
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 3, 489–500
DOI: 10.32604/iasc.2020.013925

chenby@ncut.edu.tw CONTACT Pi-Yun Chen

The Design of a TLD and Fuzzy-PID Controller based on the Autonomous
Tracking System for Quadrotor Drones

Pi-Yun Chen and Guan-Yu Chen*
Department of Electrical Engineering, National Chin-Yi University of Technology, Taiwan

KEY WORDS: Tracking-learning-detection (TLD), quadrotor, Kalman filter, fuzzy-PID.

1 INTRODUCTION
A search of the literature shows that over the past

few years (Low & Wang, 2008; Liu & Prior, 2015),

robot positioning is most commonly implemented by
triangulation using GPS or Wi-Fi receivers.

Positioning-enabled mobile devices, equipped by the
user, also facilitate the trajectory tracking by the robot.

The Euclidean distance between the user and also the

robot can be computed for tracking if they are close
enough together. Besides the positioning, another

method of tracking uses a variety of sensors. Well-
developed RGD-D sensors (Vetrella, Savvaris &

Fasano, 2015) are frequently used in robot tracking.
The images of color and depth offer information such

as; current distance, posture and body frame, which is
used for tracking. This greatly reduces the failure rate

and allows more stable tracking.

Although the GPS positioning is used mostly by
commercial available quadrotor drones, it has error

sources due to environmental interference and safety
concerns. The development of the GPS independent

drones has become the center of research in recent
years. Unlike an RGB-D sensor system a dual-camera

stereo vision system, which uses two cameras to

derive and synthesize the depth of the pixels, without

using infrared depth sensing, and this greatly reduces
the size and power needed by the sensors. A single

camera has been used for object tracking in some
studies (Engel, Sturm & Cremers, 2012; Dang, Pham

& Pham, 2013; Valenci & Kim, 2018). The system
has simple hardware architecture but a more

complicated tracking algorithm, and delivers good

tracking performance very suitable for the quadrotor
drones. Single camera image tracking uses a

foreground recognition method based on a hue shift.
Images are first converted from the original RGB

format to the HSV color space, with the hue
representing the color feature distribution of the object

to be tracked. The thresholds of saturation and value

can be adjusted to suit ambient lighting and
accommodate light changes.

In this study a tracking method based on a
Tracking-Learning-Detection (TLD) algorithm

proposed by Kalal et al. (Kalal, Mikolajczyk & Matas,
2012) has been used. It combines the tracking,

detection and an online learning mechanism. A
description of how the machine vision is introduced

ABSTRACT
The objective of this paper is to design a new Quadrotor Autonomous Following
System, and the main three contents are as follows: Object tracking, quadrotor
attitude determination and the controller. The image tracking portion performs
object detection and keeps tracking by way of the Tracking-Learning-Detection
(TLD), and gets the information of the target motion estimation positions. The
attitude determination of the Quadrotor has adopted the Inertial Navigation
System and sensors of the accelerometer, gyroscope and electronic compass,
etc. for retrieving the information. The Kalman filter is also utilized for
estimating the current values in order to reduce external interference, improve
the accuracy, and obtain the current posture of the Quadrotor. As for the
control method, the mathematical modeling on the Quadrotor is performed first
so that the Quadrotor can obtain the correct posture through the three-axis
compensations, and then the fuzzy-PID controller may obtain the three-axis
following angles for output to execute the commands and track the users.
Finally the feasibility of this method is verified by using the flying software
simulation and tangible flight experiments.

490 P. CHEN and G. CHEN

into a quadrotor drone controller is also presented. The

hardware equipment and system architecture will be
covered in Section 2, which gives a clear description

of the operational flow. Further details about this
method are given in Section 3. The methods for the

quadrotor posture estimation and control are
introduced in Sections 4 and 5. Experimental results

are presented in Section 6.

2 HARDWARE AND SYSTEM ENVIRONMENT
THE hardware architecture of the quadrotor drone

autonomous tracking system is comprised of

computational equipment on the ground-side, and
communication side and the flight control on the

drone itself. The posture control and image processing
are handled by both the communications side on the

drone and the ground, as shown in Figure 1. The flight

controller is mainly responsible for computing the
posture and interpreting throttle commands. The

current posture of the drone is received and
transmitted to the ground side. The ground side has a

set of bi-directional 2.4 GHz radio frequency modules
and a smartphone. These deal mainly with

complicated image computation but also compensate

for the lack of sufficient flight controller
computational power.

Figure 1. Hardware Architecture.

The hardware used is the Phantom 3 Advanced
quadrotor drone developed by DJI. The autonomous

tracking system was implemented by integrating the
existing quadrotor drone system and the algorithms

represented in this paper. To integrate resources

among different platforms, C++ coded image
processing functions are incorporated into the Android

system. Figure 2 shows a detailed flow chart of the
system.

3 IMAGE TRACKING
FIGURE 3 shows the image tracking flow chart.

To ensure the display of the real-time screen input, the

latest image is loaded from the buffer only at the start

of a new cycle, the others are being discarded.
However, this method has limitations in the optical

flow applications. One condition that needs to be

satisfied in the optical flow equation is that the

displacement of the object in nearby frames must be
small. The optical flow computation might not

produce good results if too many images are
discarded. Therefore, it is necessary to compress the

images as much as possible. In this study the TLD
algorithm was employed for tracking. It is suitable for

long term tracking of the object and is not subject to

the influence of dynamic backgrounds. It also has
fewer limitations than other algorithms when used in

the outdoor image tracking.

Android IDE build

Image processing

source code(.cpp) JNI build
OpenCV

function(.so)

Android APP

(.apk)

DJI

Communication

port object

file(.so)

Android

Source(.java) DJI library

Image

processing

object file(.so)

Figure 2. The Flowchart of the Software Processing Established
on the Ground Station.

Input Image

OpenCV

Image Compressing

TLD Tracking

Calculate the Offset

of the Target on the

Image

Calculate the Real

Displacement

Output the

Displacement of

Target

Figure 3. The Flowchart of the Image Tracking.

3.1 Tracking-Learning-Detection (TLD)
The TLD algorithm includes three parts that work

simultaneously, see Figure 4. These are tracking,
detection and learning. The tracker estimates the

moving direction of the object. When the tracker loses
the position of the object, the detector starts. The

Learning evaluates the tracking results and online

learning allows better tracking. The information of the
object’s dynamic estimation includes the next possible

position and the moving speed of the object in the

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 491

picture, which will be extracted as control parameters.

A frame, generally known as the Region of Interest
(ROI), will be initiated at the start of the TLD

algorithm. This frame, including its position, will be
updated regularly by the TLD algorithm during the

tracking process.

 Detection

Tracking

Learning IntegratorImage Input

Detection

Result

Tracking

Result
Parameter

update

Parameter

update

Target

Position

Figure 4. TLD Architecture.

3.1.1 Optical Flow Learning
For tracking, the TLD algorithm uses a method that

is an improvement on the Pyramid, Lucas-Kanade

Optical Flow method (Bouguet, 2001). The basic
principle of L-K optical flow is the detection of the

positional change of each pixel between the nearby
frames, by the differential method, to obtain the

direction and velocity of optical flow. Assume pixel 𝑄

has a displacement between two nearby frames, and
all pixels 𝑎𝑛 in the neighborhood space also have the

same displacements, then the optical equation is

assumed to hold. The intensities of the pixel in the
three-dimensional coordinates 𝑥 , 𝑦 and time 𝑡 are

represented as I𝑥, I𝑦 and I𝑡 , respectively. The optical

flow rates of 𝑉𝑥, 𝑉𝑦of pixel 𝑄 and adjacent points 𝑎𝑛

should satisfy;

I𝑥(𝑎𝑛)𝑉𝑥+ I𝑦(𝑎𝑛)𝑉𝑦 = −I𝑡(𝑎𝑛) (1)

Since there are several pixels in this hypothetical area,
a set of simultaneous equations can be solved.

3.1.2 P-N Learning
The TLD method uses semi-supervised P-N

learning, in which the detector’s errors are estimated
by the P-N experts. The incorrectly classified positives

and negatives are given separately to the P-expert and
N-expert for analysis. The P-expert updates false

negatives to positives and adds them to the training
sample set. Similarly, the N-expert updates false

positives to negatives and adds them to the training

sample set. Figure 5 shows a diagram of the P-N
learning architecture.

3.1.3 The Detector
The tracker proposed in the TLD method is a

cascaded classifier, see Figure 6. It is structured as
three sub-classifiers; patch variance, ensemble

classifier, and nearest neighbor classifier. Since the

nearest neighbor classifier needs more computation

resources, it is not suitable for the application and to
all of the patches. Therefore, the process is divided

into three sequential stages. The patches are first
filtered by the patch variance and the ensemble

classifier. The patches that meet the criteria are fed
into the nearest neighbor classifier.

Trai ni ng

Sampl e

P-N experts

Classifier

Trai ni ng

Codi ng

Unclassified

Samples

Classified

Samples Output the

Classification

Results

Learner

Figure 5. P-N Learning Architecture.

Patch

Variance

Nearest

Neighbor

Classifier

Ensemble

Classifier

Images

The Detected

Image

Figure 6. The Flowchart of the Cascade Classifier.

The purpose of the nearest neighbor classifier is to
train the object, model 𝑀, which is the set used to

represent the object and its data in the surrounding

environment. It is a set of patches that contain
positives and 𝑃𝑛

+ negatives 𝑃𝑛
−. P

+
 and 𝑃− represents

the patches of the object and the background,

respectively. In this method, the spatial similarity of

two tracking frames is measured with overlap, which
is defined as the summation of the intersection and

union of the two tracking frames. The shape of the
object is represented as patch p. The similarity

between the two pictures Pi and Pj can be represented
as shown in Equation (2).

𝑆(𝑃𝑖 , 𝑃𝑗) = 0.5(NCC(𝑃𝑖 ,𝑃𝑗+1)+ 1), (2)

where the NCC is the normalized correlation

coefficient and for patch p and the object model M,
several quantitative indicators are defined in the P-N

learning method:

492 P. CHEN and G. CHEN

1. Similarity with the positive nearest neighbor:

𝑆+(𝑝,𝑀) = 𝑚𝑎𝑥
𝑝𝑖
+∈𝑀

𝑆(𝑝, 𝑃𝑖
+) (3)

2. Similarity with the negative nearest neighbor:

𝑆−(𝑝,𝑀) = 𝑚𝑎𝑥
𝑝𝑖
−∈𝑀

𝑆(𝑝, 𝑃𝑖
−) (4)

3. Similarity with the positive nearest neighbor

considering 50% earliest positive patches:

𝑆50%
+(𝑝,𝑀) = 𝑚𝑎𝑥

𝑝𝑖∈𝑀⋀𝑖<𝑚/2
𝑆(𝑝, 𝑃𝑖

+) (5)

4. Relative similarity:

𝑆𝑟 =
𝑆+

𝑆+ + 𝑆−
 (6)

5. Conservative similarity:

S𝑐 =
𝑆50%

+

𝑆50%
++ 𝑆−

 (7)

If 𝑆𝑐(𝑝, 𝑀) > 𝜃𝑁𝑁, where the threshold 𝜃𝑁𝑁 = 0.6

and its value is the empirical value, then patch 𝑝 is the

Positive samples of final output by detection.

3.2 Inverse Perspective Mapping (IPM)
When the position of the object on a two-

dimensional plane has been obtained, it must be
mapped onto a three-dimensional space to calculate its

actual position and distance. This has been achieved in

this study using the inverse perspective mapping
method (Muad, et al, 2004). The principle of the IPM

is shown in Figure 7, where [𝑥𝑐 ,𝑦𝑐 ,𝑧𝑐] represents the

camera’s coordinate system, [𝑥𝑔 ,𝑦𝑔 , 𝑧𝑔] is the

coordinate system of the earth, f is the camera’s focal

length, 𝜃𝑐 is the camera’s forward leaning angle, 𝜑𝑐 is

the deviation angle of the image plane, Hc is the
height of the camera above the ground surface, o is the

obstacle point on the ground surface, o' is the obstacle

when o moves a distance d in the direction of 𝑥𝑔 , g is

the point on the ground surface that has a distance of x

from the origin of the earth coordinate system, and g'
is the point where point g moves distance d along the

direction of 𝑥𝑔 .

The coordinates of p, which represent the

coordinates of the pixel on the original image, can be
obtained from the picture. u represents the position in

the world coordinate system. The relation between
them is represented as:

[

𝑢𝑥
𝑢𝑦
𝑢𝑧
] = [

0
0
𝐻𝑐

]

+λ [
𝑝𝑥 cos 𝜃𝑐 − 𝑓 cos 𝜑𝑐sin 𝜃𝑐 +𝑝𝑧 sin 𝜑 sin 𝜃𝑐
𝑝𝑥 sin 𝜃𝑐 +𝑓 cos 𝜑𝑐 cos 𝜃𝑐 −𝑝𝑧 sin 𝜑 cos 𝜃𝑐

𝑓 sin 𝜑𝑐 −𝑝𝑧 cos𝜑𝑐

]

(8)

where λ is the mapping coefficient in the world
coordinate system, λ can be obtained when the ground

coordinate uz is 0. Ground coordinates ux and uy, is the
distance and width between the object and camera,

and in the world coordinate system can be obtained as
seen in Equations (9) and (10).

𝑢𝑥 =
𝐻𝑐𝑝𝑥 cos 𝜃𝑐 + (𝑝𝑧sin 𝜑 − 𝑓 cos 𝜑𝑐)(𝐻𝑐 sin 𝜃𝑐)

𝑝𝑧 cos 𝜑𝑐+ 𝑓 sin 𝜑𝑐

(9)

𝑢𝑦 =

𝐻𝑐𝑝𝑥 sin 𝜃𝑐 − (𝑝𝑧sin 𝜑𝑐− 𝑓 cos𝜑𝑐)(𝐻𝑐 cos 𝜃𝑐)

𝑝𝑧cos 𝜑𝑐+ 𝑓 sin 𝜑𝑐

(10)

Since 𝜑𝑐 is the deviation angle of the image plane,

which is normally set to 0, the equations are rewritten
as Equations (11) and (12).

𝑢𝑥 =
𝐻𝑐𝑝𝑥

𝑝𝑧 cos𝜑𝑐+ 𝑓sin𝜑𝑐
 (11)

𝑢𝑦 =
𝐻𝑐(𝑓 cos𝜑𝑐−𝑝𝑧𝑓sin𝜑𝑐)

𝑝𝑧 cos𝜑𝑐+𝑓 sin𝜑𝑐
 (12)

The object’s position in the world coordinate

system has been obtained and the next question is how
to control the drone to perform the object tracking?

Related methods will be covered in the following

section.

xg

zg

yg

xc

zc

yc

g g’

o O’

l1 l2 l3

y

y+d

Image Plane

p
p’

P”

ϴc

f

Hc

Figure 7. The Principle of the IPM.

4 POSTURE MEASUREMENT AND MODELING
THE posture control flow chart is shown in Figure

8. This section deals with the methods of posture
measurement and coordinate transformation. The

inertial measurement units, including gyroscope and
accelerometer are used to generate information on six

axes. After the Kalman filter has been applied,
quaternions are used to calculate the current position

of the drone.

Input the

 Sensor Value

control parameter adjustment

Calculate the Quadrotor Posture

Calculate the position error

Kalman Filter

Figure 8. The Flow Chart of the Posture Control Parameter
Adjustment.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 493

4.1 The Kalman Filter
The Kalman filter (Ludeman, 2003) is recursive

and widely used in communications and control
systems. It is capable of producing an accurate

estimate of a current state even with noisy

measurements. The estimate of the previous state and
current measurement are the only input required. The

development of the Kalman filter is based on linear
algebra and the Hidden Markov Model. The basic

Kalman filter model is shown in Equation (13).

𝑥𝑘 = 𝑭𝑘𝑥𝑘−1+𝑩𝑘𝑢𝑘+ 𝑤𝑘 (13)

where 𝑥𝑘 , is the estimate of the current state, 𝑥𝑘−1 is

the estimate of the previous state, 𝑭𝑘 is the state

transition matrix, 𝑢𝑘 is the control vector, 𝑩𝑘 is the

Control-Input Model and 𝑤𝑘 is the input noise.

Assume the average of 𝑤𝑘 is zero, the covariance
matrix is 𝑸𝑘 and is under the multivariate normal

distribution. Therefore,

𝑤𝑘~𝑁(0, 𝑸𝑘) (14)

at the current time is 𝑘, the measurement state is 𝑧𝑘

and is obtained based on the actual state of 𝑥𝑘.

 𝑧𝑘 = 𝑯𝑘𝑥𝑘+ 𝑣𝑘 (15)

where 𝑯𝑘 is the measurement model, which maps the

actual state space into the measurement space, 𝑣𝑘 is

the measurement noise, whose average is assumed to

be zero? The covariance matrix is 𝑹𝑘 and is under
normal distribution. Therefore,

𝑣𝑘~𝑁(0,𝑹𝑘) (16)

Since the actual state of 𝑥𝑘 is unknown and can

only be observed through the measurement state of𝑧𝑘,

the Kalman filter can be represented by two variables;
𝑥𝑘|𝑘 (Posteriori State Estimate) and 𝑃𝑘|𝑘 (Posteriori

Error Covariance Matrix). From there, it then
estimates the current state through the two phases of

predict and update. An estimate of the current state
𝑥𝑘|𝑘−1 is obtained from the estimate of the previous

state, as shown in Equation (17). The current error
covariance matrix 𝑃𝑘|𝑘−1 is obtained from the previous

error covariance matrix, as shown in Equation (18).
Therefore, 𝑥𝑘|𝑘−1 is also referred to as the Priori State

Estimate and 𝑃𝑘 |𝑘−1 as the Priori Estimate Covariance.

𝑥𝑘|𝑘−1 = 𝑭𝑘𝑥𝑘−1|𝑘−1+ 𝑩𝑘𝑢𝑘 (17)

𝑃𝑘 |𝑘−1= 𝑭𝑘𝑃𝑘−1|𝑘−1𝑭𝑘
𝑇+𝑸𝑘 (18)

The purpose of the updates is to find the 𝐾𝑘

Optimal Kalman Gain in order to update the Posteriori

State Estimate and Posteriori Estimate Covariance
matrix, see (19) through (23).

�̃�𝑘 = 𝑧𝑘 −𝑯𝑘𝑥𝑘|𝑘−1 (19)

𝑆𝑘 = 𝑯𝑘𝑃𝑘 |𝑘−1𝑯𝑘
𝑇+𝑹𝑘 (20)

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝑯𝑘
𝑇𝑆𝑘

−1 (21)

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1+ 𝑲𝑘�̃�𝑘 (22)

𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝑯𝑘)𝑃𝑘|𝑘−1 (23)

where �̃�𝑘 is the Measurement Residual and 𝑆𝑘 is the

Residual Covariance. If initial states of 𝑥(0|0) and

𝑃(0|0) are defined correctly, then all estimated errors

will be zero and the covariance matrix will accurately

reflect the estimated covariance, see (24) through (28).

𝐸[𝑥𝑘−𝑥𝑘|𝑘] = 𝐸[𝑥𝑘−𝑥𝑘|𝑘−1] = 0 (24)

𝐸[�̃�𝑘] = 0 (25)

𝑃𝑘 |𝑘 = 𝑐𝑜𝑣(𝑥𝑘−𝑥𝑘|𝑘) (26)

𝑃𝑘 |𝑘−1= 𝑐𝑜𝑣(𝑥𝑘−𝑥𝑘|𝑘−1) (27)

𝑆𝑘= 𝑐𝑜𝑣(�̃�𝑘) (28)

where 𝐸[𝑎] is the expected value of 𝑎 and 𝑐𝑜𝑣(𝑎) =
𝐸(𝑎𝑎𝑇)𝑇.

4.2 Definition of Coordinate Systems
Before computing postures, the ground coordinate

system and body-fixed coordinate system must be

defined. The ground coordinate system is made up of
three orthogonal axes; 𝑥𝑔 , 𝑦𝑔 and 𝑧𝑔 . The body-fixed

coordinate system is made up of 𝑥𝑏 , 𝑦𝑏 and 𝑧𝑏 . As

shown in Figure 9 𝜙 , 𝜃 and 𝜓 are the Euler angles
along the pitch, roll and yaw axes. The detailed

notations are shown in Table 1.

xb

ybzb
f1

f4

f2

f3

Φ

Ψ

θ

yg

zg

xg

O

Figure 9. The System Coordinates of the Quadrotor.

The detailed definitions of 𝜙 , 𝜃 and 𝜓 are

summarized in Table 1 below:

Table 1. Defined Posture Angle.

𝜙 Roll Rotate 𝑥𝑏 −𝜋 ≤ 𝜙 ≤ 𝜋 Counter

clockw ise 𝜃 Pitch Rotate 𝑦𝑏 −𝜋 ≤ 𝜃 ≤ 𝜋

494 P. CHEN and G. CHEN

𝜓 Yaw Rotate 𝑧𝑏 −𝜋 ≤ 𝜓 ≤ 𝜋 Rotation

The first step of the coordinate transformation

(Castillo, Dzul & Lozano, 2004) is to find the rotation
matrix for all the Euler angles. As shown in the

equation below, R𝑥𝑏
𝑥𝑔

, R𝑦𝑏
𝑦𝑔

 and R𝑧𝑏
𝑧𝑔

 are the rotations

generated by 𝜙, 𝜃 and 𝜓, respectively. The complete

rotation matrix can be obtained after the completion of
rotations along the three axes, shown in Equation (29).

R𝑏
𝑔 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 −𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙− 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙+ 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜓𝑆𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙− 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

] (29)

4.3 The Conversion of Quaternions
Quaterions (Diebel, 2006) are generally used in

solving the problems of singularities associated with

the Euler angles and Gimbal lock. Quaternions are
used here, because it is more convenient and faster to

retrieve quaternions during frequent posture changes.

A Quaternion is a four-dimensional complex number,
which has four parts; 𝑞0 , 𝑞1 , 𝑞2 and 𝑞3 , where

𝑞0
2+𝑞1

2+𝑞2
2+𝑞3

2=1. Like the rotations of the Euler

angles, assume that after 𝛼, 𝛽 and 𝑟 times of rotations,

(cos−1𝛼 ,cos−1𝛽,cos−1𝑟) is equivalent to the rotation
of 𝜇. The quaternion can be defined as:

𝑞0= 𝑐𝑜𝑠
𝜇

2
, 𝑞1= 𝛼𝑠𝑖𝑛

𝜇

2

𝑞2= 𝛽𝑠𝑖𝑛
𝜇

2
, 𝑞3= 𝑟𝑠𝑖𝑛

𝜇

2

 (30)

It can be represented using the Euler angles in

Equation (31).

{

𝑠𝑖𝑛𝜃 = 2(𝑞0𝑞2−𝑞3𝑞1)

𝑡𝑎𝑛𝜓 =
2(𝑞0𝑞3+𝑞1𝑞2)

𝑞0
2+𝑞1

2−𝑞2
2−𝑞3

2

𝑡𝑎𝑛𝜙 =
2(𝑞0𝑞1+𝑞2𝑞3)

𝑞0
2− 𝑞1

2−𝑞2
2+𝑞3

2

 (31)

The three-axis outputs of the gyroscope are; g𝑥, g𝑦
and g𝑧 . Therefore, the quaternion is updated in

Equation (32):

[

𝑞0̇
𝑞1̇
𝑞2̇
𝑞3̇

] = [

−𝑞1 −𝑞2 −𝑞3
 𝑞0 −𝑞3 𝑞2
 𝑞3 𝑞0 −𝑞1
−𝑞2 𝑞1 𝑞0

][

g𝑥
g𝑦
g𝑧
] (32)

Assume the initial gyroscope values are; g𝑥 =
g𝑦 = g𝑧 = 0 . Initializations of quaternion are;

𝑞1= 𝑞2 = −𝑞3= 0, with 𝑞0 = 1 only. The posture of

the drone can be updated continuously by the

quaternion iterations.

5 QUADROTOR DRONE CONTROL
AS shown in Figure 10, the main function of the

control system takes place in two stages: The first

stage involves the stabilization of the posture, and the
second stage is position control, through which

autonomous tracking can be achieved.

Position Control

Posture Control

-
+ Posture

Control

Angle Errorposture control input

Gyroscope
Posture

Calculation

Position
Contorl-

+

 Position Error
on the Image

Displacement
Compensation

Quadrotor

Accelerometer
Displacement

calculation

Horizontal
Position Error

Current
Posture

Image
Processing

Figure 10. The Principle of the Quadrotor Tracking.

The purpose of the posture control in the first stage

is to keep the drone’s body as stable as possible by
compensating the roll angle of ϕ and the pitch angle of

θ so that the drone can be maintained in a horizontal

attitude above the ground. The control of yaw angle 𝜓
is mainly achieved through compensation, in other

words, the introduction of the position difference of

the object. Angle errors can be obtained by integrating
the angular velocities measured by the gyroscope.

5.1 Position Control and Object Tracking
The second stage is the drone posture control. The

error of each parameter is represented by 𝑒 in the

following, including situations where the drone moves
at a fixed height, along the surface and during the user

tracking. After this it is only necessary to handle the
horizontal movement. The compensation of 𝑒𝑥𝑏, and

𝑒𝑦𝑏 is carried out with the displacements obtained by

the double integration of the readings of the

accelerometer. Although some errors do occur when
the drone hovers for a long time, tracking is not

affected in the short term. Tracking errors are mainly
caused by delays in image processing and the object’s

position deviation computed from the image tracking

is regarded as part of the error for which the controller
can compensate. It is intuitive to carry out the position

control by changing yaw angle 𝜓 and roll angle 𝜙 in

the horizontally moving drone. However, if image
tracking errors of 𝑒𝑥𝑐 and 𝑒𝑦𝑐 , and posture stability

errors of 𝑒𝑥𝑏 and 𝑒𝑦𝑏 are introduced at the same time,

it will be harder to adjust the controller parameters and
it will not be so easy for the controller to achieve

stability. Therefore, the compensation of yaw angle 𝜓

is carried out first, before the roll angle 𝜙, then the

compensation of the relative position of 𝑥𝑏 follows.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 495

In addition to a concern for stability, another

reason for the drone to change yaw angle 𝜓 instead of
roll angle 𝜙 is the existence of the obstacles to the

sides. As shown in Figure 11, if the quadrotor vehicle

tracks the user by compensating for 𝑒𝑥𝑏 and by

changing the roll angle 𝜙, it is likely to crash into an

obstacle.

Obstacle

User’s Movement

Quadrotor’s Movement

The Quadrotor of view

Figure 11. User Tracking by Through Roll Angle ϕ.

If yaw angle 𝜓 is changed first, the obstacle might

cause the drone to lose the object and enter the

hovering state, as shown in Figure 12. This is not an
ideal result. However, it is better than a crash where

no provision for the handling of obstacles has been

made.

Obstacle

Rotate

View

User's Movement

Figure 12. User Tracking by Through Yaw Angle 𝝍.

5.2 Fuzzy-PID Controller
The advantages of a PID controller are; easy

implementation, a low parameter number and stability.
In cases where a complete mathematical model is not

available, a PID controller is a fairly practical choice.
However, when dealing with the dynamically

changing drone postures, a PID controller with fixed
parameters may not be good enough. A better solution

was the Fuzzy-PID controller used in this study. The

PID parameters are dynamically adjusted through

fuzzy control to adapt to a more complicated system

and give better control of the drone posture. (Choi,
2015; Sato, 1995; Huang & Luo, 2018).

5.2.1 Fuzzy Control
Fuzzy control is a three part process . The input

fuzzy set first has to be determined and then the
member functions of the input and output must be

defined. Multiple member functions are needed if
there is more than one input or output. In this study

every PID controller used error e and error change 𝑐𝑒 as

input variables, while the output variable are k𝑝, k 𝑖 and

k𝑑 Arranging the elements in ascending order gives, the

fuzzy set NB (Negative Big), NM (Negative Medium),
NS (Negative Small), ZO (Zero), PS (Positive Small), PM

(Positive Medium), and PB (Positive Big).
Figure 13 shows the member functions of the two

input variables, error e and error change 𝑑𝑒 . The

normalized input values lie between -1 and 1, which is
the domain. Any input or output values in applications

beyond this domain must first be normalized.

Exceptional handling is needed for the values outside
the domain. Amplitude limitation is normally applied

so that the boundaries will be in the shape of a
trapezoid. Membership function is mainly used to

describe the fuzzy input or output set.

Figure 13. The Member Functions of the Two Input Variables

In addition to the member function, we also need to
define the fuzzy rules. Each output has its fuzzy rules

corresponding to the input variables, which are used to
determine the set to which the output belongs and the

gradient of the membership. Experience gained in
adjusting the PID controller (the PID controller was

discussed in the last section) allowed the development
of the following set of rules. When error e is large and

error rate 𝑑𝑒 is small, a larger 𝑘𝑝 will be chosen to speed

up the compensation. When e and error rate 𝑑𝑒 are both

small, a larger 𝑘𝑖 is chosen to compensate the steady state

error as much as possible. When e is small but the error

rate 𝑑𝑒 is large, a relatively large 𝑘𝑑 is chosen to
suppress the error fluctuation. Once the rules are

determined, individual fuzzy rule bases can be built for

each output. The real-time adjustment of the parameters
can also be achieved through fuzzy control. The Fuzzy

rule bases used in this paper are shown in Tables 2 - 4.

496 P. CHEN and G. CHEN

Table 2. 𝒌𝒑 Fuzzy Rule Base.

Table 3. 𝒌𝒊 Fuzzy Rule Base.

𝑘𝑖
e

NB NM NS ZO PS PM PB

𝑑𝑒

NB NB NB NM NM NM NS ZO

NM NB NM NM NM NS ZO PS

NS NM NM NM NS ZO PS PM

ZO NM NM NS ZO PS PM PM

PS NM NS ZO PS PM PM PM

PM NS ZO PS PM PM PM PB

PB ZO PS PM PM PM PB PB

Table 4. Fuzzy Rule Base 𝒌𝒅.

𝑘𝑑
e

NB NM NS ZO PS PM PB

𝑑𝑒

NB
NS NM NB NB NB NM NS

NM NS NS NM NM NM NS NS

NS ZO NS NS NS NS NS ZO

ZO ZO ZO ZO ZO ZO ZO ZO

PS ZO PS PS PS PS PS ZO

PM PS PS PM PM PM PS PS

PB PS PM PB PB PB PM PS

Lastly, the output is obtained by the defuzzification of
the results with reference to the member function of

the output parameters. For the defuzzification, the
Center Average Defuzzifier, as shown in Equation

(33), was used where 𝐵′ represents the fussy set, h the

height of 𝐵′, 𝑝𝑙 the y value of the original center point

of 𝐵′ and 𝑙 the 𝑙-th gradient of the membership.

𝑦∗ =
∑ 𝑝𝑙(𝐵𝑙

′)𝑚
𝑙=1

∑ ℎ(𝐵𝑙
′)𝑚

𝑙=1

(33)

The domains of the member functions for the input

and output are all between -1 and 1 by default. The
parameters are adjusted gradually during the

simulation and testing. In the first stage, only the
fuzzy rules and input-output plots are established. The

relations between the input and output are defined by
different curves. Each triangle in the input

membership function has the same area and height so

that the output curves can be adjusted easier. Figures
14 - 16 are the output membership functions. 1:1 direct

mapping was used to reduce fluctuation of the

compensation ratio. For 𝑘𝑖, NM and PM are expanded to
make it easier for the fuzzy controller to recognize the

nuanced differences between the middle values. With the

same principle, NB and PB are also expanded to achieve
more precise suppression of error fluctuation. Figures 5.5 -

5.7 are the membership functions 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑, and

their corresponding response curves versus the output.

X axis is 𝑒 and Y axis is 𝑑𝑒. The vertical axis in the
3D plot represents the Individual output.

(a) Membership Function (b) The Relation between
the Input and Output

Figure 14. 𝒌𝒑 Membership Function and the Relation between

the Input and Output.

(a) Membership Function (b) The Relation between

the Input and Output

Figure 15. 𝒌𝒊 Membership Function and the Relation between
the Input and Output.

(a) Membership Function (b) The Relation between

the Input and Output

Figure 16. 𝒌𝒅 Membership Function and the Relation between
the Input and Output.

5.2.2 Fuzzy-PID Architecture
Figure 17 shows the prototype fuzzy controller

used in this study before the parameter adjustment.
Blocks A and B in the figure are the fuzzy controller’s

gains for the input and output. They are used to adjust
the input and output limits of the Fuzzy-PID

controller. If the gains are set too high, the gradient of

membership will always fall in the NS or PS interval.
With gains that are too small, the gradient of the

membership might always fall in the NB or PS
interval. Neither condition is ideal for the controller.

Appropriate adjustment of parameters is necessary
during the experiment to obtain better results.

𝑘𝑝
e

NB NM NS ZO PS PM PB

𝑑𝑒

NB
NB NB NB NM NM PS PS

NM NB NB NM NM NS PS PS

NS NB NM NM NS ZO PS PM

ZO NM NM NS ZO PS PM PM

PS NM NS ZO PS PM PM PB

PM NS NS PS PM PM PB PB

PB NS NS PM PM PB PB PB

497 AUTHOR (All CAPS)

Figure 17. The Prototype of the Fuzzy-PID Controller.

6 EXPERIMENTAL RESULTS
THE algorithms used in this study have been

described in the previous sections. The experimental

results and final parameters used will be represented
here and the limitations of the system operation will

also be described.

6.1 Image Tracking Experiment
The TLD and IPM based methods were used for

tracking in this experiment. A known reference point
is needed for the IPM initialization. The best initial

point is set in Figure 18 and a schematic diagram is
shown in Figure 19.

Figure 18. Setting an Initial Position.

Quadrotor

User

Depression angle of
30 degrees

Horizontal distance of 2.9 meters

Height of

3 meters

Figure 19. The IPM Side View of the Initial Position.

If the user initializes the image at the relative

position shown in Figure 19, the width of the

projected picture and actual width are approximately
320 pixels and 3.2 meters, respectively. The

proportion between the picture and the ROI size can
be calculated easily. With this proportion of the

original ROI size, the object, whether moving closer
or farther away, will be totally reflected in the TLD

tracking frames.

Figure 20. Initial TLD Tracking.

Figure 20 shows the initialization state of the TLD

algorithm. The object to be tracked is marked
manually. Figure 21 is the result of continuous

tracking after the object moves for a certain time.

Figure 22 shows that the object is not lost even if the
drone moves and the background are updated.

Figure 21. Continuous Tracking.

498 P. CHEN and G. CHEN

Figure 22. Background Update.

6.2 Test of the Kalman Filter
In this test, the quadrotor is powered on, and when

the drone is hovering, each of its two Euler angles is

changed by 90 degrees. The original 6-axis values and
the output values of the Kalman filter are all taken,

recorded and plotted using MATLAB, as
shown in Figure 23 (a-f).

(a) Gyroscope x-axis (b) Gyroscope y-axis (c) Gyroscope z-axis

(d) Accelerometer x-axis (e) Accelerometer y-axis (f) Accelerometer z-axis

Figure 23. The Results of the Kalman Filter.

In Figure 23 (a-f), the Blue line represents the
original reading of the sensor, and the Red line is the

output of the Kalman filter. It can be seen that most of
the ambient noise is filtered out, and the actual angular

velocity and velocity change are retained. The design

used in this study is not intended for stunt quadrotor
drones. The pitch angle of the drone used in this study

is normally smaller than 30 degrees and in practice
rarely reaches that angle. Therefore, sudden and large

angle changes have not been taken into consideration.
Current filter performance was satisfactory under

these conditions.

6.3 Fuzzy-PID Simulation
This is a MATLAB simulation of the Fuzzy-PID

controlled sine wave tracking. Figure 24 shows the
Simulink simulation graph. The input signal is a sine

wave (Red) with amplitude 1 and 1.5 radian/sec
frequency. The output displayed is Yellow. For

parameter choices, the gains for P, I and D is 35, 25
and 10, respectively. The gains here are not the same

as 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑, and are used to change the output

range of the fuzzy PID. The 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 outputs of

the fuzzy PID are variables and can adapt to large-

scale changes of the angular velocity.
Figure 25 shows the input signals of the fuzzy

controller. They are; k𝑝 (Red), k 𝑖 (Yellow) and k𝑑
(Blue). For the ease of observation, the plots are

created without gain being added. By comparing this
to Figure 26, adjustment of the fuzzy PID was made to

𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 for the sine wave to be seen.

INTEL L IGE NT AUTOM ATIO N AND SOFT COMP UTING 499

Figure 24. The Sine Wave Response of the Fuzzy Controller.

Figure 25. The Output of the Fuzzy Controller.

6.4 Posture Control Test
In the Fuzzy controller posture control test, Figure

26 (a-c) shows the errors that occurred in 𝜙, 𝜃 and 𝜓

during hovering. The error range (marked by the Red
lines) is ± 2 degrees. The overall error was within

three degrees.

6.5 Tracking the System Interface
The tracking system operational interface was

implemented as a smartphone APP. On the operational
interface, shown in Figure 27, the user can choose

which object to track in Block A. The button in Block
B is used to switch the current drone operational mode

between manual control and automatic tracking.
Buttons C and D are used for manual take-off and

landing. Button E is used to abort current activity and

force the drone to hover.

(a) Angle Error 𝜙 (b) Angle Error 𝜃 (c) Angle Error 𝜓
Figure 26. The Hover of the Angle Error.

Figure 27. The User Interface.

7 CONCLUSION
THE purpose of this paper was the design of an

autonomous tracking system for a quadrotor drone

based on machine vision. The system carries out the
image processing, quadrotor drone posture estimation

and drone control. The image processing system, in
addition to the TLD algorithm for tracking, maps the

position of the object in 3D space using the IPM

method to calculate the relative distance between the
object and the drone body. The Kalman filter was

applied for posture estimation using the original
values from the gyroscope and its use effectively

reduced the amount of the sensor noise. The posture

estimation was achieved using quaternion
representation by converting the gyroscope readings

into three-axis angles of the drone’s coordinate

system. For the position estimation, the displacement
of the drone was calculated using the accelerometers

only. Steady hovering of the drone was not possible
due to the existence of small errors; however, it was

capable of fulfilling a tracking mission. The fuzzy-
PID control was used for compensation and the

problems of difficult parameter adjustment and the

adaptability was solved through posture control. The
portable ground control terminal was implemented as

a smartphone APP, and the smartphone and remote
controller being linked by a transmission channel. The

user can launch the autonomous tracking system
proposed in this paper through simple interaction.

8 REFERENCES
Bouguet, J-Y. (2001). “Pyramidal implementation of

the affine lucas kanade feature tracker description
of the algorithm,” Intel Corporation

Microprocessor Research Labs. 1-10.
Castillo, P., Dzul, A. and Lozano, R. (2004) “Real-

time stabilization and tracking of a four-rotor mini

500 P. CHEN and G. CHEN

rotorcraft,” IEEE Transactions on Control Systems

Technology. 12 (4) 510-516.
Choi, O. K., Kim, J. and Lee, J. S. (2015) “BIBO

Stability Analysis of TSK Fuzzy PI/PD Control
Systems,” Intelligent Automation & Soft

Computing. 21(4) 645-658.
Dang, C. T., Pham, H. T., Pham, T. B. and Truong, N.

V. (2013) “Vision based ground object tracking

using AR Drone quadrotor,” International
Conference on Control, Automation and

Information Sciences. 146-151.
Diebel, J. (2006) “Representing Attitude: Euler

Angles, Unit Quaternions, and Rotation Vectors,”
Stanford University.

Engel, J., Sturm, J. and Cremers, D. (2012). “Camera-
based navigation of a low-cost quadrocopter,”

IEEE International Conference on Intelligent

Robots and Systems. 2815-2821.
Huang, T., Huang, D. and Luo, D. (2018) “Attitude

tracking for a quadrotor UAV based on fuzzy PID
controller,” 2018 5th International Conference on

Information, Cybernetics, and Computational
Social Systems (ICCSS).19-24.

Kalal, Z., Mikolajczyk, K. and Matas, J. (2012)

“Tracking-learning-detection,” IEEE Transactions
in Pattern Analysis and Machine Intelligence.

1409-1422.
Liu, C. and Prior, S. D. (2015). “Design and

implementation of a mini quadrotor control system
in GPS denied environments,” IEEE International

Conference on Unmanned Aircraft Systems.462-

469.
Low, C. B. and Wang, D. (2008). “GPS -based

tracking control for a car-like wheeled mobile
robot with skidding and slipping,” IEEE

Transactions on Mechatronics.480-484.
Ludeman, L. C. (2003) “Random Processes: Filtering,

Estimation, and Detection,” John Wiley & Sons .

Muad, A. M., Hussain, A., Samad, S. A., Mustaffa, M.

M., and Majlis, B. Y. (2004). “Implementation of
Inverse Perspective Mapping Algorithm for the

Development of an Automatic Lane Tracking
System,” IEEE Region 10 Conference TENCON

2004. 207-210.
Sato, M. and Sato, Y. (1995) “On A General Fuzzy

Additive Clustering Model,” Intelligent

Automation & Soft Computing. 1(4) 439-448.
Vetrella, A. R., Savvaris, A., and Fasano, G. (2015)

“RGB-D camera-based quadrotor navigation in
GPS-denied and low light environments using

known 3D markers,” IEEE International
Conference on Unmanned Aircraft Systems. 185-

192.
Valenci, D., and Kim, D. (2018) “Quadrotor Obstacle

Detection and Avoidance System Using a

Monocular Camera,” 2018 3rd Asia-Pacific
Conference on Intelligent Robot Systems. 78-81.

9 NOTES ON CONTRIBUTORS
Pi-Yun Chen received Ph.D. in
the Graduate School of

Engineering Science and

Technology from National Yunlin
University of Science &

Technology, Taiwan, in 2011. She
is now an associate professor in

the Department of Electrical
Engineering, National Chin-Yi

University of Technology, Taiwan. Her current
research interests include fuzzy systems and control

systems.

Guan-Yu Chen received

Master’s degree in Electrical
Engineering from the National

Chin-Yi University Technology,
Taiwan, in February 2017.

