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1 INTRODUCTION 
Combinational optimization problems that have 

proven to be NP-hard problems include the travelling 

salesman problem (TSP) (Woeginger, 2003; Odili, 

2017) and single nucleotide polymorphism (SNP) 
selection problems (Mahdevar et al., 2010). Due to the 

large numbers of combinations in the search space, 
polynomial-time algorithms are ineffective for 

exploring optima (Mousavi & Zandieh, 2016). 
Heuristic algorithms are widely used as problem 

solvers in the literature. Specifically, evolutionary 

algorithms have proven effective for searching for 
global solutions (Lin et al., 2003). However, for 

solving real-world problems such as job-shop 
scheduling problems (Pérez et al., 2003) and decision 

systems (Addison et al., 2013) that involve multiple 
optima in the problem domain, capability to explore 

multiple solutions is essential in many applications. 

However, a simple genetic algorithm (SGA) maintains 
only a single optimum, and cannot efficiently explore 

multiple global solutions (Chen et al., 2014; Chen et 
al., 2018a; Chen et al., 2018b; Ho et al., 2018). 

Therefore, in problems involving many loci or optima 
in the search space, the SGA cannot efficiently 

explore multiple optima and is easily trapped in local 

solutions. 
Various niche methods proposed in the literature 

can maintain multiple solutions in the evolutionary 
population to reduce the genetic drift effects of the 

replacement operator in the SGA. Generally, two 
solutions for drift problems in niche methods have 

emerged. One solution is to enhance the niche 
mechanism by considering conceptual niche 

information such as niche radius (e.g., sharing 

function in Goldberg, 1989; species conservation 
method in Li et al., 2009) or niche number (e.g., 

clearing method in Della Cioppa et al., 2004). 
However, the niche number and shape widely vary in 

different problems and are often difficult to track in 
advance. For example, the solution landscape of 

combinational optimization problems is particularly 

intractable. Another solution is to apply a parameter-
free paradigm that does not require additional 

parameters to join the niche mechanism. The niche 
algorithms used in these methods usually implement 

dynamical niche detection or conceptual in-niche 
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competition. Crowding method (De Jong, 1975) 

implicitly treats parent individuals as niche locations 
and performs an in-niche competition. In a crowding 

GA (CGA), however, a large genetic shift can easily 
occur in the replacement. Deterministic crowding 

(DC) (Mahfoud, 1995) assumes that offspring tend to 
be generated near niches where their parents are 

located and perform an in-niche competition between 

the offspring and their parents. However, if the 
offspring generated in the DCGA loop through 

crossover and mutation substantially differ from their 
parent, the genetic shift problem remains unsolved. 

Cluster crowding (CC) (Ling et al., 2008) builds a 
parent-offspring relation tree and dynamically detects 

and resets niche centers in each evolutionary 
generation. Compared to the crowding GA, however, 

CCGA may obtain a poorer niche quality while 

maintaining the niche structures. Twin-space 
crowding (TC) (Chen et al., 2014) also treats parents 

as niche centers, and the competition between the 
parent and the offspring is performed within a pair of 

niche locations around the centers. In both CCGA and 
TCGA, however, a valley checking function in the 

algorithm steps requires a chromosome representation 

that supports a real-coded interpolation between the 
gene values. This behavior is unsuitable for solving 

discrete-coded problems; hence, real-coded schemas 
are their main targets. 

To maintain the diversity of the GA without 
requiring prior knowledge, this study proposes a niche 

competition strategy (NCS) for applying parameter-

free competence rules. Solution performance of the 
NCSGA is first characterized by using a set of 

combinational benchmark TSPs (Reinelt, 1994). The 
TSP is the NP-hard problem of optimizing the travel 

route to a group of cities. The problem is solved by 
minimizing the total distance required to travel to each 

city one time and then return home. The practical 
applications of the TSPs frequently repeat the same 

tours, so it will save a lot of costs in the long run after 

the accumulation if an improvement can be done in 
the standard benchmark problems. Then, the airline 

recovery scheduling problem (Chen et al., 2013; Liu et 
al., 2010) is also studied to analyze the convergence 

characteristics. Because of the high complexity, the 
two problems are highly suitable for performance 

verification of algorithms. 

The applicability of the proposed method was also 
evaluated in the genetic association study of 

generating SNP barcodes. An SNP barcode is useful 
for analyzing genome-wide data to identify marker 

genes associated with various diseases (Roses et al., 
2007). Using the SNP barcodes to analyze SNP-SNP 

interactions related to polygenic diseases is very time-

consuming because SNP combinations are potentially 
very complex (Lancia et al., 2001). That is, studying 

barcodes generated for multiple SNPs is complicated 
by the many allele combinations that are possible 

when multiple SNPs are examined simultaneously. In 

a previous study by Chang et al. (2008), an odds ratio-

based genetic algorithm (ORGA) was used to predict 
susceptibility to osteoporosis. The ORGA generated 

SNP barcodes for genotypes and explored the optimal 
SNP groups. However, the genetic flow of the ORGA 

resembled that of a simple GA, which limited the 
capability of the ORGA to explore individual optima. 

The NCSGA proposed here avoids this limitation. The 

solution capability of the proposed NCSGA is 
evaluated in a comparative study. 

2 NICHE COMPETITION STRATEGY GENETIC 
ALGORITHM (NCSGA) 

HOLLAND (1975) introduced the concept of GAs, 
in which the population is first initialized, and then a 

continuing evolutionary loop repeatedly selects the 

best fitting chromosomes for the mating pool. 
Crossover and mutation operators are used to generate 

and evaluate new offspring. Before entering a new 
generation, a replacement operator is used to renew 

the population. When a simple replacement operator is 
used, however, selection pressure often make the 

population converged into a single optimum. The 
niche family of GAs mainly improves the replacement 

operator for enhanced convergence. Figure 1 shows 

the evolutionary flow of the classic NGA. 
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Figure 1. Flow chart of a classical niche GA. 

2.1 Niche Competition Strategy (NCS) 
In a discrete-type coding schema (Garcia-

Hernandez et al., 2013), the similarity between two 
chromosomes is often judged in terms of hamming 

distance (HD). A short HD between two chromosomes 
is interpreted as a high similarity. Strict diversity is 

maintained by holding competitions to limit or even 
remove similar individuals . Another consideration is 

fitness: individuals with the highest fitness should be 

preserved so they can lead evolution of the overall 
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population. Therefore, both the similarity and fitness 

of the population must be considered simultaneously 
during evolution. This study proposes a method of 

controlling diversity by inserting a set of niche 
competition rules during the replacement phase of a 

GA. 
When performing a replacement operation to insert 

offspring into a parent population, a key consideration 

is minimizing loss of diversity. In the following 
discussion of insertion rules, a dominance relation is 

denoted as 𝑎 ≻ 𝑏 if a has better fitness, a replacement 

relation is denoted as 𝑎 ← 𝑏 when a is replaced by b, 
and the hamming distance evaluation of a and b is 

denoted as |𝑎𝑏|. In accordance with these definitions, 

the pseudo steps are as follows: 
NCS 

Input: individual x inserted into population set P 
Output: new parent set P 

Begin 

Phase I: 
Find 𝑝 ∈ 𝐏 that is closest to x. 

If 𝑥 ≻ 𝑝, then  

  𝑝 ← 𝑥, and stop. 

End 
 

Phase II: 
For all 𝑝1 ∈ 𝐏 − {𝑝}, 

Find 𝑝2 ∈ 𝐏 − {𝑝1} that is closest to 𝑝1. 

If 𝑥 ≻ 𝑝1 and |𝑝1𝑝2|<|𝑝𝑥|, then  

 𝑝1 ← 𝑥, and stop. 

End 
 

In summary, the above strategy is performed in two 

phases. The first phase tends to replace the most 
similar parent by the offspring if the offspring has 

better fitness; this rule satisfies the condition that 
fitness is enhanced with minimal loss of diversity. The 

second phase performs an extensive search for a group 
of parents that have higher similarity but lower fitness; 

that is, this step removes parents with high similarity 
but lower fitness so that fitness can be improved 

without decreasing diversity. By applying these rules, 

the proposed NCSGA maintains population diversity 
while enhancing population fitness. 

2.2 Evolutionary Flow with NCS 
As new generations of the population evolve, the 

NCS is used as a replacement operator in the mating 

pool after crossover and mutation. The pseudo 
algorithmic steps of the NCSGA are as follows: 

NCSGA Algorithm 
Input: 

1) (parent) population P 
2) offspring size, crossover rate and mutation rate 

3) stop criteria 
Output: population containing the optimal solutions 

Begin 

Initialize the population P. 
Evaluate the fitness values of P. 

Repeat  

Select the best-fit individuals of P, and enter 
them in the mating pool M. 

Perform crossover and mutation operations 
on the individuals of M. 

Evaluate the fitness values of M. 
Obtain a new P by calling the NCS for all 

offspring of M. 

Until the stop criterion is met. 
End 

Because the NCS is a parameter-free mechanism, 
the same optimization steps are used in different 

combinational problems. This feature makes it suitable 
for real-world applications due to the reduced number 

of parameters to be designed and included in the 
solution flow. 

3 CASE STUDIES FOR PERFORMANCE 
VERIFICATION 

BECAUSE the NCSGA is targeted at solving 

discrete-type optimization problems, the performance 
benchmark problem used in this study was the TSP. 

Different from the other studies only considering a 
single best tour of a TSP, this study focuses on 

exploring multiple optimal solutions. 

For a TSP involving n cities {𝑐1,⋯ , 𝑐n } , the 
computation complexity by a direct counting method 

is as high as O(n!). Any improvement method known 

to obtain a guaranteed solution still requires the 
complexity of exponential growth (Applegate et al., 

2006). For example, the computation complexity of 
the Bellman–Held–Karp dynamic programming 

method is O(2nn2), and it takes years for a 4GHz 
computer to get a guaranteed best solution when n is 

greater than 35. Therefore, it is ineffective for 

exploring an exact optimum by an exhausted search. 
Moreover, it is much harder to solve the solution 

multiplicity of TSP problems. To the best of the 
authors’ knowledge, there is no efficient algorithm to 

obtain exact multiple solutions in literature. Therefore, 
in this paper, evolutionary methods were used. 

3.1 Optimization Problem and Evolutionary 

Methodology 
Where dij denotes the Euclidean distance between 

cities ci and cj, the TSP can be mathematically 

formulated (Applegate et al., 2006) as follows:  

Min ∑ ∑ dij𝑥ij
n
j=1,j≠i

n
i=1 ,   (1) 

Sbj. to      

 ∀𝑖, ∑ 𝑥ij
n
j=1,i≠j = 1,  

 ∀𝑗,∑ 𝑥ij
n
i=1,i≠j = 1,   

 ∀i,∀j,yi − yj + nxij ≤ n − 1, i ≠ 1, 

  j ≠ 1, i ≠ j, 𝑥ij ∈ {0,1},  

and ∀𝑖, 𝑦i ≥ 0, 𝑦i ∈ I. 
where the binary variable 𝑥𝑖j takes the value 1 if the 

path from city i to j is selected and 0 otherwise.  
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To solve the TSP by using a GA, a designed tour 

sequence {c̃1, c̃2 ,⋯ , c̃n} is encoded into a chromosome, 
and fitness is evaluated according to the tour length 

decoded from the chromosome. When chromosomes 

are included in evolutionary loops, suitable genetic 
operators must be designed to assist the evolutionary 

flow. 

3.2 Coding Schema 
The coding schema used in this study was order-

based. In the encoding phase of the schema, a discrete-

type chromosome encodes the orders of cities into 

genes. 

3.3 Selection, Crossover and Mutation 
Although previous studies have designed different 

genetic operators to solve the TSP (Yuan et al., 2013; 

Rani & Kumar, 2014; Thanh et al., 2015), the focus of 
this study was to compare the performance of different 

niche methods based on the same genetic operators. 

Therefore, the crossover and mutation methods were 
kept simple to enable easy verification and validation. 

Genetic operators use rank selection (Goldberg & 
Deb 1991) to select the best-fit chromosomes for the 

mating pool. A reverse crossover is performed by 
randomly selecting two gene positions and reversing 

the orders between the two positions; a shuttle 

mutation is performed by randomly selecting two 
positions and randomly swapping the orders in the 

selected segment. 

3.4 Local Search Improvements 
Studies show that, due to slow convergence, a GA 

usually requires a large number of evolutionary 

generations to obtain good results (Snyder & Daskin, 

2006). Therefore, many studies have attempted to 
hybridize evolutionary algorithms with a local search 

to solve combinational optimization problems 
(Misevičius et al., 2015). 

A local search is often performed by iteratively 
searching the neighborhood of one solution to explore 

better solutions with the minimum number of searches 
(Chen et al, 2015). While the genetic operator is 

generally used to explore the entire search space with 

large scale stepping, the local search mechanism is 
used to explore better solutions within a local area. In 

the case of the TSP, embedding a local search 
heuristic in GA can obtain a robust search. 

Specifically, Lin-Kernighan (LK) method (Karapetyan 
& Gutin, 2011) obtains the currently best heuristic 

solution for the TSP by repeatedly changing the 

number of cities visited by the travelling salesman. 
Therefore, this study performed a LK local search on 

the new born offspring. Figure 2 is a diagram of the 
LK-NCSGA showing the insertion point of the 

embedded LK local search. 

3.5 Experiments and Results 
The proposed NCSGA was first evaluated using a 

set of symmetric TSP benchmarks from TSPLIB, 
where dij=dj i for all i and j in Eq. (1). In this test, a 

simple SGA (SGA) and parameter-free niche 

algorithms, including CGA, DCGA and the proposed 
NCSGA, execute the entire test in 20 runs. The 

genetic parameters are set to a population size of 200, 
a crossover rate of 1.0 and a mutation rate of 0.1. 

Since the complete solution space of the TSP is 
intractable, the actual distribution of niches is difficult 

to determine. Therefore, a clear comparison of the 
capabilities of various methods requires the use of 

several indices to measure convergence performance 

and the convergence quality of the population. The 
“Best” and “Mean (Std)” indices record the best, the 

average and the standard variation values of the 
optimal chromosome obtained in the executed runs 

and can be used to evaluate optimization performance 
and niche exploration performance. 

Population initialization
Crossover & mutation

Meet the stop 

criteria

Selection

Offspring fitness 

evaluation

Niche mechanism

Fitness evaluation

Start

Stop

Yes

No

LK local search

 

Figure 2. Summarized flow chart of a niche GA embedded with 
an LK local search. 

Another index “Num K%” measures the average 
number of the solutions in the runs within K% of the 

optimum where K is a constant defined as follows: 

  K=[
(The tour length explored by a GA)

(The optimal tour length)
− 1] × 100%. (2) 

In most evolutionary algorithms, the tour lengths 
obtained by the convergence procedure are more than 

the optimum within 2% to 4% (Snyder & Daskin, 
2006; Rego et al., 2010). Therefore, the indices “Num 

2%” and “Num 4%” were used to measure the 
solution quality in this paper. 

However, because the actual optima are intractable 
in most TSP test cases, the updated optimal values in 

TSPLIB were entered in the “Opt” field. Furthermore, 

for fair, each algorithm was executed with the same 
evolutionary loops (generations) in a run. The number 

of loops was entered in the “Loops” field. Each 
algorithm is directly stopped if the loop count 

limitation is met. Table 1 compares the test cases and 
related results for each index used in these 

experiments. 
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Table 1. Comparison results for various niche GAs in TSP cases. 

TSP 
Cases 

Opt. Loops 
SGA CGA DCGA NCSGA 

Best 
Mean 
(Std) 

Best 
Mean 
(Std) 

Best 
Mean 
(Std) 

Best 
Mean 
(Std) 

eil51 426 30000 430 
451.7 

(10.95) 
426 

428.2 
(1.81) 

427 
430.2 
(2.52) 

426 
428.0 
(2.01) 

berlin52 7542 30000 7623 
8082.8 

(254.08) 
7542 

7578.7 
(88.79) 

7542 
7556.3 
(51.52) 

7542 
7602.3 
(108.7) 

st70 675 50000 688 
719.1 

( 26.32) 
675 

682.7 
(3.63) 

678 
683.7 
(3.71) 

675 
679.5 
(3.85) 

eil76 538 30000 568 
579.9 

( 8.29) 
538 

545.5 

(5.78) 
544 

552.7 

(4.68) 
538 

543.2 

(4.99) 

pr76 108159 60000 109265 
114601.4 

( 
2482.22) 

108308 
109238.1 
(406.69) 

108159 
109123.3 
(532.31) 

108159 
108570.8 
(538.36) 

kroA100 21282 75000 22175 
23305.3 
( 496.55) 

21296 
21575.0 
(240.94) 

21282 
21500.9 
(152.32) 

21282 
21379.5 
(124.76) 

kroC100 20749 75000 21847 
22947.5 

( 803.73) 
20921 

21197.7 

(229.61) 
20949 

21159.6 

(176.28) 
20769 

21175.2 

(261.8) 

kroD100 21294 75000 22044 
22994.2 

( 573.39) 
21309 

21595.8 

(173.09) 
21462 

21729.5 

(121.7) 
21294 

21666.9 

(240.13) 

rd100 7910 75000 8195 
8677.9 

( 261.56) 
7914 

8047.9 
(102.18) 

7969 
8105.5 
(84.65) 

7910 
8108.7 

(123.06) 

 

3.5.1 Solution Multiplicity of the TSP  
As mentioned in the statements above, the SGA 

cannot maintain multiple optima. Figure 3 

demonstrates the advantage of the proposed NCSGA 
by comparing its optimal solutions with those obtained 

by SGA for test case “eil76” where the symbol ‘L’ is 
denoted as the tour length. 

 

(a) The optimal solution explored by SGA (L=565). 

 

(b) The optimal solutions explored by NCSGA (L=538). 

Figure 3. Examples of optimal solution diagrams for SGA and 
NCSGA in Case eil76. 

The figure shows that the SGA only explores one 

local solution whereas the NCSGA can explore 
multiple optima. More solutions in the evolutionary 

population explored by the NCSGA are shown in Fig. 

4. 
Furthermore, in the case, the SGA meets the 

premature condition. For reference, Fig. 5 shows the 

convergence diagrams for various algorithms. From 
the diagrams, the SGA cannot explore the optimum 

but although all the other algorithms can reach the 
optimum. 

3.5.2 Solution Quality of Various Niche 
Methods 

Table 1 also compares solution quality in different 

niche algorithms. In all test cases, the NCSGA 
outperforms the SGA and the NGA. Additionally, the 

results obtained by the NCSGA are better or at least 

comparable to those obtained by DCGA. For example, 
in test cases “kroC”, “kroD100” and “rd100”, only the 

NCSGA reaches the optimum for “Best”. In test cases 
“berlin52” and “kroC100”, the NCSGA obtain 

comparable solutions to the DCGA for “Mean”; for 
other indices however, NCSGA obtains a substantially 

higher average number and quality of solutions. 

The capability to explore multiple solutions is 
shown in Table 2. In all test instances, the NCSGA 

obtains more solutions within 2% and 4% above 
optimal respectively. That is, the NCSGA outperforms 

the other algorithms in terms of diversity and number 
of feasible solutions. 

3.5.3 Improvement Comparison by Local Search 
Table 3 compares the results obtained by different 

niche algorithms improved by an LK heuristics search. 

The same performance indices are used. The use of a 
local search can substantially reduce the number of 

evolutionary generations needed to obtain good 
solutions. In the test cases, GAs with an LK search 

required only about 0.5% generations to reach the 
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Figure 4. Solutions within 0.5% of the optimum explored by NCSGA in Case eil76. 

 

Table 2. Solution multiplicity comparison for various niche GAs in TSP cases. 

TSP 

Cases 
Opt. Loops 

SGA CGA DCGA NCSGA 

Num(4%) Num(2%) Num(4%) Num(2%) Num(4%) Num(2%) Num(4%) Num(2%) 

eil51 426 30000 0.2 0.1 164.9 38.5 51.5 8.1 196 54.5 
berlin52 7542 30000 0.2 0.1 77.5 11.3 35 9.9 116.9 11.4 

st70 675 50000 0.3 0.1 88.8 11 46.6 15.2 136.8 17.8 
eil76 538 30000 0 0 166 51.5 21.1 2.4 198.7 93.7 
pr76 108159 60000 0.3 0.1 118.3 18.8 43.9 10.2 198.3 126 

kroA100 21282 75000 0 0 133.7 27.8 37.9 8.6 183.2 53.1 
kroC100 20749 75000 0 0 51.2 6.5 22.8 4.3 77.7 7.6 

kroD100 21294 75000 0.1 0 109.1 14.6 26.5 3.4 154.7 33 

rd100 7910 75000 0.1 0 67 3.6 23.1 3.1 126.3 28.1 

 
 
Table 3 TSP comparison results of various niche GAs with an L-K search. 

TSP 
 Cases 

Opt. Loops 

LK-SGA LK-CGA LK-DCGA LK-NCSGA 

Mean 

 (Std) 

Num 

(4%) 

Num 

(2%) 

Mean 

 (Std) 

Num 

(4%) 

Num 

(2%) 

Mean 

(Std) 

Num 

(4%) 

Num 

(2%) 

Mean 

(Std) 

Num 

(4%) 

Num 

(2%) 

eil51 426 150 
426 
 (0) 40.5 11.1 

426 
 (0) 87.5 53.5 

426 
 (0) 71.3 47 

426 
 (0) 126.2 88.8 

berlin52 7542 150 
7542 
 (0) 38.7 16.1 

7542 
(0) 46.9 7.5 

7542 
 (0) 36.5 14.3 

7542 
 (0) 70.8 15.3 

st70 675 250 
675.1 

 (0.30) 10.1 3.5 
675 

( 0) 50.5 22.6 
675 

( 0) 153.2 109.1 
675 

( 0) 100.9 53.7 

eil76 538 300 
538 

(0.22) 19.6 5 
538 

 (0) 101.7 83.5 
538 

 (0) 150.7 103.1 
538 

 (0) 142.8 133.6 

pr76 108159 300 
108164.3 

 (22.88) 26.4 5.8 
108159 

 (0) 62.2 36.2 
108159  

(0) 107.2 82.2 
108159 

 (0) 115.8 79.5 

kroA100 21282 750 
21282 

 (0) 10.1 3.8 
21282 

 (0) 128.7 60.3 
21282 

 (0) 71.3 59.8 
21282 

 (0) 184.1 107.1 

kroC100 20749 750 
20749 

 (0) 11.4 4.7 
20749 

 (0) 94.8 32.7 
20749 

 (0) 61 47.6 
20749  

(0) 146.3 67 

kroD100 21294 750 
21306.9 

 (24.95) 6.5 2 
21294 

 (0) 119.9 63.8 
21294 

 (0) 115 91 
21294 

 (0) 181.3 115.4 

rd100 7910 750 
7913.1 

 (6.82) 4 2 
7910 

( 0) 79.7 32.4 
7910 

( 0) 31.8 20.4 
7910 

( 0) 134.2 60.1 
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(a) SGA (b) CGA 

  
(c) DCGA (d) NCSGA 

Figure 5. Convergence diagrams for various niche GAs where only the CGA and NCSGA can reach the optimum. 

index criterion of “Num 2%” and “Num 4%” 

compared to GAs without any local search. 

According to the result, the LK-NCSGA can 
explore more solutions in most test cases. The only 

exception is case “st70” where the LK-DCGA 
performs better. In cases “berlin52” and “pr76”, the 

LK-NCSGA obtains comparable solutions to the LK-
SGA and the LK-DCGA. However, because the 

schema of LK-SGA is based on a simple GA, it cannot 

obtain optima in some runs. This case also 
demonstrates the importance of diversity control in an 

algorithm. 
To the best of our knowledge, this work is a 

pioneer study to discuss both the search performance 
and the capability to explore multiple solutions in TSP 

problems. Therefore, the referential value of these 
results is considerable. 

3.6 Comparison with Multiobjective 

Evolutionary Optimization Methods 
As for the issue of multiple solutions, although 

multiobjective evolutionary algorithms (MOEAs) can 

also provide multiple choice schemes by searching the 

Pareto set of the solution space, it is essentially 
different from the multiple solutions  solved by the 

proposed NCSGA method in this paper which aims at 
solving the single objective problems. Therefore, it is 

not easy to directly compare the solution capabilities 

of the two different approaches. Here we take the real-

world airline recovery scheduling problem as an 

example problem to observe the convergence 
characteristics of the two kinds of solvers. 

When encountering a disturbance event (such as a 
temporary shutdown of the airport due to climate 

problems), the airline recovery problem requires that 
the flight schedule must be rescheduled to complete 

the interrupted schedule. The original approach (Chen 

et al., 2013; Liu et al., 2010) was to solve the 
multiobjective recovery problem with the NSGA-II 

variant. However, if the problem is set to optimize 
only a single objective, e.g. minimizing the overall 

delay due to the disturbance, we can solve it by the 
NCSGA. 

Table 4 shows the result of the two different 
approaches solving the two recovery cases studied in 

the work of Chen et al. (2013) under the same fitness 

call numbers. The table content shows the overall 
delay amount in the recovery schedules. From the 

result, the convergence of the single objective 
approach, that is, the NCSGA method is obviously 

better than that of the multiobjective scheme. 
Furthermore, the genotype density can be used to 

measure the diversity of the evolutionary population 

members. Table 5 shows the density values which are 
calculated by averaging the sum of genotype distances  
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Table 4. The total delay time values in the recovery solutions. 

Study 

cases 

NSGA-II Variant  
(Chen et al, 2013) 

NCSGA 
(This work) 

Min Mean Std. Min Mean Std. 
Case #1 595 764.5 115.24 595 619.75 31.81 
Case #2 390 430.75 38.53 380 416.75 15.58 
*Remark: A smaller delay is better, and the fitness function calls 

are set to 200000. 
 

Table 5. The genotype density in the evolutionary population. 

Study 
cases 

NSGA-II Variant  
(Chen et al, 2013) 

NCSGA 
(This work) 

Max Mean Std. Max Mean Std. 

Case #1 22.51 16.61 2.58 25.98 22.99 1.79 
Case #2 19.84 15.04 2.52 29.47 26.73 2.14 
*Remark: A larger density represents a higher diversity. 

 
from one population member to the others. Because of 

niching method, the NCSGA also maintain a better 
diversity by keeping a larger density. 

To sum up, because of the niching mechanism and 
the single objective scheme, the NCSGA method has a 

unique convergence direction (objective) to obtain a 
better convergence and diversity. However, if Pareto 

solutions are required, a multiobjective approach is 

still preferred. 

4 APPLICATION OF NCSGA TO SNP BARCODE 
GENERATION 

THE proposed NCSGA was used here to solve the 

medical feature selection problem (Arif et al., 2017) 
which generates SNP barcodes between SNPs and 

osteoporosis (Chung et al., 2007). In the genetic 

association study, a SNP barcode is formed by 
combining SNPs; individuals have unique SNP 

barcodes for each genotype, and three SNP 
combinations are possible for each genotype. 

In Chung et al. (2007), SNP barcodes and 
phenotypes were used to distinguish between a case 

group and a control group based on bone mineral 

density (BMD). When individuals were divided into 
high and low BMD groups, each group showed 

different SNP barcode patterns. After generating SNP 
barcodes for different genotypes, Chung et al. (2007) 

identified the optimal SNP pairs by comparing the 
occurrence of SNP pairs between the case and control 

groups in fitness evaluations. 

4.1 Coding Schema 
Chromosomes were represented by dividing them 

into two parts as described in the previous work. The 
first part is the selected number of SNPs, and the 

second part is the genotype associated with the SNPs. 
Therefore, a chromosome with eight genes would be 

represented by four randomly selected SNPs and their 

genotypes. 
An example of this coding schema is {(6, 4, 7, 8), 

(3, 2, 2, 1)}. The (6, 4, 7, 8) denotes the selected SNPs, 
and (3, 2, 2, 1) denotes their genotypes. In this case, 

the “selected SNPs and their genotypes” field was 

encoded as (6, 3), (4, 2), (7, 2) and (8, 1). 

4.2 Genetic Operators 
For a fair comparison, the same genetic operators 

were used. For rank selection, the genetic schema used 

the fitness order as the selection probability. 
Crossover was performed by a two-segment single-

point crossover model that separately mated the parts 

of two chromosomes to generate new offspring. 
However, a repair method was needed to repair the 

chromosome after the crossover. No mutation method 
was applied in the application flow. 

4.3 Fitness Evaluation 
In a previous study, the T-score for BMD was used 

in the fitness evaluation. Individuals with T-scores 

higher than -1 were classified into a high BMD 
(H_BMD) group. The remainders were classified into 

a low BMD (L_BMD) group.  
Based on this classification, the fitness evaluation 

of each chromosome in the population was performed 
as follows: 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 
(H_BMD − L_BMD)

(ALL_H_BMD + ALL_L_BMD)
× 100%, (3) 

where ALL_H_BMD and ALL_L_BMD denote the 
numbers of individuals in the high and low BMD 

groups respectively; H_BMD and L_BMD denote the 
numbers of individuals that match the selection 

conditions in the high and low BMD groups, 
respectively. According to the equation, a high 

percentage indicates a high probability that the SNP 

selection and genotype combinations are associated 
with osteoporosis. 

4.4 Experimental Results 
A dataset from a previous study of associations 

with osteoporosis (Chung et al., 2008) was used for 
experimental performance evaluations of the proposed 

NCSGA. The dataset included BMD, BMI, SNP, 

personal information, and clinical data. Table 6 shows 
the 11 SNP candidates that emerged in analyses of 

complex networks with direct or indirect crosstalk. 
The case group and the control group in this 

analysis included 190 subjects with high BMD and 
117 subjects with low BMD, respectively. The GA 

generated SNP barcode profiles by coupling SNP 

barcodes with phenotype (BMD). 
Table 7 compares the results obtained by the 

ORGA and by the NCSGA. The table shows that the 
original ORGA only explored a single optimum in 

each combination whereas the NCSGA explored 
additional optima. For example, in test instance SNP 

#2, the test case required two SNPs to form a SNP 

barcode. The best SNP barcode obtained by the 
ORGA was “3-3” in the selected “SNP(1-5)”, i.e., 

genotype “CC” of SNP “TNFα-857” and genotype 
“AA” of SNP “PTH(BstB I)”. In contrast, an 
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Table 6. SNP Information in the Osteoporosis Association Study (Chung et al., 2008). 

SNP RS number Geno Type1 Geno Type2 Geno Type3 Chromosome Gene 
1 rs1799724 TT TC CC 6 TNFα-857 

2 rs1800469 TT TC CC 19 TGFβ1-509 
3 rs1800247 CC CT TT 1 Osteocalcin 

4 rs1800629 AA AG GG 6 TNFα308 

5 rs6254 GG AG AA 11 PTH(BstB I) 

6 rs6256 AA AC CC 11 PTH(Dra I) 

7 VNTRᵃ A1A1 A1A2 A1A4 2 IL1_ra 

8 rs2227956 CC CT TT 6 HSP70 hom 

9 rs1061581 GG AG AA 6 HSP 70-2 

10 rs1801197 CC CT TT 7 CTR 

11 rs17563 CC CT TT 14 BMP-4 

 
Table 7. Comparison SNP barcodes generated by ORGA and by NCSGA. 

SNP 

# 

Odds 

Ratio 

O RGA (Chung et al., 2008) NCSGA (this work) 

Selected SNPs SNP barcode Selected SNPs SNP barcode 

2 2.93 SNP(1-5) 3-3 
SNP(1-5) 

SNP(1-7) 

3-3 

3-1 
3 2.83 SNP(1-5-7) 3-3-1 SNP(1-5-7) 3-3-1 

4 3.02 SNP(1-4-5-7) 3-3-3-1 SNP(1-4-5-7) 3-3-3-1 

5 2.44 SNP(1-4-5-7-10) 3-3-3-1-1 SNP(1-4-5-7-10) 3-3-3-1-1 

6 2.80 SNP(1-4-5-7-9-10) 3-3-3-1-2-1 SNP(1-4-5-7-9-10) 3-3-3-1-2-1 
7 3.03 SNP(1-4-5-6-7-8-10) 3-3-3-3-1-3-1 SNP(1-4-5-6-7-8-10) 3-3-3-3-1-3-1 

8 2.35 SNP (1-4-5-6-7-8-9-10) 3-3-3-3-1-3-2-1 SNP (1-4-5-6-7-8-9-10) 3-3-3-3-1-3-2-1 

9 3.57 SNP(1-3-4-5-6-7-8-9-10) 3-3-3-3-3-1-3-2-1 

SNP(1-3-4-5-6-7-8-9-10) 

SNP(1-4-5-6-7-8-9-10-11) 
SNP(1-3-4-5-6-7-8-10-11) 

3-3-3-3-3-1-3-2-1 

3-3-3-3-1-3-2-1-3 
3-2-3-3-3-1-3-1-3 

10 6.53 SNP(2-3-4-5-6-7-8-9-10-11) 2-2-3-3-3-1-2-2-1-3 
SNP(2-3-4-5-6-7-8-9-10-11) 

SNP(1-2-3-4-5-6-7-8-9-10) 

2-2-3-3-3-1-2-2-1-3 

1-2-2-3-3-3-1-2-2-1 

 

additional best barcode obtained by NCSGA in the 
selected “SNP (1-7)” was “3-1”, i.e., genotypes “CC” 

of SNP “TNFα-857” and “A1A1” of SNP “IL1_ra”. 
That is, the ORGA failed to obtain an equivalent SNP 

barcode in this case. Similar results were obtained for 
test instances SNPs #9 and #10. Specifically, SNP #10 

had one additional barcode whereas case SNP #9 had 
two additional barcodes. 

In general, gene damage or modification usually 

leads to an increased risk of many diseases. Therefore, 
it is important to obtain sensitive SNP patterns using 

the SNPs involved in the pathways related to genetic 
variants. However, obtaining an equivalent set of 

SNPs is also important for high solution quality 
because more complete solutions can help analyze the 

most significant pathways. For the use in real 

applications, an example is that the decision-makers 
can choose a better SNP barcode from the set to 

determine the impact of drug therapy according to 
other clinical experience. 

5 CONCLUSIONS 
A simple GA cannot explore multiple global 

solutions because it lacks capability to explore 

multiple loci. Therefore, this study used NCS in an 

evolutionary algorithm to solve multiplicity problems. 
Different from the other niche methods which requires 

prior knowledge to determine specific parameters, the 
NCS uses a parameter-free niche mechanism and is 

suitable for real-world combinational optimization 
applications that have intractable solution landscapes. 

For solving TSP benchmark problems, experiments 
showed that the proposed NCSGA can explore 

multiple solutions and outperforms other parameter-
free niche methods in most test cases with or without a 

local search. Further experiments in the SNP barcode 
generation application revealed the advantage of the 

proposal NCSGA. Identifying SNP barcodes is 

difficult and very time-consuming, and the original 
ORGA dealt with the problem by employing a simple 

GA to explore the single global solution. Our 
approach improved the solution capability by using 

the NCSGA method to explore multiple optimal 
solutions. That is, compared to the ORGA, the 

proposed method provides an effective and 

comprehensive approach to explore more valuable 
solutions for the decision-makers. 

Extensions of this work include the scalability 
verification of more real-world cases related to genetic 

association studies. In addition, since the proposed 
NCSGA is a generalized evolutionary algorithm, it 

can be further used or extended to solve other 

combinatorial optimization problems. 
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