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1 INTRODUCTION 
DEEP neural network (DNN) attempts to create an 

explicit model to learn the data's representation from 
large-scale data, which is inspired by advances in 

neuroscience. Various architectures such as 
convolutional deep neural networks, deep belief 

networks and recurrent neural networks have been 

applied to solve many computer vision problems, e.g., 
hand-written digit recognition, object recognition, 

image classification, etc. 
Two issues, i.e., over-fitting and computation time, 

should be considered carefully when applying DNN 
into real applications. DNN is prone to over-fitting 

because of large hidden layers, which allow to model 

rare dependencies in the training data. Regularization 
methods such as Ivakhnenko's unit pruning, weight 

decay ( ℓ2 -regularization) or sparsity ( ℓ1 -

regularization) can be applied to help combat over-
fitting. A more recent regularization method applied to 

DNN is the dropout regularization. In dropout, some 
units are randomly omitted from the hidden layers 

during training. This helps to exclude rare 
dependencies that occur in the training data. 

The dominant method for training these deep 
learning structures is the back-propagation with 

gradient descent due to easier implementation. 

However, this method costs much computation time, 
especially for DNN. There are many carefully-

designed parameters in DNN, such as the network 

structure parameters, learning rate and neural node's 
weights. Searching most optimal parameters may not 

be feasible due to computational resources and time 
costs. 

For overcoming these issues of the deep learning 
framework, especially computation time, Huang, et. 

al. (2006) initially proposed an extreme learning 

machine (ELM). ELM was a feed-forward neural 
network for classification or regression with single 

layer feed-forward hidden nodes, where all weights 
connecting the inputs to hidden nodes were randomly 

assigned and learned in a single step. The 
experimental results showed that ELM was able to 

produce better generalization performances, and 

learned thousands of times faster than DNN that was 
trained by the back-propagation. After ELM, lots of 

research had been done to improve it. Huang (2014) 
discussed ELM with random neurons, random features 

and kernels, and gave a theory analysis why ELM 
could outperform the support vector machine (SVM). 

Huang (2015) further extended the shallow 

architecture of ELM into a hierarchical learning 
framework and proposed a locally connected ELM. 

Yang, et. al. (2015) proposed a nonlinear predictive 
control strategy based on ELM to address the path-

tracking control problem of wheeled mobile robots. 
Miao, et. al. (2017) proposed a prediction model to 

improve the learning ability and its prediction 
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precision, which combined PCA and ELM. Huang, et. 

al. (2012) proposed a unified ELM, where both 
kernels and random hidden nodes could work for the 

feature mapping. It provided a unified framework to 
simplify and unify different learning methods, 

including SVM, feed forward neural networks, etc. 
Huang, et. al. (2010) further studied ELM for 

classification with regard to the standard optimization 

method, and extended ELM to a specific type of 
“generalized” support vector network. However, the 

sparsity was lost as equality constraints. Bai, et. al. 
(2014) proposed a sparse ELM as an alternative 

solution for classification, and it could reduce storage 
space and testing time. 

The sparse regularization has a limitation, i.e., in 
the “large p, small n” case (high-dimensional data 

with few examples), the system with sparse 

regularization only selects at most n variables before it 
saturates. If there is a group of highly correlated 

variables, the system with a sparse regularization 
tends to select one variable from a group and ignores 

the others. To overcome this limitation, an extreme 
learning machine with elastic net regularization 

(ELM-EN) is proposed in this paper. The elastic net is 

a regularization method that linearly combines ℓ1 and
ℓ2  penalties, which are used in LASSO and ridge 

regression methods respectively. Since the elastic net 

is a linear combination between  ℓ1 and ℓ2 norm in the 

system optimization function, each term of loss 
function is strictly convex. An excellent optimization 

method, i.e., accelerated proximal gradient (APG), is 
used to find the minimum of the system optimization 

function. 

The organization of the rest of this paper is as 
follows. Section II reviews the basic principle of ELM 

method. The technical details of our ELM-EN are 
given in Section III. Experiment and comparative 

analysis are discussed in Section IV. Conclusions are 
drawn in Section V. 

2 REVIEW OF THE ELM METHOD 
ELM firstly transformed the inputs into the hidden 

layer through ELM features mapping, then the outputs 
were generated through ELM learning, which included 

classification, regression, clustering, etc. 
1) ELM feature mapping: the output function of 

ELM was as follows, 

𝑓(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥)𝑖 = ℎ(𝑥)𝛽   (1) 

𝛽 = [𝛽1,…, 𝛽𝐿]𝑇 was the vector of the output weights

between the hidden layer with 𝐿 nodes and the output 

layer with 𝑚  nodes, and 𝐻 = [ℎ1,… ,ℎ𝐿]  was the 

vector of the hidden layer. Different activation 
functions were used in different hidden neurons. In 

real applications, ℎ𝑖(𝑥) was as follows,

ℎ𝑖(𝑥) = 𝐺(𝑤𝑖 ,𝑏𝑖 ,𝑥),𝑤𝑖 ∈ 𝑅𝑑 ,𝑏𝑖 ∈ 𝑅 (2) 

𝐺(𝑤𝑖 ,𝑏𝑖 ,𝑥)   was a nonlinear piecewise continuous

function and (𝑤𝑖, 𝑏𝑖
)  were the i-th hidden node 

parameters. Some commonly used activation functions 
were the Sigmoid function, Fourier function and 

Gaussian function. In contrast with conventional 
artificial neural networks theories, hidden neurons did 

not need to tune in ELM, and which were randomly 
assigned.  ℎ(𝑥) actually mapped the data from the d-

dimensional input space to the L-dimensional hidden 

layer random feature space, which was also called 
ELM feature mapping. 

2) ELM learning: the solution of ELM aimed to

reach the smallest training error as follows, 

𝐸 = 𝑚𝑖𝑛𝛽‖𝐻𝛽 − 𝑇‖ = 𝑚𝑖𝑛𝛽‖𝐺(𝑤𝑖 ,𝑏𝑖 ,𝑥)𝛽 − 𝑇‖ 

(3) 

𝑇 = [𝑡1,…, 𝑡𝑚] depicted the output target of the final 

neurons. This optimization function was ℓ2  norm,

which was a square error between 𝐻𝛽 and 𝑇. 

Training ELM was simply equivalent to find a 
least-squares solution of the linear system  𝐻𝛽 = 𝑇. 

The smallest norm least squares solution of Eq. (3) 

was as follows, 

𝛽 = (𝐻𝐻𝑇 )−1𝐻𝑇 (4) 

3 OUR ELM WITH ELASTIC NET 
REGULARIZATION 

BAI, et. al. (2014) proposed a sparse ELM (SELM) 

to reduce storage space and testing time, and the 
optimization function of SELM is as follows, 

𝐸 = 𝑚𝑖𝑛𝛽‖𝐻𝛽 − 𝑇‖ + ‖𝛽‖1 (5) 

When the system handles the high-dimensional 

data with few examples, the sparse regularization may 
meet a large-dimension-few-example problem, i.e., the 

system only selects one variable from one group, and 

ignores the others. Moreover, the square error in ELM 
is an effective loss function when there is a regression 

problem. However, it is not an effective loss function 
when there is a classification problem. For 

overcoming these problems, we propose an ELM with 
elastic net regularization as follows, 

𝐸 = 𝑚𝑖𝑛𝛽 𝐿𝑜𝑠𝑠(𝐻, 𝛽, 𝑇) + 𝜆1‖𝛽‖1 + (1 − 𝜆1)‖𝛽‖2

(6) 

𝐿𝑜𝑠𝑠(𝐻, 𝛽, 𝑇) is the loss function. The loss function is 

the square loss for the regression, and it is the cross -
entropy loss for the classification (logistic loss is the 

special case of cross entropy loss in the binary 

classification).} The parameter 𝜆1 is a balance variable 
between LASSO and ridge penalties. When 𝜆1 = 1 ,

our system degrades into SELM. Meanwhile, when 

𝜆1 = 0  , our system becomes the traditional ELM

method. 
There are several advantages using this elastic net 

regularizer. First, ℓ2 norm regularizer helps to remove 

the limitation on the number of output weight 
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coefficients; second, it encourages the grouping effect, 

which makes all output weight coefficients maintain a 
consistency; third, it also stabilizes the ℓ1  norm 

regularization. 

In ELM, the optimization function is strictly 
convex, and it can be solved using the Moore-Penrose 

generalized inverse. The elastic net is a linear 
combination between  ℓ1 and ℓ2 norm in the system 

optimization function, where each term of loss 

function is strictly convex. 
For efficiently solving Eq. (6) in our ELM-EN, 

APG (Huan, 2015) is used in our system. APG is an 
excellent optimization method not only for convex 

programming problem, but also for non-convex 
programming problem. In our ELM-EN, each term of 

Eq. (6) is convex. Therefore, APG can be guaranteed 

to find the minimum solution from Eq. (6). During 
real implementation, APG comprises alternately 

updating a weight matrix sequence {𝛽𝑡}   and an 

aggregation matrix sequence  {𝛹𝑡}. Each iteration 
consists of two steps: 

a) A generalized gradient mapping step to update 

matrix  𝛽𝑡+1  with current aggregation matrix 𝛹𝑡 . 
Given the current matrix 𝛹𝑡  , we update  𝛽𝑡+1   as 

follows, 

 𝛽𝑡+1 = Ψ𝑡 − 𝜂∇𝑡                     (7) 

𝜂  is the step size parameter, ∇𝑡 is the gradient of Eq. 

(6) in step t. The optimization function (Eq. (6)) can 
separate into three terms. The first term is 

𝐿𝑜𝑠𝑠(𝐻, 𝛽, 𝑇) . When system's application is a 

regression problem, the loss function is a square error 
between 𝐻𝛽 and 𝑇 , and the gradient is (𝐻𝛽 − 𝑇)𝐻𝑇 

and. When the system's application is a classification 

problem, the loss function is a cross entropy loss, and 
the gradient is −𝐻𝑙𝑜𝑔(𝐻𝛽) − 𝐻. The second term is  
‖𝛽‖1 , whose gradient is 𝑠𝑖𝑔𝑛(𝛽) . The third term 

is  ‖𝛽‖2, whose gradient is  𝛽. 

b) An aggregation forward step to update 𝛹𝑡+1  by 
linearly combining 𝛽𝑡+1 and 𝛽𝑡 . We construct a linear 

combination of  𝛽𝑡+1  and 𝛽𝑡  to update 𝛹𝑡+1  

according to the APG method (Yuan 2012), 

 𝛹𝑡+1 = 𝛽𝑡+1 +
𝑎𝑡+1(1−𝑎𝑡)

𝑎𝑡

( 𝛽𝑡+1 − 𝛽𝑡) (8) 

𝑎𝑡 is conventionally set as 𝑎𝑡 =
2

𝑡+2
. 

4 EXPERIMENTAL RESULTS AND DISCUSSION  
OUR ELM-EN is compared with four currently 

representative methods, i.e., MLP (Rumelhart 1986), 

SVM (Cortes 1995), ELM (Huang 2014) and SELM 
(Bai 2014). All datasets are evaluated with MATLAB 

R2012b running in a personal computer with a 
3.1GHz CPU and an 8GB RAM memory. Kernel 

methods in MATLAB Toolbox is used to implement 

SVM. The evaluation metrics include four aspects: 
training accuracy, testing accuracy, training time and 

testing time. 

Initially, we analyze the performance between 

ELM-EN with ELM and SELM with different 
numbers of hidden network nodes. The Arcene dataset 

from the UCI repository is chosen as the evaluation 
dataset, whose task is to distinguish cancer versus 

normal patterns from mass-spectrometric data. This 
dataset is a binary classification problem. The data’s 

dimension is 10000, which is larger than the number 

of data (900). Figure 1 and 2 give three method’s 
training and testing accuracies with different numbers 

of hidden network nodes. Figure 1 and 2 indicate that 
ELM meets over-fitting when the number of hidden 

network nodes is over 100. Training accuracy of 
SELM is worst among three methods because SELM 

meets the “large attribute and small instance” problem. 
ELM-EN achieves the best performance when the 

number of hidden network nodes is 170, which 

outperforms ELM and SELM. 

 

Figure 1.  Training Accuracies of Three Methods with the 
Hidden Network Node Numbers 𝑳. 

 

Figure 2.  Testing Accuracies of the Three Methods with the 
Hidden Network Node Numbers 𝑳. 

We provide the sensitivity studies for parameters 
𝜆1and L. We set 𝜆1 =[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1] and 𝐿 =[2, 5, 10, 15, 20, 30, 50, 70, 100, 

130, 150, 170, 200]. Figure 3 and 4 give training and 

testing accuracies in different values of two 
parameters 𝜆1 and L. With increasing L, the system 

more easily meets over-fitting. Therefore, L cannot be 

infinite in real implementation. When L is small, the 
hidden layer’s space cannot efficiently represent the 
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information of data, and ELM meets the under-fitting 

problem. Therefore, the regularization using variation 
of 𝜆1  has little impact on the system performance. 

When L is large (e.g., L is over 100), ELM meets the 

over-fitting problem. Regularization is an efficient 
method to overcome the over-fitting problem. 

Therefore, regularization using variation of λ has large 
impact on system performance. The parameter 𝜆1 

keeps a balance between ℓ1 and ℓ2, and it needs to be 

tuned in different datasets. In this Arcene dataset, the 

system can achieve best performance when L is 170, 
and 𝜆1 is 0.2. 

Furthermore, we evaluate the performance of 
ELM-EN when testing the high-dimensional data with 

few examples, therefore, three datasets with high 

feature dimension are chosen, which are DOROTHEA, 
GISETTE, and DEXTER from the UCI Repository. 

DOROTHEA is a drug discovery dataset, whose 
feature dimension is 100000, and the number of data 

is only 1950. GISETTE is a handwritten digit 
recognition problem, whose feature dimension is 5000, 

and only ten percent of data is chosen, whose number 

of data is 1350. DEXTER is a text classification 
problem, whose feature dimension is 20000, and the 

number of data is 2600. The common point of these 
three datasets is that the feature dimension is larger 

than the number of data, and all of them are over 5000. 
Figures 5-7 give the training and testing accuracies 

during testing three datasets. When testing 

DOROTHEA, the training accuracy of ELM has been 
100%, but the testing accuracy of ELM is deteriorated 

when the number of neural nodes is between 600 and 
1000. It is obvious that the system meets the over-

fitting problem. This phenomenon also exists when 
testing GISETTE and DEXTER. The experimental 

results indicate that SELM cannot solve this problem. 
The accuracy curve of ELM-EN is more stable than 

those of ELM and SELM, and the testing accuracies 

of ELM-EN are higher than those of ELM and SELM. 
Performance of these three datasets further proves that 

ELM-EN has more robustness than ELM and SELM 
when evaluating the high-dimensional data with few 

examples. 
 

Table 1.  Dataset of Binary and Multi-class Classification. 

Datasets #Train #Test Features Classes 

Binary Classification 

Breast 342 341 10 2 

Diabetes 384 384 8 2 

Mushroom 4062 4062 22 2 

Magic 9510 9510 11 2 

Spambase 2301 2301 57 2 

Arcene 450 450 10000 2 

Multi class Classification 

Iris 75 75 4 3 

Wine 89 89 13 3 

Segment 1155 1155 19 7 

Satimage 4435 2000 36 6 

 

 

Figure 3.  Training Accuracies in Different Values of Two 
Parameters 𝝀𝟏 and 𝑳. 

 

Figure 4.  Test Accuracies in Different Values of Two 
Parameters 𝝀𝟏 and 𝑳. 

 

Figure 5.  Training and Testing Accuracies of DOROTHEA in 
Different Numbers of Hidden Network Nodes. 
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Figure 6. Training and Testing Accuracies of GISETTE in 
Different Numbers of Hidden Network Nodes. 

 

Figure 7.  Training and Testing Accuracies of DEXTER in 
Different Numbers of Hidden Network Nodes. 

Additionally, ten datasets are chosen from the UCI 

repository to evaluate the performance of ELM-EN. 
They are six binary classification datasets and four 

multi-class classification datasets. Details are 
summarized in Table 2. During the experiment, the 
label is either 1 or -1 for binary classification, and the 

label is 1, 2,..., N for multi-class classification, where 

N is the number of classes. In order to reduce human 
involvement, the five-fold cross validation method is 

used to find the optimal parameters, i.e., the length 

scale of Gaussian function 𝜎 , the number of hidden 
network nodes L and 𝜆1. As shown in Table 3, the 

optimal parameters of L and 𝜆1 are specified for each 

dataset. Table 4 gives the system performance during 

testing six binary class and four multi-class datasets. 
When testing datasets with high dimension features, 

i.e., Arcene and Spambase, the computer cannot train 
MLP, and it meets the shortage of memory in 

MATLAB. Therefore, the performance of MLP is 

NULL during testing Arcene and Spambase. ELM, 

SELM and our ELM-EN have an analytical solution, 

therefore, these three methods almost have less 
training time than MLP. About the testing accuracy, 

our ELM-EN can achieve higher accuracy than SVM 
in six datasets, ELM in five datasets, and SELM in six 

datasets. However, in the Arcene dataset, SVM 
outperforms ELM, SELM and our ELM-EN. The 

main reason is that the dimension of input feature is 

far larger than the number of data, and the random 
feature mapping suffers the curse of dimensionality 

when lacking the feature selection. However, SVM 
seeks the largest margin from support vectors, and 

seems to be a sort of feature selection. About training 
time, our ELM-EN has less time than SVM in nine 

datasets, and ELM in three datasets. The training time 
of our ELM-EN is roughly equal with that of SELM. 

Finally, two facial expression image datasets are 

chosen to evaluate the performance of ELM-EN, 
namely the COHN-KANADE (Kannade 2000) and 

JAFFE (Lyons 1998) datasets. COHN-KANADE 
consists of facial images depicting 210 persons, and 

the facial expression includes seven kinds, i.e., anger, 
disgust, fear, happiness, sadness, surprise and neutral. 

JAFFE consists of 210 facial images from 10 Japanese 

female persons, and each person has 3 images of facial 
expression. Table 5 illustrates the performance of 

ELM, S-ELM and ELM-EN for different numbers L 
of hidden layer nodes. During testing COHN-

KANADE and JAFFE, ELM-EN generally provides 
enhanced performance when compared to both ELM 

and S-ELM algorithms. 

5 CONCLUSION 
AN extreme learning machine with elastic net 

regularization (ELM-EN) was proposed in this paper. 

The elastic net regularization was used to linearly 
combine LASSO and ridge penalties. Various datasets 

from the UCI Repository and two facial expression 
datasets were used to evaluate our system. 

Experimental results showed that our ELM-EN had 

less training time than MLP, and outperformed ELM 
and SELM methods. The parameters  𝜆1 was used to 

keep a balance between the  ℓ1 and ℓ2 regularizers. In 

our method, this parameter 𝜆1 was chosen by the cross 

validation, and the optimal parameter 𝜆1 was different 

for different datasets. In the future, an automatic 
parameter selection method needs further research. 
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Table 2.  Parameter Specification. 

 MLP SVM ELM Sparse ELM Our ELM-EN 

 Sigmoid Gaussian kernel Gaussian kernel Gaussian kernel Gaussian kernel 

 𝐿 𝐶 σ 𝐿 σ 𝐿 σ 𝐿 σ 𝜆1 

Breast  100 2 1 2 1 200 1 200 1 0.1 

Diabetes 100 10 5 10 5 200 1 200 5 0.2 

Mushroom 100 1 1 1 1 0.2 0.5 100 1 0.2 

Magic 100 2 1 200 1 50 0.5 200 1 0.3 

Arcene 1000 50 500 500 1000 500 1000 1000 500 0.2 

Spambase 1000 5 0.5 10 1 2 0.5 100 0.5 0.2 

Iris 1000 10 1 500 2 1 0.5 200 2 0.1 

Wine 1000 5 1 1 2 5 0.5 50 2 0.2 

Segment 1000 1000 0.2 1 0.1 1 0.1 2000 0.1 0.2 

Satimage 1000 500 1 1 0.2 1 0.1 2000 0.2 0.2 

 

Table 3.  System Performance of Ten Datasets. A: Training Accuracy, B: Testing Accuracy, C: Training Time, D: Testing Time. NULL 
Means that the MLP Cannot Train the Model of the Shortage of the Memory in MATLAB. 

  Breast Diabetes Mushroom Magic Arcene Spambase Iris Wine Segment Satimage 

MLP  A(%) 93.72 90.36 96.92 89.84 NULL NULL 82.68 88.76 68.78 73.42 

B(%) 89.01 64.06 78.15 85.87 NULL NULL 61.33 38.33 78.17 63.84 

C( s ) 8.14 268.05 5372.8 4423.8 NULL NULL 37.29 376.89 7513.5 1469.6 

D( s ) 0.094 0.048 0.36 0.49 NULL NULL 0.14 0.34 0.34 0.27 

SVM  A(%) 98.25 78.65 100 84.29 100 96.61 100 100 100 100 

B(%) 97.36 73.96 100 85.73 82.94 92.83 93.33 97.75 91.43 90.55 

C( s ) 0.055 0.13 41.48 311.77 0.25 9.7 0.025 0.03 5.13 11.59 

D( s ) 0.001 0.0026 0.32 2.23 0.03 0.17 0.0009 0.0011 0.34 0.41 

ELM  A(%) 99.12 83.33 100 88.46 100 95.13 100 100 100 100 
B(%) 98.24 74.48 100 86.88 67 93.7 97.33 98.89 96.1 90.95 

C( s ) 0.0092 0.012 2.38 24.1 1.35 0.57 0.0029 0.0027 0.23 2.66 

D( s ) 0.0039 0.0062 0.64 4.5 0.41 0.28 0.0008 0.0008 0.064 0.35 

SELM  A(%) 99.05 84.92 100 87.47 69.3 95.1 98.4 100 100 99.85 

B(%) 98.21 74.67 100 86.2 61.5 93 97.27 97.92 95.77 90.08 

C( s ) 0.0075 0.016 0.82 5.11 1.01 0.32 0.0028 0.006 0.24 2.41 

D( s ) 0.0009 0.003 0.058 1.44 0.31 0.095 0.0007 0.0013 0.23 0.55 

Our ELM-
EN 

A(%) 99.01 85.73 100 88.65 97.1 96.4 99.43 100 100 100 

B(%) 98.25 78.53 100 86.2 74.9 93.5 97.35 97.8 96.12 90.35 

C( s ) 0.0083 0.015 0.83 5.13 1.21 0.3 0.0028 0.006 0.24 2.51 

D( s ) 0.001 0.003 0.058 1.44 .30 0.095 0.0007 0.0013 0.23 0.56 

 
Table 4.  Recognition Accuracies (%) of Two Facial Expression 
Image Datasets. 

 𝐿 ELM  S-ELM   ELM-EN 

COHN-

KANADE 

(Kannade 

2000)  

50 54.98 42.33 55.15 

100 59.55 52.24 59.42 

250 63.88 58.41 64.05 

500 66.65 62.16 67.98 

1000 68.69 63.51 69.16 

JAFFE 

(Ly ons 

1998) 

50 52.1 36.95 54.18 

100 62.81 48.05 67.31 

250 73.62 63.81 75.84 

500 79.57 73.33 82.17 

1000 83.38 80.24 85.25 
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