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1 INTRODUCTION 
CONDITION-based maintenance is used to predict 

the upcoming failures by monitoring the system 

indicators that assess the component deterioration. 
Maintenance and operating cost influence the 

economic wind energy generation. Reliable operation 
& maintenance schemes avoid unscheduled turbine 

downtime and increase the availability of wind power. 

The accessibility of the Drivetrain for maintenance is 
very difficult, because of the tower height, especially 

in offshore turbines. With the concern of these factors, 
the maintenance strategies should be intelligent 

enough to detect the faults at the incipient stages itself.  
Because of the rapid developments in the sensor 

technologies, the system dynamics can be measured as 
temperature, vibrations, acoustic emission,  current 

signature analysis (Abitha Memala & Rajini, 2017) 

and electro-mechanical impedance (Zhang, Zhang, 
Chen, & Yang, 2017).  

By analyzing these parameters, indicative variation 

in the system dynamics can be identified   

Vibration-based monitoring is found very helpful 
in rotating machinery. Accelerometer sensors are used 

to measure the vibration. When the system dynamics 
are changed, then the vibration signature also changes, 

hence the vibration is the best candidate to monitor the 
system variations. Sophisticated signal processing 

techniques are needed to analyze the vibration signal 

and to retrieve the fault signatures. By using the fault 
diagnosis, the vibration signals are mainly classified 

into the data-driven approach and model-based 
approaches. In the data-driven approaches, the 

features are extracted from the raw vibration signal 
and the fault pattern is recognized from those features. 

In the model-based approach, a filtering technique 

is adapted to model the relationship between the 
output and input of the system. To develop the model-

based fault diagnostic system, the extensive 
knowledge of the system state variables that affect the 

input-output relation is needed. The observer based 
model for nonlinear systems is studied in (Alcorta-
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Garcia, Saucedo-Flores, & Diaz-Romero, 2013).  In a 

data-driven approach, the features are extracted by 
using digital signal processing algorithms. In this 

paper, a novel data-driven adaptive fault detection 
technique is proposed to detect the wind turbine 

drivetrain faults. Adaptive multivariate decomposition 
is proposed to obtain mono components from the 

multicomponent signals. The monocomponent 

intrinsic oscillation needs to be decomposed so that 
the useful features can be extracted and fed to the 

classifiers. 
Usually, as an industrial practice, the vibration is 

measured by using several sensors. The sensor 
information should be analyzed simultaneously to 

preserve the advantages of the spatial sparse. The 
novel decomposition procedure is adapted to estimate 

the intrinsic mode functions. The vibration signals 

acquired from wind turbines are non-stationary so the 
traditional Fourier transform approach is not feasible 

to extract the truthful features. The time-frequency 
representation is found to be very useful to analyze the 

non-stationary signals. 
The nonstationary signal processing approaches 

applied to the rotating machinery is extensively 

reviewed in (Uma Maheswari & Umamaheswari, 
2017) and the combined rotor faults are analyzed 

using the EMD (Singh & Kumar, 2014). The EMD 
with ANN is employed for detecting the bearing faults 

(Ben Ali, Fnaiech, Saidi, Chebel-Morello, & Fnaiech, 
2015). From the literature review, it is found that a 

single channel and single variant EMD suffers from a 

mode mixing problem. To circumvent the mode-
alignment issue in the standard EMD and to facilitate 

the synchronization among a multi-channel signal 
analysis, Mandic et al (MANDIC, 2009) proposed a 

Multivariate EMD (MEMD) that projects the multi-
channel envelopes in the n-dimensional domain to 

fuse the information from multiple sensors. The 
multivariate EMD is applied to a fault diagnosis of 

rolling bearings (Lv, Yuan, & Song, 2016). The wind 

energy conversion systems are much more complex, 
hence the information available from various sensors 

to be fused and are to be analyzed synchronously. To 
preserve the local dynamics, the decomposition should 

be done in the N-dimensional domain. In this view, 
the MEMD is an ideal choice for the wind turbine 

drivetrain fault diagnosis.  The fault detection could be 

automated by using the machine learning algorithms. 
Features are extracted from the IMFs and are fed to 

the classifiers to detect the fault signatures. 
The Bayesian  algorithm’s ability in a fault 

diagnosis is studied extensively in rotating 
machineries (Agrawal, Panigrahi, & Subbarao, 2017; 

Cai, Huang, & Xie, 2017; Cai, Liu, & Xie, 2017; 

Vagnoli, Remenyte-Prescott, & Andrews, 2017; 
Wang, Wang, Gu, He, & Yan, 2018; Wang, Wang, 

He, Gu, & Yan, 2017; Zhao, Wen, Xiao, Yang, & 
Wang, 2017). The Dynamic Bayesian Network is 

applied to create the multi model of dam condition 

monitoring (Weihua & Lanyu, 2012).  
In some literature, the standard single channel 

EMD is adopted to analyze the vibration signals in the 
time-frequency plane. For any mechanical the system, 

natural frequencies and mode shapes are very 
important system properties. The vibration source in 

gear transmission systems are often difficult to access 

the direct measurement of vibration and are 
impractical from those sources. Further, the time-

varying loads induce vibration in various components. 
Vibration measured from a single source is highly 

attenuated while traveling through the gear 
transmission systems and also distorted by other 

vibration sources. The vibration measured from the 
various sensing locations need to be fused so that the 

common fault frequency scales can be decomposed 

synchronously. (Jing, Wang, Zhao, & Wang, 2017)  
proposed the deep learning networks to fuse the 

features learned from the raw vibration signal. (Chen 
& Li, 2017) used a two layer sparse encoder for 

feature fusion. These studies extract features from 
multiple sensors separately and the fusion is 

employed. In the proposed study, multivariate signal 

processing is employed before the feature extraction to 
improve the feature modeling so as to enhance the 

fault diagnostics. The standard single channel EMD is 
limited in a multi-sensor fusion, because of its 

empirical uniqueness and it depends on the sensitivity 
to changes in the parameters that make the MEMD a 

viable option among various Time-Frequency 

representations. 
The noise assisted MEMD is applied to decompose 

the vibration signal of a hydropower unit. (An & 
Yang, 2015). The MEMD techniques are applied to 

study the vibration of structural dynamics  (Barbosh, 
Sadhu, & Vogrig, 2018). A novel Multivariate 

Empirical Mode Decomposition is adapted for a 
Multisensor information fusion to analyze the 

common oscillatory modes from various vibration 

sources, which those are affected by the fault 
signatures. Thus, the multi-channel vibration 

dynamics are preserved, which makes the 
decomposition a promising tool for further processing. 

Features from the instantaneous amplitudes and 
instantaneous frequencies are extracted from the 

Intrinsic Mode Frequencies , which model the 

amplitude and frequency demodulation caused by the 
fault signatures. The Bayes Two Category Learning 

classifier with the slice topology directed acyclic 
graph structure is deployed. The classification 

performance is compared with the Naïve Bayes 
classifier. 

2 MATERIALS AND METHODS 
FIGURE 1 describes the flow of the proposed 

methodology for the truthful fault detection.  
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Figure 1: Proposed Method. 

2.1 NREL Condition Monitoring Dataset 
The vibration data used in this research is obtained         

from the NREL. Upon request through this URL 
(Sheng, n.d.) the dataset is available. The above data is 

acquired from the NREL dynamometer test facility. A 
detailed description of the dataset can be found in 

(Sheng, 2013). The test wind turbine is stall controlled 

to a 750 kW three-bladed upwind turbine, which runs 
at 1800 RPM rated speed. The NREL Drivetrain has 

two gearboxes with 1:81.49. The gearbox consists of 
one low speed planetary gear with two high speed 

parallel stages. Eight accelerometer sensors (AN3-
AN10) are used to collect the vibration signal. The 

national instruments PXI-4472B is used to collect the 

vibration data with 40 kHz per channel sampling 
period. Sensor locations considerably influence the 

fault diagnostics. In Table 1 the description NREL 
open access dataset is given. The test data are acquired 

at the following test conditions: Main Shaft Speed 
=22.09, RPM, Nominal High-Speed Shaft (HSS), 

Speed =1800 RPM, and Electric Power (% of rated 

power) = 50%. The vibration signal is measured from 
healthy and damaged gearboxes. The dataset is 

available with 10 minutes damaged state vibration and 
a 10-minute healthy state vibration. 

Table 1: Dataset Description. 

Sen 
Mounting 
Location 

Component Fault Type 

AN3 Ring Gear 

Radial 6’o 

clock 

Ring Gear Scuffing 

AN4 Ring Gear 

Radial 6’o 

clock 

Sun Gear Fretting 

Corrosion 

AN5 LS-SH 

Radial 

Gear ratio: - 

AN6 IMS-SH 

Radial 

Intermediate 

Gears 

Scuffing 

 

AN7 HS-SH 
Radial 

High Speed  
 

Scuffing 

AN8 HS-SH 

Upwind 
Bearing 

Tapered Roller 

bearings 

Over 

heating 

AN9 HS-SH 

Downwind 

Bearing 

Tapered Roller 

bearings 

Over 

heating 

AN 

10 

Carrier 

Downwind 

Radial 

full-complement 

cylindrical 

roller bearings 

Fretting 

Corrosion 

2.2 Pre-processing and Angular Domain 

Resampling 
In the rotating machinery, the sources of vibration 

produce the vibration modes at factors (orders) of 
rotational speed. To remove the smearing artifacts, 

angular resampling is widely used. The time 
increment samples are converted into phase increment 

samples. Samples are taken for each revolution rather 
than the time instant increments. The RMS value of 

the orders are computed with respect to the RPM.  The 
test turbine rated nominal HSS speed is 1800 rpm and 

40000 samples per second have been taken. The 

synchronization time period is retrieved from the 
turbine RPM profile. The resampling period depends 

on the order resolution (Brandt, 2011), which 
represents in terms of the maximum order, RPM 

profile, and sampling period. The eight sensor data are 

fused into the single matrix mv. Columns of the mv 

represent the sensor data and the rows represent the 

observations. In order to improve the classification 
accuracy with computational constraints, the single 

multivariate matrix is segmented into several blocks. 
40000 phase incremented samples from each signal 

channel are used to form a multivariate sub matrix and 
these sub matrixes are fed into a multivariate 

empirical mode decomposition.  

2.3 Multivariate Empirical Mode 

Decomposition (MEMD)  
To model the multi-channel signal simultaneously 

in a joint time-frequency plane, an adaptive data-
driven approach is introduced in (MANDIC, 2009) 

whose ability for the accurate analysis is proven in the 

biomedical signal processing. The wind turbine gear 

PXI-4472B High Speed Data Acquisition 

System Vibration Measurement with 

40KHz Sampling rate 

 
Pre-processing and Multi-rate Signal 

Processing to reduce the computational 

overhead 

 
Multivariate intrinsic mode decomposition 

to get dominant fault patterns 

 
Hilbert Transform to estimate 

instantaneous amplitude and frequency 

 
Feature Extraction 

Statistical Moments, 
Signal Descriptors, 

Entropy based randomness measures 

 
Fault Detection based on  

Bayes Classifier 
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transmission vibrations are typically complex, 

nonlinear, and are non-stationary multichannel 
dynamics hence, the multiple oscillatory modes from 

different channels should be analyzed concurrently to 
match the IMF in scaling with equal numbers. The 

algorithm is explained below. 

MEMD Algorithm 

1.  The angular coordinates in an n-dimensional sphere 
serve the directional vectors of the multi-channel data. 

The direction vectors are generated by Halton and 
Hamersley quasi Monte correlation sequences. 

2.  The input multivariate data is projected along the 
directional vectors. The projections (pi) are calculated 

along the uniform angular positions. 

k

n

kkkk

1321
,.....,,


   n-1 sphere for n - variant 

data. 
3.  The Extreme Value time instants are estimated for 

the K number of projections and k time instants are 

estimated. 
4.  The spline interpolation is adapted to find the 

multivariate envelopes. The envelope mean is 
computed as (m(t)) and m(t) represents the 

monocomponent intrinsic mode function (IMF) 
5.  The residual error is computed from the original 

signal as r(t)=x(t)-m(t). 
6.  The residual is compared with the threshold value, 

if the discrepancy between the two adjacent sifting is 

less than the threshold value then the sifting is 
terminated. 

2.4 Feature Extraction 
Instantaneous amplitude and instantaneous 

frequency are estimated from the IMFs. Features 
describing the shape of the distributions (statistical 

moments), complexity measures (entropy), and 

load/speed independent parameters (signal 
descriptors) are extracted. Fourteen descriptive 

parameters such as first to fourth order moments, crest 
factor, Peak to Peak, time series complexity measures 

(Sample entropy, Permutation entropy, and Fractal 
dimension), and spectral flatness measure (Wiener 

entropy) are extracted from the instantaneous values.  

First and Second order moments describe the shape 
distributions of the time series. The third order 

moment is used to define the symmetry of the 
distribution shape. Fourth order moments define the 

relative peakedness. Faults tend to increase the chaos 
in the vibration. In particular, the complexity measure 

describes the chaotic state that holds the information 

about the randomness of the time series at multiple 
scales. Figure 2 visualizes the density distribution of 

the extracted features. The peaks at the density plots 
illustrates the highest concentration points. 

 

 

Figure 2.  Density Distribution of Extracted Features. 

2.5 Automatic Fault Detection 
Supervised machine learning is employed for fault 

detection. The original data set is unlabeled. The Data 

Set is labeled from faulty and baseline conditions. 

2.6 Bayes Belief Network Classifier  
Bayesian Belief Networks (BBN) consists of nodes 

in a directed acyclic graph used to determine 
probabilistic dependencies between the variables in 

the featured set (Cooper & Herskovits, 1992; Pearl, 
1986). The features represented as variables are in 

nodes. The conditional probabilities  quantify the 
dependencies among the variables. The weights are 

adjusted in such a way to strengthen the dependency. 
Loops are not allowed in the network structure. The 

Bayesian network deduces the probability distribution 

functions of the attributes dependent on a particular 
class C from the training set;

),.....3,2,1( CFNFFFP .  The dependency of 
children with parents is computed as (4).
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where f is the evidence of dependency of K children 

and 
  is the particular node fKi is the values of the 

probability of the child state. BBN learning assumes a 

subset of attributes from the given training set and is 
conditionally independent.  BBN classifies the 

attributes by maximizing the posterior probability.   
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2.6.1 Naïve Bayes Classifier 
Naïve Bayes is a probabilistic classifier that 

computes the weights based on the assumption of 
occurrence of an attribute and is independent of the 

occurrences of other attributes in the training set. 

Naïve Bayes learning considers each attributes that 
contributes towards the learning. The contribution of 

the particular attribute to the class is determined from 
the conditional probability estimated as the relative 

frequency samples in the Gaussian density function. 
The Classification target is considered as the parent 

node and the attributes form the child nodes. The 
graph is directed from the parent to child and other 

connections are not permitted. The Naïve Bayes rule 

(5) is employed when the dependency relationship 
among the attributes has uncertainties . 
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3 RESULTS AND DISCUSSION 

3.1 Angular Domain Resampling  
TO weigh the ability of the proposed method in the 

wind turbine drivetrain fault detection, the 

experimental analysis is carried out on the NREL 
GRC dataset. Synchronous (angular) resampling is 

done with the Speed (rpm) profile. The instantaneous 
RPM profile is used to determine the resampling 

interval. The accuracy of this method depends on the 
degree of uncertainty introduced by the instantaneous 

RPM. The Savitzky-Golay smoothing filter is the 

weighted moving average filter that fits the specific 
order in the polynomial function in a  least square 

sense and the smoothing filter output has slow 
variations, so that the trends in the data can be easily 

identified. 

3.2 Multivariate Decomposition of the 

common Intrinsic Modes 
The MEMD decomposes the multi-component 

vibration signal into its amplitude and frequency 
modulated (AM-FM) mono-components. The MEMD 

has the mode alignment property that aligns the 

common scales present in each variant into common 
oscillating modes within the multivariate IMFS. In 

this research work, the Multivariate data are 
segmented into 239 blocks and each segment has 

40000 phase incremented samples. The MEMD 
decomposes each block into 8*14*40000 IMFs sets. 

 

 

Figure 3.  RPM Frequency Map. 

The high amplitude peaks are visible at 2KHz.The 

smearing atrifacts visible in the frequency map (Figure 
3) are removed by angular resampling in Figure 4. 

Vibration peaks are dominant in 67-71 orders. It is 
manifested that the number of IMFs extracted from all 

sensors are the same with a common frequency scale 
and each IMF represents the unique oscillatory mode 

presence in the octet variant data. The first ten IMFs 

contain high frequency modulations; those are 
considered for the feature extraction. The IMFs 11-14 

have low frequency components with smaller 
amplitude variations hence those are omitted from 

further analysis. 

 

Figure 4.  RPM Order Map. 

Fault signatures are detected from other IMF 

modes. Irrespective of the frequency contents and 

equal numbers of the IMFs are extracted from the 
octet variant signal shown in Figure 5.  
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Figure 5.  Common Intrinsic Mode Decomposition by 
Multivariate Signal Processing. Columns Represent Sensors, 
Rows Represents IMFs. 

 

Figure 6. Empirical Mode Decomposition (a) Ring Gear 
Vibration  (b) IMS Gear Vibration (c) HSS Gear Vibration. 

The decomposition result is compared with a single 

channel EMD in Figure 6 and the mode mixing is 
clearly evident in Figure 6. Since the samples are 

represented in an angular domain (sample per 

revolution) the oscillating modes across the IMF is 
uniquely decomposed. Without angular resampling, 

the classification accuracy for the same feature set is 
found to be around 50% only. Further, the 

performance of the MEMD is improved with a 

smoothing filter that filters out the unwanted white 

noise.  

3.3 Feature Extraction and Feature Selection 
Instantaneous Amplitude and Instantaneous 

Frequency are extracted by using the Hilbert 

Transform and statistical descriptors and complexity 
measures are extracted. The feature set is labelled with 

faulty and healthy classes . 

Figure 7 shows the heatmap of the extracted 
features. Table 2 demonstrates the average values of 

the extracted features.  

 

Figure 7.  Feature Correlation Heat Map. 

3.4 Bayes Classification 
The dataset contains 3500 fault class observations 

and 3250 healthy class observations. A 5-fold cross 
validation training is employed. The entire data set is 

sliced into 5-folds. Four-folds are used for training and 

1-fold is used for testing. The training is iterated to k 
times.  The entire dataset is used for training as well as 

the testing improves the detection performance.  In 
this work, k=10 is adapted. The directed acyclic graph 

network model is based on conditional probability 
distribution and model dependencies of the features 

with respect to the target. The features are modelled as 

stochastic variables and the model is built based on a 
maximum posterior probability distribution. 
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Table 2: Average Values of Extracted Features. 

Features 
Faulty 
Class 

Healthy 
Class 

RMS 0.54 0.21 

Change Points 2.05×10
4 

2.05×10
4
 

Peak to Peak 3.73 1.54 

Crest Factor 3.30 3.37 

Mean 3.3×10
-4 

-2.44×10
-4 

Standard Deviation 0.54 0.21 

Variance 0.57 0.09 

Kurtosis 2.93 2.83 

Skewness -0.01 0.01 

Sample Entropy 0.25 0.36 

Permutation Entropy 0.69 0.64 

Wiener Entropy -2.05 -1.95 

Spectral Flatness 0.84 0.87 

Fractal Dimensions 1.00 1.65 

3.4.1 Naïve Bayes Classifiers  
The Target class serves the parent node and the 

attributes used in the feature set forms the children’s 
leaves. It is observed that the attributes are 

conditionally independent with the given target class. 
The confusion matrix for the naïve Bayes classifier is 

shown in Table 3. The overall classification accuracy 
results into 59.40%.  The reciever operating 

characteristics (ROC) of the Naïve Bayes classifier is 

shown in Figure 8. Some attributes have influence 
over other attributes , hence for this feature set the 

Naïve Bayes classification accuracy is low. The area 
under the ROC is 0.829. 

 
Table 3.  Confusion Matrix of Naive Bayes. 

 Faulty Healthy 

Faulty 1222 1658 

Healthy 197 1493 

 

 

 

Figure 8. Receiver Operating Characteristics for the (ROC) area 
is 0.829. 

3.4.2 Bayes Belief Net Classifiers  
The Bayes Belief Net is the complex directed 

acyclic graph (DAG) structured with the attributes. 
The Bayes Net computes the conditional probability of 

the sub set of attributes to the target class. The 

connected nodes posterior probability is computed 
while all other nodes are considered as conditionally 

independent. The Dynamic Belief networks (DBN) 
have the slice topology. The observation parameters 

are tangled together across the slices. Conditionally 
the probability for the sub sets of the nodes is 

computed as in the topological order specified in the 
fault DBN. The network structure is learned by 

conditional independent tests that unwarp the casual 

structure. The conditional probability of the 
independence is computed as the posterior distribution 

among two variables to locate the edges. Table 4 
shows the confusion matrix of the Bayes Net 

Classifier. The overall accuracy is 92.57%. 
 

Table 4.  Confusion Matrix of the Bayes Belief Net. 

 Faulty Healthy 

Faulty 2581 299 

Healthy 97 1594 

 

The Two Category Bayes Net classifier 
performances are an evaluated area under the ROC as 

shown in Figure 9.  

 

 
 

 
Figure 9: Receiver Operating Characteristics for the (ROC) Area 
is 0.989. 

The posterior joint probability distribution of each 

subset attributes is computed to train the Bayes Net. 
The model is fitted into the Maximum likelihood 

parameter estimation between the sub sets. At 

learning, the cardinality is set to 0 to 3 to calculate the 
probability. Table 5 compares the Naïve Bayes and 

belief net classifiers performance. Comparison of the 
classifier error characteristics is shown in Figure 10. 
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Table 5. The Classifier Performance Measure: Weighted 
Average.  

Performance 

Measure 

Naive 

Bayes 

Bayes 
Belief 

Network 

True Positive Rate 0.594 0.913 

False Positive Rate 0.286 0.075 

Precision 0.718 0.919 

Recall 0.594 0.913 

F-Measure 0.586 0.914 

MCC 0.321 0.822 

ROC Area 0.829 0.975 

PRC Area 0.824 0.979 
 

 

Figure 10. Error Characteristics of Classifier. 

The MEMD method with the Bayesian 

classification is compared with the existing Hilbert 
Hung Transform, and Wavelet Transform. The 

classification performance metrics  is tabulated in 
Table 6. 

 
Table 6. Comparison with the Existing Methods. 

Metrics HHT CWT MEMD 

Accuracy 57% 73% 92% 

Sensitivity 52% 73% 91% 

Specificity 49% 69% 84% 

Precision 48% 74% 91.9% 

4 CONCLUSION 
A novel frame work for the expert wind turbine 

drivetrain fault detection system based on the 

Multivariate Empirical Mode Decomposition 
(MEMD) with the Dynamic Bayesian Belief network 

(BBN) classifier is proposed. The turbine drivetrain 
faults have multiple vibration sources hence the data is 

acquired with multiple sensors. The sensors are fused 

at the sensing information level with the help of the 
MEMD. The MEMD is an effective methodology to 

decompose the multiple vibration time series 
simultaneously.  The proposed method effectively 

applies the mode alignment property of the MEMD 
for truthful intrinsic mode function extraction from 

multiple sources synchronously. Reliable features are 

crafted from the instantaneous parameters that input to 

the Bayes classifier models. The Naïve Bayes and 
Bayes Net classifier models are fitted into a feature 

space. The analysis shows that the Bayes Net learns 
the features effectively and the fault detection rate is 

92.57% with the Bayes Net, whereas in the Naïve 
Bayes, the classification accuracy is 59.4%. The 

proposed method is validated with the NREL Wind 

Turbine Drivetrain Dataset.  
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