algorithm is also given in the table and it is useful to

compare the reliability of the different algorithms. The

success of an algorithm means that this algorithm can

result in a function value no worse than the predefined
threshold, with the number of generations less than the

corresponding maximum number. The success rate is
calculated as the number of successful runs divided by

the total number of runs. For clarity, boldface
indicates the best result(s) among all of the ADE

variants, and rows. “No. of best” and “No. of 100%”
represent the numbers of the best mean values and

100% successful runs, respectively, the corresponding

algorithm can attain. The proposed ADE_ 𝑝̅ BM
obtains the best accuracy on 8 out of 12 functions and

yields 100% success rate on 10 functions, while SaDE

performs the best accuracy on 7 functions and

Table 4. Comparisons of Solution Accuracy and Success Rate for each ADE Variant.

 jDE SaDE JADE MDE_pBx ADE_𝑝̅BM ADE_𝑝̅BM

Function  
𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

𝛾𝐹 and 𝜎𝐶𝑟 :

adaptable

𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

f1

Mean 1.0293e-15(+) 5.4254e-38(+) 1.7826e-64(+) 2.9293e-22(+) 2.3496e-97 3.9786e-119

Std. Dev. 4.55e-16 5.37e-38 3.27e-64 2.06e-22 6.94e-97 1.28e-118

Rate (%) 100 100 100 100 100 100

f2

Mean 1.2974e-13(+) 9.9708e-27(+) 1.8412e-47(+) 1.8566e-15(+) 2.0556e-66 1.7184e-51

Std. Dev. 3.79e-14 6.41e-27 1.82e-47 1.05e-15 1.04e-65 5.46e-51

Rate (%) 100 100 100 100 100 100

f3

Mean (+) 6.9257e-36(+) 6.0877e-53(+) 2.9038e-28(+) 1.4531e-30 9.7286-69

Std. Dev.  1.194e-35 1.08e-52 5.15e-28 6.15e-30 2.98e-68

Rate (%) 0 100 100 100 100 100

f4

Mean 1.0494e-08(+) 2.8600e-24(+) 1.8922e-12(+) 6.2056e-16(+) 5.5128e-09 1.8568e-11

Std. Dev. 3.71e-09 1.94e-24 3.03e-12 8.21e-16 2.66e-08 3.90e-11

Rate (%) 100 100 100 100 100 100

f5

Mean 0() 6.5263e-30() (+) 0() 2.9997e-27 1.2402e-26

Std. Dev. 0 8.566e-30  0 5.73e-27 3.75e-26

Rate (%) 100 100 2 100 100 90

f6

Mean 0(=) 0(=) 0(=) 0(=) 0 0

Std. Dev. 0 0 0 0 0 0

Rate (%) 100 100 100 100 100 42

f7

Mean (+) 8.3274e-04(+) 7.1478e-04(+) 7.8805e-04(+) 6.1142e-04 6.6889e-04

Std. Dev.  1.40e-04 2.26e-04 1.59e-04 1.39e-04 1.79e-04

Rate (%) 0 48 26 38 84 56

f8

Mean -1.2569e+04() -1.2569e+04() -1.2538e+04(=) (+) -1.2493e+04 -1.2384e+04

Std. Dev. 7.34e-12 7.34e-12 5.24e+01  1.14e+02 1.15e+02

Rate (%) 100 100 100 2 100 100

f9

Mean 0() 0() 0() 0() 0 4.8009e-17

Std. Dev. 0 0 0 0 0 2.92e-16

Rate (%) 100 100 100 96 78 74

f10

Mean 9.0786e-09(+) 4.4408e-15(=) 6.2172e-15(+) 6.9841e-12(+) 4.4408e-15 8.9557e-15

Std. Dev. 1.88e-09 0 1.81e-15 2.83e-12 0 4.67e-15

Rate (%) 100 100 48 100 100 96

f11

Mean 0(=) 0(=) 0(=) 0(+) 0 5.8432e-18

Std. Dev. 0 0 0 0 0 2.51e-17

Rate (%) 100 100 100 92 100 76

f12

Mean 8.0439e-17(+) 1.5705e-32(=) 1.5705e-32(=) 1.9951e-23(+) 1.5705e-32 2.4036-32

Std. Dev. 4.10e-17 5.52e-48 5.52e-48 1.89e-23 5.52e-48 2.27e-32

Rate (%) 100 100 100 100 100 88

No. of best 5 7 5 4 8 

No. of 100% 10 11 9 8 10 

w/t/l 7/2/3 5/4/3 7/4/1 9/1/2  

“+”, “” and “=” indicate ADE_𝑝̅BM is respectively better than, worse than, or similar to its competitor according to

Wilcoxon’s rank sum test at  = 0.05.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 415

achieves 100% success rate on 11 functions. As seen,
ADE_𝑝̅BM and SaDE are the best two algorithms. In

order to compare the significance between the two

algorithms, the Wilcoxon’s rank sum test is also used
(Yu et. al. (2014)). In the last row of Table 4,

according to the Wilcoxon’s test, the results are
summarized as “w/t/l,” which denotes that ADE_𝑝̅BM

wins w functions, ties in t function, and loses in l

functions, compared with its competitors. For example,
with SaDE, ADE_𝑝̅BM wins in 5 functions, ties in 4

functions, and loses 3 functions according to the

Wilcoxon’s test at  = 0.05. The fact reveals that the
proposed ADE_ 𝑝̅BM performs slightly better than

SaDE.

Table 4 also shows the benefit of the proposed
adaptations of 𝛾𝐹 and 𝜎𝐶𝑟 on solution accuracy and

reliability. As far as the solution accuracy is

considered, ADE_𝑝̅BM with 𝛾𝐹 = 0.1 and 𝜎𝐶𝑟 = 0.1

outperforms ADE_ 𝑝̅BM with adaptable 𝛾𝐹 and 𝜎𝐶𝑟
only on three functions f1, f3, and f4. However, the

former performs significantly worse than the latter on

the reliability (success rate). The fact could reveal that
the adaptations of 𝛾𝐹 and 𝜎𝐶𝑟 actually enhance the

solution accuracy and reliability of the proposed

ADE_𝑝̅BM algorithm.

4.1.2 Comparisons on Convergence Speed
Figure 2 depicts the convergence graphs for the

median run of the ADE algorithms on 12 functions.

As evident from the convergence characteristics, the
overall convergence speed of ADE_𝑝̅BM seems to be

the best among the contestant ADE algorithms.

However, compared to JADE and MDE_pBX,
ADE_𝑝̅BM requires two extra operations to perform

the adaptations of 𝛾𝐹 and 𝜎𝐶𝑟, i.e., (30) and (34), that

cost computational time. The evidence that resulted

from Figure 2 therefore cannot imply that the
ADE_𝑝̅BM actually uses a lesser computational time.

In order to truly demonstrate the convergence

speed of the algorithms, Table 5 lists the average
number of generations and the corresponding

computational time of each ADE variant required to
reach the respective predefined threshold. Boldface

indicates the fastest convergence speed among all of
the ADE variants. Row “No. of fastest” represents the

numbers of the fastest convergence speed the

corresponding algorithm can, others on 9 out of 12
functions, but slower than JADE only on the

remaining three problems.
To sum up, the proposed ADE_𝑝̅BM performs the

best accuracy on 8 functions, yields 100% success rate

on 10 functions, and attains the fastest convergence
speed on 9 functions. That is to say, ADE_𝑝̅BM can

perform better accuracy, reliability and efficiency than

the other ADE variants on a wide variety of functions.

Table 5. Comparisons of Convergence Speed for each ADE Variant.

 jDE SaDE JADE MDE_pBx ADE_𝑝̅BM ADE_𝑝̅BM

Function  
𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

𝛾𝐹 and 𝜎𝐶𝑟 :

adaptable

𝛾𝐹 = 0.1,

𝜎𝐶𝑟 = 0.1

𝑓1
Mean Gens 742.02 328.26 206.46 523.56 137.88 112.34

T ime (sec) 0.2171 3.8153 0.0757 0.2160 0.0627 0.0376

𝑓2
Mean Gens 951.08 474.44 291.50 822.04 200.04 174.78

T ime (sec) 0.2864 5.6459 0.1100 0.3461 0.0920 0.0591

𝑓3
Mean Gens  1129.18 779.32 1359.10 743.68 784.08

T ime (sec)  14.7294 0.3134 0.6604 0.3570 0.2945

𝑓4
Mean Gens 3483.54 1253.92 2220.34 1670.60 1212.62 2233.52

T ime (sec) 1.0207 16.3032 0.7967 0.6867 0.5186 0.7177

𝑓5
Mean Gens 6719.04 2330.16  2065.38 1547.10 1096.71

T ime (sec) 2.0953 33.1901  0.8545 0.5367 0.3424

𝑓6
Mean Gens 354.40 154.36 126.66 251.44 63.50 106.04

T ime (sec) 0.1106 1.9295 0.0461 0.1035 0.0221 0.0347

𝑓7
Mean Gens  2374.12 2232.38 2165.05 1652.47 1504.50

T ime (sec)  28.2102 1.5039 1.5744 1.1055 0.9465

𝑓8
Mean Gens 1618.54 510.48 760.40  1226.94 925.24

T ime (sec) 0.6387 6.9842 0.3386  0.5180 0.3630

𝑓9
Mean Gens 3513.54 1198.70 1479.22 2537.97 1752.38 1919.18

T ime (sec) 1.2138 15.5204 0.5591 1.1518 0.6692 0.6599

𝑓10
Mean Gens 1038.84 459.54 324.04 761.70 201.60 157.27

T ime (sec) 0.3573 5.7434 0.1211 0.3465 0.0785 0.0508

𝑓11
Mean Gens 794.82 356.92 358.16 529.13 156.22 119.13

T ime (sec) 0.3239 4.9679 0.1652 0.2698 0.0687 0.0470

𝑓12
Mean Gens 657.32 269.52 188.68 455.32 124.58 145.93

T ime (sec) 0.2895 3.7472 0.0889 0.2458 0.0599 0.0614

No. of fastest   3  9 

416 CHEN and YEH

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 2. PID control system. The Convergence Curve of Median Run of Five Algorithms over 12 Test Functions. (a) f1. (b) f2.

(c) f3. (d) f4.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 417

 (i) (j)

 (k) (l)
(Continued.) Figure 2. PID control system. Convergence Curve of Median Run of Five Algorithms over 12 Test Functions. (e)

f5. (f) f6. (g) f7. (h) f7. (i) f9. (j) f10. (k) f11. (l) f12.

4.2 PID Controller Designs
Two single-variable plants are chosen to

demonstrate the search performance of the proposed
ADE_ 𝑝̅ BM algorithm in the tuning of the PID

parameters. The transfer functions of the chosen plants

are given as follows:

 Plant 1: 𝐺1(𝑠) =
1.6

𝑠2+2.584𝑠+1.6
, (35)

 Plant 2: 𝐺2(𝑠) =
15

50𝑠3+43𝑠2+3𝑠+1
, (36)

With the system sampling time being 0.05 second

and the range of the control value u being [−10,10],
other relevant system variables are; 𝐾𝑃 ∈ [0,20] ,
𝐾𝐼 ∈ [0,20] , and 𝐾𝐷 ∈ [0,10]. In order to compare

with the simulation results obtained in (Zheng et. al.

(2009); Zeng et. al. (2014)), this study adopts the same
fitness function, i.e., the cost function given in (24),

and the corresponding weight coefficients are also set

as; 𝑤1 = 0.999, 𝑤2 = 0.001, 𝑤3 = 2.0, and 𝑤4 = 50.
In the simulations, the step response of each PID

control system tuned by ADE_𝑝̅BM is compared with

that tuned by the previous four state-of-the-art ADE
variants as well as the self-organizing genetic

algorithm (SOGA) (Zheng et. al. (2009)), adaptive
genetic algorithm (AGA) (Zhang et. al. (2007)),

probability-based binary particle swarm optimization

(PBPSO) (Menhas et. al. (2014)) and binary-coded
extremal optimization algorithm (BCEO) (Zeng et. al.

(2014)). For each algorithm, the population size is 50
and the maximum number of generations is 100.

Except for these two parameters, other relevant
parameters of ADE_𝑝̅BM and four contestants ADE

variants are the same as previous settings. The

following parameters are used for SOGA; the size of
the dominant population is 10, the crossover rate 𝑃𝑐 is

0.6, and the mutation rate function is defined as:

 𝑃𝑚(𝑡) =
𝛼[𝑡−(𝑘+0.5)𝑇𝑐]

2

𝑇𝑐
2

, (37)

where 𝑡 is the current generation number, 𝑇𝑐 = 50

indicates the mutation period, 𝛼 = 4 represents a

mutation turning coefficient, and 𝑘 is the number of

the period. The parameters of AGA are 𝑃𝑐 = 0.7 and

𝑃𝑚 = 0.01. Each algorithm ran for 20 independent

trials on every transfer function and the median run of
each algorithm is used in the comparison. The

performance of these algorithms are evaluated by the
indices including the best fitness (𝐽𝑏𝑒𝑠𝑡), maximal

overshoot (PO%), rising time (𝑇𝑟𝑖𝑠𝑒), steady-state error

(𝑒𝑠𝑠%), settling time with 0.1% error (𝑇𝑠𝑒𝑡
0.1) and

running time (𝑇𝑟𝑢𝑛).
The optimal parameters of PID controllers and the

experimental results obtained by different algorithms

for plant 1 are shown in Table 6. Note that boldface
and italic (if have) in the table indicate the best and

near-best results, respectively. In addition, the optimal

PID parameters attained by SOGA, AGA, PBPSO and
BCEO are previous findings given by Zeng et. al.

418 CHEN and YEH

(2014)). The corresponding running times therefore

are not shown in the table. Figure 3 depicts step
responses for plant 1 under different algorithms-based

PID controllers. Since the optimal parameters of the
PID controllers and the corresponding best fitness

values obtained by different ADE variants are almost
the same, their step response curves are close to each

other. Therefore Figure 3 only illustrates the step

response obtained by the proposed ADE_𝑝̅BM. It can
be seen from Figure 3 and Table 6 that the PID

controller tuned by ADE_ 𝑝̅BM has the minimum

overshoot, the smallest settling time and the least
running time as well as the near-best fitness and a

small steady-state error of 1.4× 10−5%. The results

indicate that ADE_𝑝̅BM can attain better transient and

steady-state performances.

Figure 3. Step Response for Pl ant 1 with Different

Algorithm-based PID Controllers.

The parameters of the PID controllers and the

experimental results for plant 2 are given in Table 7,
while the corresponding step responses are depicted in

Figure 4. Although 𝑇𝑟𝑖𝑠𝑒 and 𝑒𝑠𝑠% obtained by

MDE_pBX are all smaller than those by other
algorithms, MDE_pBX performs a large PO% and a

big 𝐽𝑏𝑒𝑠𝑡. Compared with the others, it can be observed

that the PID controllers tuned by ADE_ 𝑝̅BM and

SaDE show almost the same performance indices
including 𝐽𝑏𝑒𝑠𝑡 , PO% , 𝑇𝑟𝑖𝑠𝑒, 𝑒𝑠𝑠% , 𝑇𝑠𝑒𝑡

0.1, and 𝑇𝑟𝑢𝑛 .

Overall speaking, they are the best two algorithms but

ADE_𝑝̅BM is slightly better than SaDE.

5 CONCLUSIONS
BY replacing the best solution in “DE/best/1” with

the mean of p top-ranked vectors, this study proposed

a less greedy and more explorative mutation strategy

“DE/𝑝best̅̅ ̅̅ ̅̅ ̅/1” to avoid premature convergence at local

optima. Besides, the parameter adaptation of

ADE_𝑝̅BM was implemented by evolving the scale
factor 𝐹 and crossover rate 𝐶𝑟 based on their historical

record of success. Four parameters, 𝜎𝐶𝑟, 𝜇𝐶𝑟 , 𝛾𝐹, and

𝜇𝐹 , are updated at the end of each generation

according to the record of recent successful control
parameters. The purpose of this parameter adaptation

mechanism is to improve the solution accuracy and

robustness of the algorithm. The results of global
optimization problems show that the ADE_ 𝑝̅ BM

could perform better accuracy, reliability and

efficiency than the four state-of-the-art adaptive DE
variants on a wide variety of functions.

Table 6. Optimal Parameters of the PID Controllers and Performance Indices: Plant 1

Algorithm 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝐽𝑏𝑒𝑠𝑡 PO% 𝑇𝑟𝑖𝑠𝑒 𝑒𝑠𝑠% 𝑇𝑠𝑒𝑡
0.1

 𝑇𝑟𝑢𝑛

jDE 15.5558 2.6382 3.5242 9.6329 3.14e-3 0.65 3.14e-3 1.35 33.5734

SaDE 15.6506 2.6405 3.5522 9.6074 3.22e-4 0.65 2.89e-5 1.35 34.0621

JADE 15.6657 2.6394 3.5539 9.6142 8.14e-4 0.65 8.14e-4 1.35 34.0727

MDE_pBX 15.6574 2.6404 3.5537 9.6073 2.15e-4 0.65 1.08e-8 1.35 34.1400

ADE_𝑝̅BM 15.6119 2.6412 3.5428 9.6092 1.74e-4 0.65 1.43e-5 1.35 33.5433

SOGA 19.390 4.119 5.151 14.2753 2.81e+0 0.90 5.14e-1 >10 

AGA 15.2884 2.7566 3.4506 9.8644 2.12e-1 0.65 4.70e-2 5.75 

PBPSO 19.9990 42174 3.9562 22.2145 1.67e+1 0.60 2.29e-1 >10 

BCEO 17.5171 2.639 3.9296 9.7605 7.70e-3 0.65 1.58e-3 1.55 

Table 7. Optimal Parameters of the PID Controllers and Performance Indices: Plant 2

Algorithm 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝐽𝑏𝑒𝑠𝑡 PO% 𝑇𝑟𝑖𝑠𝑒 𝑒𝑠𝑠% 𝑇𝑠𝑒𝑡
0.1

 𝑇𝑟𝑢𝑛

jDE 1.2805 0.0245 3.7686 83.2111 4.37 3.90 5.55e-3 33.1 98.1229

SaDE 0.8640 0.0220 2.8985 80.4329 2.09 4.50 3.89e-4 28.4 97.1462

JADE 1.0531 0.0231 3.3087 81.0380 3.05 4.20 9.88e-4 29.8 96.5950

MDE_pBX 1.7466 0.2183 5.3817 103.7465 22.03 3.35 3.19e-6 39.4 98.2078

ADE_𝑝̅BM 0.9175 0.0221 3.0456 80.4897 2.17 4.45 1.40e-4 27.7 96.7331

SOGA 2.98 0.096 12.7 156.5308 8.45 8.45 4.54e-1 >100 

AGA 1.3294 0.1955 4.6921 108.0184 22.97 3.75 2.09e-5 43.15 

PBPSO 4.0043 0.0355 10.0 165.4567 11.13 5.70 2.37e-1 >100 

BCEO 1.7986 0.0196 6.3441 92.7663 0.49 7.75 1.22e-3 29.95 

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 419

(a) ADE Algorithms (b) ADE_𝒑̅BM, GAs, PSO and BCEO

Figure 4. Step Response for Plant 2 with Different Algorithm-based PID Controllers.

On the other hand, as far as the PID controller
designs on two single-variable plants are considered,

the results also show that the ADE_𝑝̅BM can attain

better transient and steady-state performance than
other ADE variants.

5.1 Acknowledgment
THIS work was supported by Ministry of Science

and Technology, Taiwan, R.O.C. through Grant

MOST 103-2221-E-262-026 and MOST 104-2221-E-
262-009.

6 REFERENCES
Abbasa, Q., Ahmadb, J., & Jabeena, H. (2018).

Random controlled pool base differential

evolution algorithm (RCPDE), Intelligent

Automation and Soft Computing,24(2), 377-390.
Alfi, A., & Modares, H. (2011). System identification

and control using adaptive particle swarm
optimization. Applied Mathematical Modelling,

35(3), 1210–1221.
Brest, J., Greiner, S., Boskovic, B., Mernik, M., &

Žumer, V. (2006). Self-adapting control
parameters in differential evolution: a comparative

study on numerical benchmark problems. IEEE

Transactions on Evolutionary Computation, 10(6),
646–657.

Das, S., & Suganthan, P. N. (2011). Differential
evolution: a survey of the state-of-the-art. IEEE

Transactions on Evolutionary Computation, 15(1),
4–31.

Islam, Sk. M., Das, S., Ghosh, S., Roy, S., &

Suganthan, P. N. (2012). An adaptive differential
evolution algorithm with novel mutation and

crossover strategies for global numerical
optimization. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics) , 42(2),
482–500.

Kim, J. H., Lee, J., & Oh, Y. (2018). Performance

analysis for bounded persistent disturbances in

PD/PID-controlled robotic systems with its
experimental demonstrations: International

Journal of Control: Vol 91, No 3. 91(3), 688–705.
Li, X., Hu, C., & Yan, X.-F. (2013). Chaotic

differential evolution algorithm based on

competitive coevolution and its application to
dynamic optimization of chemical processes.

19(1), 85–98.
Lu, X., Tang, K., Sendhoff, B., & Yao, X. (2014). A

new self-adaptation scheme for differential
evolution. Neurocomputing, 146, 2–16.

Mallipeddi, R., Suganthan, P. N., Pan, Q., &

Tasgetiren, M. F. (2011). Differential evolution
algorithm with ensemble of parameters and

mutation strategies. Applied Soft Computing,
11(2), 1679–1696.

Menhas, M. I., Wang, L., Fei, M., & Pan, H. (2012).
Comparative performance analysis of various

binary coded PSO algorithms in multivariable PID
controller design. Expert Systems with

Applications, 39(4), 4390–4401.

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2008).
Differential evolution algorithm with strategy

adaptation for global numerical optimization .
13(2), 398–417.

Storn, R., & Price, K. (1997). Differential evolution –
a simple and efficient heuristic for global

optimization over continuous spaces. Journal of

Global Optimization, 11(4), 341–359.
Tabatabaei, M., & Barati-Boldaji, R. (2017). Non-

overshooting PD and PID controllers design.
Automatika, 58(4), 400–409.

Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential
evolution with composite trial vector generation

strategies and control parameters. IEEE

Transactions on Evolutionary Computation , 15(1),
55–66.

Xue, Y., Zhong, S., Ma, T., & Cao, J. (2015). A
hybrid evolutionary algorithm for numerical

optimization problem. Intelligent Automation &
Soft Computing, 21(4), 473–490.

420 CHEN and YEH

Yu, W.-J., Shen, M., Chen, W.-N., Zhan, Z.-H., Gong,

Y.-J., Lin, Y., Zhang, J. (2014). Differential
evolution with two-level parameter adaptation.

IEEE Transactions on Cybernetics, 44(7), 1080–
1099.

Zeng, G.-Q., Lu, K.-D., Dai, Y.-X., Zhang, Z.-J.,
Chen, M.-R., Zheng, C.-W., Peng, W.-W. (2014).

Binary-coded extremal optimization for the design

of PID controllers. Neurocomputing, 138, 180–
188.

Zhang, J., Chung, H. S.-H., & Lo, W.-L. (2007).
Clustering-based adaptive crossover and mutation

probabilities for genetic algorithms. IEEE
Transactions on Evolutionary Computation, 11(3),

326–335.
Zhang, J. H., Zhuang, J., Du, H., & Wang, S. (2009).

Self-organizing genetic algorithm based tuning of

PID controllers. Information Sciences, 179(7),
1007–1018.

Zhang, J. Q., & Sanderson, A. C. (2009). JADE:
adaptive differential evolution with optional

external archive. IEEE Transactions on
Evolutionary Computation, 13(5), 945–958.

7 NOTES ON CONTRIBUTORS
T.H. Chen received a Ph.D.

degree in Electrical Engineering
from Tatung University, Taipei,

Taiwan, R.O.C. He is currently
an assistant professor with the

Department of Computer
Information and Network

Engineering, Lunghwa

University of Science and Technology, Taoyuan,
Taiwan, R.O.C. His researches interests include

evolutionary computation, fuzzy logic system, and
optimal control.

Ming-Feng Yeh received his

B.S., M.S., and Ph. D. degrees

in Electrical Engineering from

Tatung University, Taipei,

Taiwan in 1993, 1995, and

1999, respectively. Since

2001, he has been with the

Department of Electrical

Engineering, Lunghwa University of Science and

Technology, Taoyuan, Taiwan, currently a

professor. His current interests include; grey system

theory, neural networks, evolutionary algorithm,

soft computing, and applications on bioengineering,

pattern recognition, automatic control, and

intelligent control.

