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1 INTRODUCTION 
RAILS are the most important components of 

railways. Train wheels and rails are in contact during 

transportation on railways. Due to the friction 
resulting from the contact, the wear appears on the rail 

(Karaduman, Karakose, & Akin, 2012). The wear on 
the rails over time can cause some adverse situations, 

namely; transportation safety hazards, rail-wheel 

relationship deterioration of the track, not seeing the 
formation of an accident, occurrence of serious energy 

loss and friction-induced vibration and noise increases 
(Chen, Roberts, & Weston, 2018). If the rails are 

regularly inspected and maintained, the wear and 
faults on the rail can be detected without becoming 

dangerous, and this deterioration can be intervened 

and corrected early. Traditionally, deterioration on the 
rail was detected by hand by a trained person. This 

examination is slow and dangerous. It also depends on 
the perception of the person. In another conventional 

method, the rail is inspected by means of special 
inspection vehicles in contact with the rails. As these 

vehicles come into contact with the rails, they cause 

wear at the same time when examining the rails.  
Contactless detection of wear on the rails is 

preferred, because it is not destructive to the rails. 
There are several studies shown in literature for non-

contact detection of rail wear. Alippi et al (2002) 

composite rail profile measurements on the railways. 
A pre-processing algorithm has obtained the area that 

contains the rail profile in the image that is taken by a 
laser scanner camera and the rail profile is restricted 

using the neural network techniques (Alippi, 
Casagrande, Fumagalli, Scotti, Piuri, & Valsecchi, 

2002). Alippi et al. (2000) proposed an embedded 

system methodology for real time rail profile analys is 
at railways. Faiz et al. (2009) analyzed the information 

of the rail profile for all UK railways. Two CCD 
cameras monitored the rail and the laser source and 

regions with disrupted rail profiles was determined. 
Zhipping et al. (2010) also carried out a rail profile 

irregularity’s wavelet transform for a Beijing-Tianjin 
inter-city high-speed railway. Causes and location of 

the rail disorders, which are taken from different 

periodic components, can be determined using a 
wavelet transform and power spectrum density 

analysis. The results of the wavelet analysis evaluated 
the quality of the rail construction at the railways and 

were able to guide the rail maintenance. Van et al. 
(2009) proposed a comprehensive approach to the 

modeling wear and tear on the rail. Additionally, 

Zumpano et al. (2006) presented a new damage 
detection technique to determine the structural surface 

defects on the rails. The results showed that the 
proposed method can be successfully used to find the 

location of the damage. Roohi et al. (2016) proposed a 
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deep convolutional neural network that analyzes 

image data of the rail to detect wear on the rail 
surface. The results are better than other network 

architectures. To evaluate the condition of the rail 
surface, Ma et al. (2016) applied an automatic texture 

classification method to the rail images. They obtained 
82% accuracy in their experiments. Hu et al. (2010) 

proposed a method based on morphology with a multi-

scale and dual-element to detect heavy rail surface 
deterioration. They have reduced the detection rate 

compared to conventional methods.  
In this paper, wear and cracks on the surface of the 

rail head are determined. The images that are captured 
by the camera are prepared for image processing and 

analysis operations. To perform the transactions, the 
image is converted to a gray level image format. The 

image is then taken from the railways while the train 

is moving. Therefore, the image can be distorted. 
Noise removal filters are then applied to provide a 

clearer image by removing these disruptions. The 
applied filters are Gaussian and mean filters. The grey 

image is adjusted to the shadows to escape the effects 
of the light variations that can occur on the rail. 

Shadows may occur due to the effects of light and 

objects on the rail, resulting in the shadows that cause 
different shades. These shadows can pose problems 

for detection based on the color segmentation. To 
avoid such problems, the shadow removal process is 

carried out. Separate gradation for each color layer is 
formed on RGB images and then combined into one 

image in the grayscale and it is free from the shadow 

image scanning angle according to the direction of the 
arrival of light. After this operation, the image is 

converted to black-and-white by determining a 
threshold. Then, the obtained image portions are 

determined by using the nearest neighbor 
classification. After determining the rails nearest 

neighbor classification, the rail head is detected with 
the Hough transform. The parts representing the rail in 

the image obtained by the nearest neighbor algorithm 

are selected and the remainder of the image is 
removed. Both of these methods result in new images, 

which are combined. There is a minimum error set to 
detect the rail wear. Finally, the detected rail head 

surface is shown marked on the video and step-by-step 
the same procedure is repeated on the next image. 

In this paper, two approaches are considered. One 

is the Rail Measurement Approach and the other is the 
Fault Diagnosis Approach. In the Rail Measurement 

Approach, the point cloud of the rail was formed with 
a laser scanner system. Using this point cloud, the rail 

profile measurement is performed and the depth 
information of the surface of the rail is obtained. At 

the same time the geometry of the rail is obtained. The 

obtained rail profile measurement, surface depth 
information and rail geometry are used as a reference 

in the fault diagnosis approach. Previous studies have 
been able to detect more defects in the rails under 

certain conditions. In the Fault Diagnosis Approach, 

detection will be performed independently from the 

ambient light due to removing variations in the light.  
Additionally, two different methods using the surface 

of the rail head obtained two different results. These 
two results display the same image as combined. This 

reduces the error rate in detecting wear on the rail 
head surface. In the proposed method, wear on the 

surface of the rail head can be detected independent of 

the ambient light and can be detected without contact. 

2 RAIL MEASUREMENT APPROACH 
RAIL control is of great importance for railway 

maintenance and should be done on a regular basis 
(Jie, Siwei, Qingyong, Hanqing, & Shengwei, 2009). 

An expert carries out monitoring and inspection of 
rails shown in traditional methods. In this method, the 

expert monitors the rail in a car or on foot along the 

rail with his eyes. The expert who carries out this 
method decides whether the rail is defective or not 

with his own criteria. This method is limited to what 
the experts can see on the rails, and varies according 

to expert criteria. Moreover, it requires human 
resources and is slow. Even today, another traditional 

method used measures the rail profile by measuring 

instruments called Robel-A, Robel-B or SKM. Lateral 
and vertical wear in the rails are determined with these 

tools. This instrument is properly installed on the rail 
and the ballast under the rail should be cleaned in 

order to make measurements with the instruments. 
This method of measurement cannot be performed for 

each rail in space. In addition, this method requires 
human resources and is slow (Kaewunruen, & 

Remenrikov, 2007). Another conventional method 

shows the rails are controlled by a contact method. 
Mechanical devices that contact the rail move along 

the rail. With reference to the figures that occur due to 
the friction on the rails, graphs of the rail faults are 

obtained. This method provides accurate results and is 
fast (Zerbst, Lunden, Edel, & Smith, 2009). However, 

this method’s disadvantage is the damage caused by 

contact when the rails are checked. Rail contact on 
mechanical devices causes robust rail grinding or it 

can increase defective rail failure (Oukhellou, 
Debiolles, Denoux, & Aknin, 2010). In recent years, 

due to the disadvantages of conventional methods, 
control of the railways is performed using image 

processing and laser technologies. These technologies 

are not manual, so they are more durable and reliable, 
and human resources are not required. These 

technologies are not damaging the rail, because there 
is no contact on the rail itself. More importantly, high-

speed non-contact maintenance can be performed 
(Van, Maitoumam, Moumni, & Roger, 2009).  

In this paper, we created an experimental setup 
with a laser source and a CCD camera. Laser welding 

is performed by sending horizontal and vertical laser 

lines. Using the obtained laser beam images, the point 
cloud of the rail was formed. Through special 

software, these point clouds have been used to create 
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the rail profile, meaning the rail profile measurement 

was performed without contact. Figure 1 shows the 
experimental setup of the rail profile measurement. 

   

                        (a)                             (b) 

 

                                          (c) 
Figure 1.  Experimental Setup of the Rail Profile Measurement 
(a) Laser Source and Camera (b) Scanned Rail (c) Point Cloud of 
the Scanned Rail. 

3 FAULT DIAGNOSIS APPROACH 
THE designed system is a study carried out on the 

detection of wear on the railheads. The flow diagram 
in Figure 2 shows the analysis of the image from the 

camera and the determination of the railhead surface. 
Wear on the surface of the railhead is determined by 

following these steps, which are in accordance with 
the algorithm. The proposed method s teps are as 

follows: 

In Step 1, the video images captured by the camera 
(frame) are prepared for image processing and 

analysis operations. Figure 3 shows the steps of image 
processing. 

In Step 2, first the image is converted to a 
grayscale level to perform transactions across the 

image. The image is taken from the railways while the 
train moves, meaning the image can be distorted. 

Noise removal filters are applied to provide a clearer 

working image by removing these disruptions. The 
applied filters are Gaussian and mean filters.  

In Step 3, the gray image is adjusted to the 
shadows to escape the effects the light variations that 

can occur on the rail. 
Shadow removal with minimum entropy 

method: Shadows may occur with effects of light and 

objects on the rail. The resulting shadows cause 
different shades on the rails. These shadows pose 

problems for detection when using color 
segmentation. To avoid such problems, the shadow 

removal process is carried out. A separate gradation 
for each color layer is formed on the RGB images. 

The distance between the dots is calculated with the 

Euclidean distance calculation formula and classes are 

created according to the specified range.  
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Figure 2.  Flow Diagram of the Algorithm 

  

                      (a)                                     (b) 

Figure 3. Image Processing Steps a) Original Image b) Filtered 
and Converted to a Grayscale Level Image. 

RGB images are pulled from the shadows with a 

minimum entropy method (Finlayson, Drew, & Lu, 
2009). First, the geometric mean is calculated for this 

process. The calculation of the geometric mean is 

given in equation (1). 

 𝐺𝑚𝑒𝑎𝑛 = √𝑅. 𝐺.𝐵
3

  (1) 

where R, G, B is the Red, Green, and Blue values for 

each pixel and   𝐺𝑚𝑒𝑎𝑛 is geometric mean value.  
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 𝐶𝑘 =
𝑅𝑘

𝐺𝑚𝑒𝑎𝑛
  (2) 

where Rk is the Red value for the calculated pixel, 

𝐺𝑚𝑒𝑎𝑛 is the geometric mean for the calculated pixel, 

and 𝐶𝑘 is color constant, k  is the brightness value of 

the corresponding pixel. 

 𝑃𝑘 =  log(𝐶𝑘)  (3) 

where  𝑃𝑘   is the section that is falling plane, 𝐶𝑘 is 

color constant, k  is the brightness value of the 
corresponding pixel. Figure 4 shows vertical each 𝑃 

plane due to by geometric mean result.  

 

Figure 4.  Vertical each p Plane Representation due to the 
Geometric Mean Result (Roohi, Hajizadeh, Nuriez, Babuska, & 
Schutter, 2016). 

 𝑥 = 𝑈𝑝 , 𝑥 𝑖𝑠 2𝑥1   (4) 

where U is a 2×3 vertical matrix, 𝑃 is the section that 

is falling plane and U returns three vectors of 𝑃 to the 

coordinate system. 

In the final step of the shadow detection stage, the 
right projection angle is found and is written in 

equation (5), and the gray image is obtained. 

 𝐼 = 𝑥1 cos 𝛳 +  𝑥2 sin 𝛳   (5) 

where I is pixel matrix of the gray image. 

As a result, the straightened direction that is 
obtained by minimum entropy is suitable for removing 

shadows. Entropy is calculated by equation (6). 

 ( )log( ( ))i iip I p I  
 (6) 

Nearest neighbor classification: The image is 

converted to a black-and-white image with the 
determination of a threshold after this operation. After 

this image, portions that are obtained by using the 
nearest neighbor classification are determined. The 

important thing is that the properties of each class are 
defined clearly in advance. The number of the nearest 

neighbors and the threshold and similarity 

measurement criteria affect the performance of the 
method. 

Hough transform: After determining the rail with 
the nearest neighbor classification, Hough transform is 

used to determine the rail head. Lines on the image are 
determined by the Hough transformation. Wear and 

errors occur in the rail surface in the same direction 

are determined quickly and efficiently by the Hough 

transform that improved in order to make the 
determination line and circle-like shapes in an image. 

Figure 5 shows the image analysis steps. 
In Step 4, the parts representing the rail in the 

image obtained by the nearest neighbor algorithm are 
selected and the remaining parts are removed. Both of 

these methods result in new images that are combined. 

A minimum error is determined for the detection of 
rail wear. Finally, the detected rail head surface is 

shown marked on the video and step-by-step the same 
procedure is repeated on the next image. Figure 6 

shows combining the images. 

   

                        (a)                                (b)  

 

 

                                           (c) 

Figure 5. Image Analysis Steps a) Shadow Less and Grayscale 
Image b) Gray Image Thresholding to Convert the Image to a 
Binary Image and c) Determined Parts that are Detected by 
the Nearest Neighbor’s Segmentation. 

   

(a)                                               (b) 

Figure 6.  Combining the Images, a) Obtained Surface Image of 
the Rail Head b) The Converted Image Mask for the Video. 

Error rates obtained from the performance analysis 

are evaluated. This assessment is calculated using the 
root mean square percent error rate. Calculations are 

performed using equation (7). 

 𝑥𝑟𝑚𝑠 = √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖−1   (7) 
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where n refers to total number of images and 𝑥𝑟𝑚𝑠 

represents the total error rate. 
Equation (7) is the percentage of squares of errors 

divided by the number obtained by taking the square 

root of the value of the total value of the average 
percentage error values performance.  

As a result of the above mentioned algorithms, 
binary images are obtained. An inference is made 

using the pixel values of these binary images. The 
ratio of the number of white pixels to the number of 

black pixels in the resulting image gives us 

information about the wear in the rail. In Equation 8, 
the ratio of the white pixels to the black pixels of the 

result images is also shown. This rate is calculated as 
follows.  

 

NWP
RWB

NBP


  (8) 

where NWP is the number of white pixels in the 

resulting image, NBP is the number of black pixels 
and RWB is the ratio of the number of white pixels to 

the number of black pixels. An image belonging to a 
rail known to be healthy was applied to the above 

mentioned image processing algorithms. The resulting 

binary image was handled as a result of these 
algorithms. The number of white pixels in the binary 

image constituted the NWP parameter. Likewise, the 
number of black pixels in the binary image constituted 

the NBP parameter. The ratio of these two values 
formed a RWB value. In this way the RWB value for 

a healthy rail was found to be 0.2515. As the amount 

of wear on the rail increases, the value of the RWB 
decreases. The difference between the RWB value of a 

faulty rail and the RWB value of a healthy rail 
indicates the failure rate of the faulty rail. 

Another performance criteria of the study is the 
detection rate. The detection rate is calculated in 

equation (9).  

 1

1
.

n

i

OTO TO
n 

 
 (9) 

where OTO is the average amount of the rail surface 

detection rate, n is total number of images and TO is 
the rail surface for the images. 

 1

1
.

n

i

OHO HO
n 

 
  (10) 

where OHO is the average error rate, n is total number 

of images and HO is the error rate for detection of the 
rail surface. 

4 EXPERIMENTAL RESULTS 
IN this paper, two approaches were proposed. For 

the Rail Measurement Approach, we created an 
experimental setup with a laser source and a CCD 

camera. For the Fault Diagnosis Approach we used a 
CCD camera. The wear on the surface of rail heads 

have been asked to be identified. For this process, rail 

video images are divided into frames with each 

displayed in such a way to express a 50 cm rail. The 
aforementioned image processing and image analysis 

steps were applied on each frame. In practice, it was 
determined to use the video in different environments 

and in different light variations to obtain the images. 
First, the image is made free from noise from the 

video and the shadow removal is applied so there is no 

gradation on the rails. This way, the images are ready 
for processing. The rail images that are ready to 

process are made of said process for ready for 
detecting wear and deterioration of the surface. This 

detection process is  done in two different ways. The 
first is the nearest neighbor classification determined 

by detecting the edge of the second path rail line head 
using the Hough transform. This is done by combining 

the two processed rail images to increase the 

possibility of finding the correct operation. If the 
images are showing different positions of the rail 

surface detected by the Hough and KNN, then the 
surface should be scanned again. 

Figure 7 shows the different rail images obtained 
as the proposed approach result. 

An image belonging to a rail known to be healthy 

was applied to the above mentioned image processing 
algorithms. The resulting binary image was handled as 

a result of these algorithms. The number of white 
pixels in the binary image constituted the NWP 

parameter. Likewise, the number of black pixels in the 
binary image constituted the NBP parameter. The ratio 

of these two values formed the RWB value. In this 

way the RWB value for a healthy rail was found to be 
0.2515. As the amount of wear on the rail increases, 

the value of the RWB decreases. The difference 
between the RWB value of a faulty rail and the RWB 

value of a healthy rail indicates the failure rate of the 
faulty rail. 

Figure 7 is also free from noise and shadows of the 
original images and the original image taken from the 

track that was applied and combined with the results 

of the KNN and Hough Transform image is shown. 
Figure 8 from wear on the surface of the algorithm 

performed by railhead suggests distortion and cracks 
were detected successfully. 

Figure 8 shows the RWB values of the 55 images 
obtained in this study.  

Success rates are found with the percentage of the 

number of the rail surface detected pictures and the 
total picture. The results of the wear on the rail head 

that was used in this study are shown in Table 1. 
The results obtained in accordance with the amount 

of pixels in the image surface of the rail, the rail 
surface of the detected pixel amount, the probability of 

detecting and error rates are shown in the graph of 

Figure 9. 
The results of the implementation are evaluated on 

images with different sizes. The error rates obtained in 
the study are given in Table 2. These results are 

obtained from images with different dimensions. 
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Original Image Result Image RWB

0.2179 

0.2219

0.2263

0.2021

0.1556

0.2197

0.1221

 

Figure 7.  The Results Obtained from Different Rail Images. 

 

Figure 8.  RWB Values of the Obtained Images. 

Table 1.  Success Rate 

 The Surface of the Rail Head 

Success rate of the 

Hough Transform 

75 % 

Success rate of the 
KNN 

89 % 

Success rate of the our 

algorithm 

96 % 

Number of  

Total image 

55 

 

 

Figure 9. Performance Results (RM: Amount of Pixels in the 
Rail Surface, T: Detected, TO: Detection Rate, HO: Error Rate). 

Table 2.  Error Rates for Images wıth Dıfferent Sızes 

No Size (Pixel) Positive Error 

Rate 

Negative Error 

Rate 

1 1280 X 720 1.12 0.92 

2 800 X 450 1.50 2.18 

3 640 X 360 2.01 2.30 

4 160 X 90 2.20 2.43 

 
Figure 10 shows the error rates that occur during 

the detection of the pixels on the rail images. The error 

rates of the Hough, KNN and the proposed method are 
shown separately. 

The algorithms were performed on a PC with Intel 
3.30 GHz CPU and 64 GB of memory, and Windows 

10 pro as the operating system. We used MATLAB 
2015b software to evaluate the proposed algorithms. 

The success criteria of the algorithms are based on the 

RWB values mentioned in the proposed method. The 
algorithms were applied to the images obtained under 

real physical conditions. 

 

Figure 10.  Error Rate of the Pixels from the Rail Images. 

5 CONCLUSION 
TWO approaches are proposed in this article. The 

rail measurement approach and the fault diagnosis 

approach. In the rail measurement approach, the rail is 
monitored by a laser source mounted on the train and 

a CCD camera. Images of the reflected laser lines 
were taken. Using these images, the rail's points cloud 

was created. This point cloud gives information 
related to the measurements of the rail. In the fault 

diagnosis approach, the rail images are filtered to 
remove noise. A shadow removal algorithm was 

applied to remove light variations from the rail 

images. The Hough Transform and the KNN 
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segmentation algorithms performed detection for wear 

of the rail surface. An RWB value was generated from 
the black and white pixels in the latest image. When 

the RWB value of the faulty rail is compared to the 
RWB value of the healthy rail, the fault grade of the 

rail can be determined. 
As the number of high-speed trains and railway 

vehicles increases, the importance of detecting wear 

and deterioration on the rail head also increases. In 
this paper, the wear and cracks on the surface of the 

rail head are detected by using image processing and 
analysis techniques. The image that is captured by the 

camera is prepared for image processing and analysis 
operations. The image is taken from the railways 

while the train is on the move, so the image can be 
distorted. Noise removal filters are applied to provide 

a clearer image. Shadows may occur with effects of 

light and objects on the rail, causing different shades 
on the rails. These shadows pose problems for 

detection while the rail is analyzed using color 
segmentation. In this work, light variations are 

removed so ambient light independent detection is 
possible. The surface of the rail head is detected by 

two different methods and two different result images 

are obtained. By combining these two result images 
belonging to the same image, the error rate is 

minimized. The RWB values were obtained from the 
resulting images. These RWB values were compared 

with the values of the healthy rail. Therefore, the fault 
diagnosis has been carried out. In the proposed 

method, the wear on the surface of the rail head can be 

detected as contactless. As seen from the experimental 
results, the wear on the rail head can be detected with 

high accuracy using this method.  
The non-contact rail profile measurement is also 

mentioned in this paper. Images were taken using a 
laser source and a camera. The rail was scanned 

vertically and horizontally by the laser source. In this 
method, the point cloud of the rail profile was 

obtained. 
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