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This study presents a method for the detection of outliers based on the Variable Precision Rough Set Model (VPRSM). The basis of this model is the
generalisation of the standard concept of a set inclusion relation on which the Rough Set Basic Model (RSBM) is based. The primary contribution of this
study is the improvement in detection quality, which is achieved due to the generalisation allowed by the classification system that allows a certain degree
of uncertainty. From this method, a computationally efficient algorithm is proposed. The experiments performed with a real scenario and a comparison of
the results with the RSBM-based method demonstrate the effectiveness of the method as well as the algorithm’s efficiency in diverse contexts, which also
involve large amounts of data.
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1. INTRODUCTION

The detection of exceptional cases (i.e., outlier detection) is a
field of growing relevance within Data Mining. If the detec-
tion goal is to extract the most probable patterns of knowledge
from large volumes of data (i.e., trend expressions that ignore
the marginality or the exception), the opposite view is used in
outlier detection. This process could report knowledge findings
of strategic importance in a wide range of applications: fraud
detection, the detection of illegal access to corporate networks,
the detection of errors in input data, etc. This makes us consider
the following aspect: although the term outlier could lead us
to assume that it always implies a negative interpretation of the
phenomenon due to the exceptionality implied by its conception,
this is not always the case in practice. In diverse occasions, the
detection of outliers, such as cases distinguished by their excep-
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tionality, can be the fundamental objective of certain processes,
analyses or studies. Therefore, the term “outlier” should not
always be connected with a negative connotation.

Currently, researchers create models, algorithms and func-
tions that are defined in increasingly abstract cases; the develop-
ment of investigations is thus more conditioned by the nature of
the data they investigate. As a result, it is necessary to conceive
increasingly novel and efficient data analysis techniques. Data
Mining has been established as a subfield of artificial intelligence
that can provide techniques, theories and tools that efficiently al-
low the analysis of the complex datasets of today’s world [1].
Essential aspects that justify the transcendence of outlier detec-
tion in the context of Knowledge Discovery on Data-Data Mining
(KDD-DM) are important.

From the KDD-DM perspective, outlier detection is gener-
ally approached from two different points of view: outliers as
undesirable objects that must be addressed or removed in the
data preparation phase because their presence in a dataset can
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significantly hinder the detection of reliable patterns or outliers
as objects that can be identified from the implicit interest that
they have for the process itself. In the latter case, they should
not be removed from a dataset. For certain applications, these
objects are more representative and interesting than the most
common events from the perspective of information discovery.
Examples of applications in this sense can include those related
to fraud detection in the use of credit cards, where the detec-
tion of outliers could provide information to typify misconduct
patterns, or in the electronic business field, where the detection
of outliers could provide useful information for Customer Rela-
tionship Management (CRM).

These concepts highlight that KDD-DM processes require in-
creasingly efficient methods for the detection of outliers. In
today’s datasets, increasingly sophisticated data representation
structures and forms of storage tend to appear. Therefore, work
must be performed based on obtaining effective detection mod-
els based on the challenges imposed by such particularities and
on the use of new technologies in general.

The investigation of state-of-the-art techniques in this study
has allowed us to identify the extent of the outlier detection prob-
lem based on its application in multiple contexts. Our conclusion
is that its scope of application is wide and diverse. This diversity
of application fields, in which the nature of the data and the con-
texts in which they are defined acquire different particularities,
is perhaps one of the reasons that explain the wide variety of
existing detection methods. Each method adjusts to the data and
the contexts in which they will be applied; thus, it is challenging
to conceive increasingly flexible detection methods that can be
applied in different contexts.

With the goal of making outlier detection more efficient, re-
searchers tend to apply new techniques. The Rough Set Basic
Model (RSBM) proposed by Professor Z. Pawlak [2] in 1982 is
based on a simple and solid mathematical basis: the equivalence
relation theory, which describes partitions constituted by indis-
cernible types of objects. In recent years, this model has been
successfully applied in diverse contexts. In [3], we proposed a
method based on the RSBM that demonstrated the validity and
potential of this method for the detection of outliers. However,
it could also be confirmed that the RSBM only allows accurate
classifications, and many problems generally require uncertainty
to be admitted into a given classification along with having the
capacity to generalise the conclusion obtained from more re-
duced datasets.

In this study, the initial hypothesis is that the Variable Preci-
sion Rough Set Model (VPRSM) [4] can provide a solution to
the abovementioned problem. Relying on the non-deterministic
character provided by the VPRSM and by the relaxation of the set
inclusion concept that allows the management of certain thresh-
olds set by the user, we propose a new model in this study based
on the VPRSM and create a new algorithm based on the algo-
rithm presented in [3], which shows significant improvements
in its generalisation and detection capacity while maintaining
the spatial and temporal complexity levels that make it viable in
practice.

The remainder of this article is structured as follows. Section
2 presents the most significant aspects obtained as a result of the
state-of-the-art study performed with regard to outlier detection
and the previous studies that constitute the background of this

proposal. Section 3 presents the outlier detection proposal from
a model based on the VPRSM properties and an algorithm based
on this method; a detection example is also used to illustrate the
execution of the proposed algorithm. In Section 4, the validation
of the results is performed using multiple experiments that show
improvements in the detection quality and in the computational
feasibility of the algorithm; these experiments also allow for
comparisons to be made with other methods. Finally, Section
5 presents the primary conclusions of this study along with the
suggestions for future work.

2. BACKGROUND

In recent decades, the outlier detection problem has acquired
special relevance in multiple and diverse contexts [5], among
which the following can be highlighted as examples: fraud de-
tection in the use of credit cards or in cellular telephony; the
identification of conflicting users in the processing of bank loan
applications; the detection of intruders in computer networks;
the monitoring of traffic in computer networks; the diagnosis of
faults or flaws in the operation of engines, generators, pipelines
and measuring instruments; the detection of structural defects;
the automated control of production lines to detect faulty pro-
ductions; the automated monitoring of medical parameters; and
the identification of new molecular structures [6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. All these challenges highlight the interest of the
scientific community in solving the outlier detection problem
with efficient techniques and methods.

In general, outlier detection methods are based on two fun-
damental fields of mathematics and computer science: statistics
and artificial intelligence (AI). To establish an adequate outlier
detection process, it is necessary to select an algorithm that pre-
cisely models the analysed data, that accurately highlights the
objects’ exceptional nature based on certain specific technique,
and that is computationally efficient and scalable for the datasets
on which it will be applied within a context or vicinity of interest
[16].

Statistical models were the first to be used to address the out-
lier detection problem. A large subset of outlier detection meth-
ods, even the more recent methods, incorporate certain statistical
techniques. In general, these techniques are closely linked to
the KDD-Data Mining processes [17] [18]. From the statistical
perspective, outliers can be indicative of the characteristics of
a population segment that would be discovered in the normal
course of the analysis or can be interpreted as objects that are
not representative of the population and oppose the objectives
of the analysis, allowing them to seriously distort the results
of statistical tests. Their detection presupposes an analysis of
the data to be able to determine the type of influence they ex-
ert on the data. Current AI techniques make certain traditional
statistical detection methods obsolete [19]. In general, statis-
tical methods are appropriate for processing datasets with real
continuous values that are composed of quantitative data or at
least qualitative data with ordinal values. However, it is cur-
rently necessary to process increasing amounts of categorical
data. Parametric methods assume that the data must follow a
parametric distribution, and in such a case, the abovementioned
methods do not work correctly in multivariate contexts. As a
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solution to this problem, the methods used in this study are non-
parametric methods that consider distance, clustering or density.
However, the temporal complexity of most of the distance-based
methods is quadratic, which is important if working with large
or dynamic sets of data [20]. Another problem to consider in
the use of statistical methods is the dimensionality increment of
the dataset [21]; this can also cause an increase in the processing
time and a distortion of its distribution. When the dimension
of the dataset increases, the effectiveness of certain algorithms
can be severely compromised [22]. For example, the concept of
distance in a space of different dimensions tends to vary. High
dimensionality can also affect the effectiveness of the methods
based on proximity criteria between the data. In general, in
high-dimensionality contexts, data are scattered; some authors
[23, 24] have worked to develop techniques and approaches that
can solve this problem, while others focus on selecting the most
outstanding attributes to reduce a dataset’s dimensionality [25].
Other techniques project the data onto a space with smaller di-
mensions. In the data mining context, the distribution of the
attributes’ values is almost always unknown. When the dataset
dimension increases significantly, it is difficult to estimate multi-
dimensional distributions from it [26]. In such cases, estimation
methods can have a much higher margin of error, which limits
the application of distribution-based detection methods. With re-
gard to AI-based methods, the fundamental techniques on which
they are based are those related to Machine Learning [27], such
as Decision Trees and Neural Networks.

A wide set of outlier detection methods implemented from
algorithms of diverse types are described in [26, 28]. In general,
the algorithms or outlier detection methods are classified based
on the technique on which they are based [29]. Among the most
noteworthy are the following: distribution-based techniques [30,
31, 32, 33, 34]; techniques based on different depth criteria [35,
26]; distance-based techniques [37] [38, 39, 40, 41, 42, 43];
density-based techniques [44, 45, 46, 47]; methods based on
clustering techniques [48, 48, 59, 51, 52, 43]; and techniques
based on the use of neural networks [54, 55, 56, 57]. Performing
a more in-depth review, we have been able to confirm that there
are many more techniques and that there is a tendency for them
to proliferate based on the accelerated and constant development
of new information technologies. Each technique highlights the
new aspects that distinguish them from the others [58].

Researchers tend to apply new techniques to the outlier de-
tection problem to improve the efficiency of the detection pro-
cess; these new techniques include the Rough Set Basic Model
(RSBM) [2]. The RSBM consists of a model with a simple
and solid mathematical basis: the equivalence relation theory.
These relations describe partitions constituted by indiscernible
types of objects. This model has been successfully applied in di-
verse contexts, including Knowledge Discovery from Data, Data
Mining, Machine Learning, Expert Systems, and Decision Sup-
port Systems. The RSBM has gained the attention of academics
and researchers at the international level. However, as a basis
for outlier characterization and detection,Rough Sets consider
a new perspective and have great potential with regard to theory
and practical applicability.

In recent years, proposals have appeared from which efficient
algorithms can be built for the detection of outliers based on
Rough Set (RS) theory [59, 60, 61]. Jiang et al. [62] pro-

posed a new approach to the outlier detection problem based
on the RSBM in which outliers are defined as elements of non-
redundant exceptional sets that have adegree of marginalisa-
tion greater than an established threshold. Although the under-
lying idea is intuitive, it leads to an intractable problem due to it
being of exponential order. In a previous work [3], we reached a
solution to this computational intractability problem via an ex-
tension of the theoretical framework proposed, from which an
outlier detection method was established with a simple and rigor-
ous formal theoretical approach based on the existing definition
of outliers. The method is computationally feasible for large
datasets, and to demonstrate this, we proposed an RSBM-based
outlier detection algorithm with a non-exponential temporal and
spatial complexity order. The proposed algorithm is linear with
respect to the cardinality of the data universe on which it is ap-
plied and quadratic with respect to the number of equivalence
relations used for describing said universe;however, such a num-
ber actually represents a constant because its value is typically
significantly much lower than the cardinality of the analysed uni-
verse. The method is based on an original and novel approach
of RS theory, which has not been previously used in any of the
classification categories for the outlier detection methods [63,
64]. The method is applicable to data expressed in tabular form
(i.e., the data structure of the Relational Model). The table must
be at least in the 1st normal form to guarantee that there are no re-
dundancies, and its attributes must be single-valued; otherwise,
they will be in contradiction with the essence of the method be-
cause the possibility of establishing equivalence relations from
them would not exist. The above-mentioned explanation directs
the application field towards outlier mining in large datasets.
This method is applicable to both continuous and discrete data,
and the fact that the datasets can contain a mixture of attribute
types (e.g., continuous and categorical attributes mixed) is not a
limitation for its application.

The fundamental contribution of the RS theory is to facili-
tate classification analysis. The approximation, both upper and
lower, becomes necessary because of the inability to establish
complete classifications of objects that belong to a certain cate-
gory with the knowledge available [65].

With a certain frequency, the information available only al-
lows partial classifications to be made, and RS theory can be
efficiently used to model this type of classification. However,
from this theory, such a classification must be true [66], limiting
the possibility of conceiving a classification with a controlled
degree of uncertainty (i.e., the possibility that there is a certain
error in the classification). This is not possible with the RSBM.
Paradoxically, in practice and in many cases, it is convenient to
admit a certain degree of uncertainty in the classification pro-
cess, which can allow for better comprehension and use of the
properties of the data being analysed [80].

Another limitation of the RSBM is that it assumes that the
universe U of objects or data considered is known and that all
the conclusions derived from the application of such a model
are only applicable to that set of objects. However, in practice,
generalising the conclusions obtained from a small set of ob-
jects (U) to a larger universe (e.g., the real world) is typically
required . The RSBM allows hypotheses to be obtained that are
only based on error-free classification rules, which are expressed
in the lower approximation, X, obtained from the analysis of the
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data involved (U); thus, the RSBM is a deterministic model.
However, in reality, there are multiple situations that require the
need for considering incorrect partial classifications. An incor-
rect partial classification rule also provides useful information
and can establish the tendency of values if most of the available
data to which the rule is applied can be correctly classified.

A generalisation of the RSBM was proposed by W. Ziarko and
is called the Variable Precision Rough Set Model (VPRSM) [4].
The VPRSM model rectifies the deterministic character with re-
gard to classification presented by the basic RS model by starting
from a simple idea: the relaxation of the set inclusion concept.
This concept effectively manages certain thresholds established
by the user. Thus, the VPRSM provides the possibility of detect-
ing or establishing this information trend and to perform analyses
on a universe of objects or data. Thus, the VPRSM is a statistical
model [67]. The most relevant aspects of the VPRSM are that
it is fundamentally aimed towards solving the limitations of the
RSBM. Its basis lies in a new conception or generalisation of the
standard concept of set inclusion relaxation.

The primary objective of this study is to improve the method
based on RSBM [3] with the creation of a non-deterministic
outlier detection method based on the VPRSM. This new method
must remain computationally feasible for what we conceive an
algorithm that allows us to validate it. The starting hypothesis is
that the VPRSM model broadens the application of the original
method, which is based on the RSBM, to contexts in which a
classification with a certain degree of uncertainty is required.

3. PROPOSAL FOR VPRSM-BASED OUT-
LIER DETECTION

3.1 Detection method based on the VPRSM
properties

The VPRSM is a generalisation of the RSBM [68] [69] and is
derived from the RSBM without assuming anything additional.
From this generalisation, the management of information with
a certain degree of uncertainty is allowed [70]. Numerous in-
vestigations related to its application have been produced since
the emergence of this model [71, 72, 73, 74, 75, 76], which
demonstrates its usefulness and viability.

The essence of the VPRSM model is given by the generali-
sation of the standard concept of set inclusion relaxation [77].
This concept is too rigorous for representing a nearly complete
set inclusion. Based on an extended concept for this relation
defined in the VPRSM model [78], a certain degree of error is
allowed to be established or foreseen.

In this section, we construct the proposed outlier detection
method as we present and analyse the mathematical tools pro-
vided by the VPRSM model [4].

It becomes evident from the definition of the standard inclu-
sion relation (see Definition 1) that there is no possibility of
contemplating any type of declassification.

Definition 1 —Standard inclusion relation: Let U be a finite
universe of objects and X, Y ⊂ U;X �= φ; and Y �= φ. Then, X
is included in Y, or X⊆Y. If ∀x∈X, then x∈Y. Fig. 1 graphically
illustrates this definition.

 
Figure 1 Standard inclusion relation.

The first step to overcome the limitations imposed by the
RSBM consists of breaking free of the need of explicitly defining
the universal quantifier. The “measure of the degree of declassi-
fication” (see Definition 2) proposed in the VPRSM makes this
possible.

Definition 2 —Measure of the degree of declassification: The
measure of the degree of declassification relative to the set X
with respect to set Y, c(X, Y), is the existing relative error when
classifying a set of objects and is defined as:

c(X, Y ) =
{

1 − |X ∩ Y |/|X | if |X | �= 0
0 if |X | = 0

This definition is evident because it can be observed that:

- if X⊆Y ⇒ |X∩Y|=|X|, then c(X, Y) = 1 – 1/1 = 0 ⇒ there is
no error in the classification.

- if c(X, Y) ≈ 1 ⇒ X, Y are nearly disjointed.
- if c(X, Y) = 1 ⇒ |X∩Y|=0 ⇒ X, Y are disjointed.

The numerical expression c(X, Y) is indicative of the relative
classification error. The product c(X, Y)*|X| will indicate the
absolute classification error (i.e., the number of misclassified
objects).

If the measure of relative declassification is used as a refer-
ence, the inclusion relation can be defined to obviate the need to
explicitly set the general quantifier as follows: X⊆Y ⇔ c(X, Y)
= 0. Based on this definition, c(X, Y) can have values greater
than 0 without being too high when the relation represents a ma-
jority. Thus, a majority of the objects of X must be classified in
Y. The concept of the majority imposes the setting of a threshold,
and in such a case, it is assumed that the majority implies that
more than 50% of the elements of X should be common with Y.
Thus, the specification of an admissible threshold of error in the
classification is added to the definition of the inclusion relation
[18].

Definition 3 —Majority inclusion relation: Let U be a finite
universe of objects; 0 ≤ β < 0.5, where β is the admissible
declassification error; and X, Y ⊂ U, X �= φ, Y �= φ. Then, X is
said to be primarily included in Y, or X is included in Y with a
β-error, X⊆βY, if and only if c(X, Y)≤ β. From the same defi-
nition, it can be shown that β=0 expresses a standard inclusion
relation, which is called the total inclusion in this model.

In the example shown in Fig. 2, it is assumed that the fol-
lowing sets are present: X1= {x1, x2, x3, x4}, X2={x1, x2, x5},
X3= {x1, x6, x7} and Y = {x1, x2, x3, x8}. The majority in-
clusion relation is illustrated between X1, X2, X3 and Y. Note
the degree of declassification existing between those sets and set
Y. Additionally, note that from the given definition of majority
inclusion, X3 ⊆βY is not fulfilled because the declassification
error β > 0.5 between these two sets.

From the new definition of the inclusion relation, the most
representative concepts of the RSBM can be redefined as follows.
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Figure 2 Example of majority inclusion.

Definition 4: Let X be an arbitrary subset of the universe U, and
� ⊆ U× U be an equivalence relation that divides U into a finite
set of equivalence classes <x>�, defining:

a) Xβ = ∪{〈x〉�:〈x〉� ⊆βX} It is known that 〈x〉� ⊆βX ⇔
c(〈x〉�,X) ≤ β.

b) Xβ = ∪{〈x〉�:〈x〉� �⊂β Xc} It is demonstrated that 〈x〉� �⊂β

Xc ⇔c(〈x〉�,X)<1-β.

c) BNβ (β-boundary region) = Xβ − Xβ

d) Bβ (β-inner boundary region) = X ∩ B Nβ

e) NEGβ(β-negative region) = U- Xβ

In Fig. 3, it can be observed that the RSBM is a particular case of
the variable precision model. The figure shows the representative
regions of the basic model with a classification errorβ=0. In such
a situation, the VPRSM corresponds to the RSBM.

In Fig. 4, significant regions are shown to vary if a certain
classification error is allowed. In this case, β=0.1 is assumed.
Additionally, note that the β-negative region of X is the union of
all the equivalence classes that can be classified within Xc with
a classification error not higher than β.

Considering that when β=0, the standard RS model is a par-
ticular case of the VPRSM, the following proposition can be
established, where other relations that are also fulfilled are ex-
pressed.

Proposition 5:
a) X ⊆ Xβ : the lower approximation is a subset of the β-

lower approximation
b) Xβ ⊆ X : the β-upper approximation is a subset of the

upper approximation.
c) BNβ ⊆ BN: the β-boundary region is a subset of the bound-

ary region.
d) NEG ⊆ NEGβ : the negative region is a subset of the β-

negative region.

When the classification error β increases, the sizes of the positive
and negative regions of X increases, while that of the boundary
region decreases. Fig. 5 shows the variation of the approximated
regions based on the variation of the β-error and illustrates and
summarizes many of the properties that have been mentioned.

Based on the concept of the majority inclusion relation de-
fined in the VPRSM, we have developed a new outlier detection
method that allows for classification with a certain degree of
error when calculating significant regions.

3.2 Outlier detection algorithm

From the method proposed in the previous section, an algorithm
must be built that can improve the detection quality and provide
a wider range of applications while maintaining the spatial and
temporal complexity levels obtained to date. Such a method
would ensure its own viability in real environments where large
amounts of data must be considered.

For the design of this new algorithm, we have started from the
RSBM algorithm, which has already been tested and validated
[3]. Using the theoretical framework provided by the VPRSM to
implement the proposed method, we have modified the calcula-
tion of significant regions of the original algorithm, particularly
with regard to the determination of the β-inner boundaries (Bβ

i ,
1≤ i ≤m). As already noted, in such a model, a certain β-error
is allowed in the classification, which objectively translates into
relaxing the inclusion relations when establishing the significant
regions of the model in the analysis framework. Thus, the pos-
sibility of a nearly complete classification is given by relaxing
its deterministic character based on the RSBM conception.

The β-error is added at the inputs of the algorithm imple-
mented for the RSBM; therefore, the inputs for the VPRSM-
based algorithm include the following parameters: the universe
U , the concept C (represented by variable X in the algorithm),
the criteria that distinguish the equivalence relations considered
in the analysis (ri , 1≤ i ≤ m), the established detection threshold
value μ, and the β-error. The same data structures described for
the RSBM-based algorithm [3] are maintained. The fundamen-
tal data structure used in the algorithm is the dictionary, which
contains a set of pairs (i.e., keys andvalues), where the key is an
arbitrary object to which one and only one object of the value-
type object is associated. In the algorithm, keys are described by
the results of applying a classifier to an arbitrary element of the
universe. Such a classifier is associated with a particular equiv-
alence relation ri , where 1≤ i ≤m, and it allows classification of
the members of the equivalence classes defined by said relation.
The values associated with the keys are lists of elements that
belong to the equivalence class identified by the key associated
with said value. For each equivalence relation, a dictionary is
built, and from all of these dictionaries, a list of dimension m
is built, where m is the number of equivalence relations consid-
ered. Based on the data structures used in this study, the spatial
complexity of the algorithm is O(n∗m) because each dictionary
can contain a maximum of all the elements (n) of the universe.

Following the strategy of the original algorithm, the new al-
gorithm is composed of two stages: the formation of the β-inner
boundaries and an outlier detection process. In the following,
each of these stages is shown and analysed using its pseudocode.
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Figure 4 Variation of the significant regions allowing a declassification error of β=0.1.
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Figure 5 Variation of the significant regions based on the β-error variation.

Stage 1 — Formation of β-inner boundaries: the classi-
fiers are applied (one per equivalence relation considered in the
analysis) to the elements of U to form the β-inner boundaries.

BUILD-REGIONS (U, X, R, β)

for each r ∈ R
Pr = CLASSIFY-ELEMENTS (U,
r)

// Pr is the partition induced by the
equivalence relation <r>

for each class ∈ Pr
if c(class, X)≤ β

X β = X β∪ class // By definition 4a: class ⊆β X ⇒
class ∈ Xβ

else if c(class, X) ≥ 1- β

NEGβ = NEGβ∪ class // By definition 4b: class �⊂β X ⇒
class ∈ NEGβ

else
∪ (class ∩ X) // By definition 4c: (class ∩ X) ⊆

add the elements of <class>
// that meet the <concept> to the
inner boundary relative to <r>

Alg.1. Stage 1: Formation of β-inner boundaries

The temporal complexity of this stage is O(n*m*c), where
c is the cost of classifying each element, n is the cardinality
of the universe, and m is the number of equivalence relations
considered in the analysis.

Stage 2 — Outlier detection process: The set that contains
all the elements that meet the concept and can be outlier candi-
dates is made up. From this set, all elements with a degree of
exceptionality greater than the established detection threshold μ

are classified as such.

VPRS-OUTLIER-DETECTION (U, X, R, β, μ)

The temporal complexity of this stage is O(n ∗ m2).
Considering stages 1 and 2, the execution cost for the en-

tire algorithm is O(max(O(stage 1), O(stage 2)))= O(stage
2)=O(n*m2).

In general, the number of equivalence relations involved in
the analysis in the vast majority of cases is not large compared
to the number of elements in the dataset. For this reason, the
quadratic dependence of the execution time with respect to the
amount of equivalence relations does not markedly affect the
algorithm execution time. As shown in the results below, this
quadratic dependence is nearly linear for small values (m≤ 20).

With regard to the spatial complexity, the same order is also
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BUILD-REGIONS (U, X, R, β)

for each r ∈ R // For each equivalence relation
<r>

containsAnother = FALSE // There is no inner boundary that is
a subset of

for each q ∈ R – {r} // For each equivalence relation
<q> different from <r>

if ⊂ // If the inner boundary of <q> is
a subset of the inner boundary of
<r>,
// then its elements are ruled out as
members of the Set of possible
// OUTLIERS: E

containsAnother = TRUE
break // It is not necessary to continue
if not containsAnother // If no inner boundary is a subset of

the one being analysed, then all the
// elements of the inner boundary of
< r> are members of the Set of pos-
sible

E = E ∪ // OUTLIERS: E
for each e ∈ E
if EX-DEGREE(e) ≥ μ // The elements of E that exceed a

certain degree of exceptionality be-
long // to the set of outliers

OUTLIERS = OUTLIERS ∪ {e}

Alg.2. Stage 2: Outlier detection process

maintained, O(n ∗ m), because the data structures described for
the version of the algorithm based on the RSBM are maintained.

3.3 Example of outlier detection in a data set
by the VPRSM algorithm

The operation of the proposed algorithm is shown using an exam-
ple that highlights the way in which the significant regions vary
when a certain β-error is allowed; this example also describes
how the classification is relaxed. In Section 4, the test and vali-
dation of the proposal will be addressed with a real dataset.

A universe U that represents 25 patients is considered (Table
1). In this table, a diagnostic is established for whether each
patient suffers from flu or not as a function of the patient’s tem-
perature and from the presence of a headache or not.

Two criteria are defined, where each divides U into a deter-
mined number of equivalence classes:

r1 =
{

x ∈ U

{
1_i f _headache(x)

0_otherwi se

}}

r2 =
⎧⎨
⎩x ∈ U

⎧⎨
⎩

0_i f _Normal_temperature(x)

1_i f _High_temperature(x)

2_otherwi se

⎫⎬
⎭
⎫⎬
⎭

A concept is defined as those patients who suffer from the flu:
CONCEPT C = {x∈U ˆ flu(x)}
Fig. 6-a shows the equivalence classes that are in the partition

of U that is created from r1.In both classes, there are elements
that fulfil C (i.e., patients with flu) and elements that do not ful-
fil C; therefore, both classes are within the boundary of C with

respect to r1. The elements of both classes that fulfil C are those
that make up the inner boundary. Fig. 6-b shows how the clas-
sification is made when β=0, which is equivalent to the RSBM,
and when allowing a declassification error of β=0.25 (i.e., the
VPRSM). Note that for r1, none of the boundaries change even
if the value of β varies.

However, when analysing what occurs with regard to r2, it is
observed that the introduction of a classification error can vary
the boundary elements. Thus, the relation r2 produces 3 equiv-
alence classes for the universe U (Fig. 7-a). In equivalence
class 2, 80% of the elements belong to the concept C . When the
boundaries are built with β=0, equivalence class 2 is within the
boundaries between the elements that belong to the concept and
those that do not. This occurs because there are many elements
that are in equivalence class 2 that do not belong to the concept
because they are not patients with flu. However, when a clas-
sification error is introduced (i.e., β=0.25), equivalence class 2
enters the positive region because 80% of its elements belong to
the concept (Fig. 7-b). This fact makes sense because equiva-
lence class 2 can be considered to be positive with a degree of
error of β=0.25 if many elements of the class meet the concept
C .

As shown in the example, the introduction of an error in the
classification of the elements that are or are not part of the concept
can relax the relation definition and classify the elements with a
certain margin of error.

4. VALIDATION OF RESULTS

The fundamental objective of the experiments in this study is
to validate the proposed hypothesis that the incorporation of the
precision variable to the proposed outlier detection algorithm
improves the results. However, given the large amounts of data
with which work is typically performed for this type of problem,
another of the objectives of the tests is aimed at verifying that the
temporal complexity of the algorithm remains linear in practice.

We will still incorporate an additional object into the proposed
test, where the obtained results can be contrasted and compared
to those of other methods, algorithms and strategies. To accom-
plish this goal, a dataset provided by the UCI Machine Learning
Repository of the Center for Machine Learning and Intelligent
Systems of the University of California, Irvine [79] was chosen.
This dataset contains data from the Census Bureau Database of
the United States, has already been used in more than 50 diverse
scientific articles, and is therefore considered to be a good refer-
ence dataset. In [79], the most outstanding characteristics of this
set and a detailed explanation of its attributes can be obtained.

4.1 Experiments to determine detection quality

To demonstrate that the proposed method is valid with regard to
the detection capacity in real datasets, we have designed certain
tests in which we define a concept and a series of equivalence re-
lations and intentionally introduce a set of outliers to the dataset.
Then, we use the proposed method for the detection of outliers
and analyse the results. The elements defined include the fol-
lowing:
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Table 1 Example data that represent the U universe.

ID Headache Temperature Diagnostic ID Headache Temperature Diagnostic
1 YES NORMAL UNKNOWN 14 YES NORMAL HEADACHE
2 NO VERY HIGH FLU 15 NO VERY HIGH FLU
3 YES HIGH FLU 16 NO VERY HIGH FLU
4 NO NORMAL UNKNOWN 17 NO NORMAL -
5 YES VERY HIGH FLU 18 NO VERY HIGH FLU
6 NO HIGH UNKNOWN 19 YES HIGH FLU
7 NO HIGH INSOLATION 20 YES HIGH FLU
8 NO VERY HIGH FLU 21 YES HIGH FLU
9 YES NORMAL - 22 YES HIGH FLU
10 YES NORMAL INSOLATION 23 YES HIGH FLU
11 YES VERY HIGH FLU 24 YES HIGH FLU
12 NO NORMAL - 25 YES HIGH FLU
13 YES NORMAL HEADACHE

1 2 3 4 5 7 
8 

9 
10 12 13 14 15 

17 18 19 20 22 
23 24 25 

6 
11 16 

21 

Equivalence class 1 Equivalence class 2 

U(r1) 

Patient with flu 

2 3 

4 

5 

7 

8 

9 10 12 13 
14 

15 

17 

18 
19 20 22 
23 24 25 

6 

11 16 
21 

1 
outer 

inner 

+ 

- 

2 3 

4 

5 

7 

8 

9 10 12 13 
14 

15 

17 

18 
19 20 22 
23 24 25 

6 

11 16 
21 

1 

+ 

- 

β = 0     RSBM β = 0.25    VPRSM 

b) Boundaries of C according to the degree of 
declassification β a) Equivalence classes of the universe U as a function of 

the relation r1 

Boundary 
inner 

outer 
Boundary 

Figure 6 a) Partition established by r1 on U . b) Boundary of C with respect to r1. β=0; β=0.25.

1 2 3 4 5 7 8 9 
10 12 13 
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15 
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25 
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11 16 21 
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2 
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16 

21 
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Boundary 
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declassification β a) Equivalence classes of the universe U as a function of 

the relation r2 
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high normal very high 
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11 16 
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outer 
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Figure 7 a) Partition established by r2 on U . b) Boundary of C with respect to r2. β=0; β=0.25.

• The individuals of the dataset that were the subject of study
are those that meet the following CONCEPT: 1 ≤ peo-
ple_with_age ≤ 10.

• The criteria for performing the analysis were established

using the following equivalence relations:

r1: defined from the categorical attribute
"workclass"

-c1.1: workclass =[‘private’ OR
‘self-emp-not-inc’ OR ‘self-emp-inc’ OR ‘federal-gov
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local-gov’ OR ‘state-gov without-pay’]
-c1.2: workclass = [‘never-worked’]
r2: defined from the categorical attribute

"education"
-c2.1: education = [‘bachelors’ OR ‘some-college’

OR ‘11th’ OR ‘9th’ OR ‘7th-8th’ OR ‘12th’ OR ‘10th’
OR ‘HS-grad’ OR ‘prof-school’ OR ‘assoc-acdm’ OR
‘assoc-voc’ OR ‘masters’ OR ‘doctorate’]

-c2.2: education = [‘preschool’ OR ‘1st-4th’ OR
‘5th-6th’]

r3: defined from the categorical attribute
"marital-status"

-c3.1: marital-status = [‘married-civ-spouse’
OR ‘divorced’ OR ‘separated’ OR ‘widowed’ OR
‘married-spouse-absent’ OR ‘married-AF-spouse’]

-c3.2: marital-status = [‘never-married’]
r4: defined from the categorical attribute

"occupation"
-c4.1: occupation = [‘tech-support’ OR

‘craft-repair’ OR ‘other-service’ OR ‘sales’
OR ‘exec-managerial’ OR ‘prof-specialty’ OR
‘handlers-cleaners’ OR ‘machine-op-inspct’
OR ‘adm-clerical’ OR ‘farming-fishing’ OR
‘transport-moving’ OR ‘priv-house-serv’ OR
‘protective-serv’ OR ‘armed-Forces’]

-c4.2: occupation = [‘student’]

Therefore, any element that satisfies the concept and belongs
to the class cx.1 (x = 1, 2, 3, 4) is contradictory with the relation
rx because the individuals subjected to the analysis are children
between 1 and 10 years of age.

Table 2 shows the set of outliers that were intentionally in-
troduced into the dataset, showing only the attributes that are
relevant for the analysis. Values that contradict the concept have
been introduced.

In this table, the values marked with an asterisk (*) are con-
tradictory for children between 1 and 10 years old. In this set
of outliers, the contradiction levels of the individuals vary. In
certain cases, they are contradictory with one or two attributes;
in other cases, they are contradictory with three or four and thus
represent the most contradictory elements.

Fig. 11 shows the amount of outliers detected for different
values of the thresholds β (i.e., the declassification error) and μ

(i.e., the degree of exceptionality). The results that correspond
to the RSBM are those found when β=0. The values β=0.10,
0.20, 0.30, 0.40, and 0.50 establish errors that are admitted in
the classification and therefore correspond to the VPRSM.

The goal of this test is to describe the variation in the amount
of outliers detected when the thresholds β and μ are varied. This
test also allows the comparison of results that are produced when
working with the RSBM (β=0) and the VPRSM(β �=0).

When interpreting the results, it has to be noted that in all
cases, within the set of outliers detected, there were always
some outliers that had been intentionally introduced into the
data set. When the amount of outliers detected was higher than
the amount of outliers introduced, then all the introduced out-
liers were within the detected set. When the number of out-
liers detected was lower than the amount introduced, then those
that were detected were always the most contradictory outliers.
For example, when μ=0.02 and β=0.0, 24 outliers were de-
tected, among which 13 had been introduced. Additionally,
when μ=0.6 and β=0.2, only 4 outliers were detected, of which
2 belong to the set of 13 introduced and thus represent the two
most contradictory outliers; four attributes were contradictory
in those cases. The interpretation of the tests performed also

allows us to draw the following conclusions:
- An adequate choice of equivalence relations or classification

criteria ensures good detection efficiency.
- For small values of μ and β, the number of detected out-

liers can be high, and elements that are not actually outliers can
detected as such. For example, when μ = 0.2 and β = 0.0, 24
outliers were detected, which reaffirms an important aspect of
the statistic view of the outlier detection problem for the final
designation of a case as exceptional. When the considered can-
didate observations have been identified by a given detection
method, then the investigator must perform an analysis of these
results and select those observations that demonstrate real con-
tradictions with respect to the studied sample.

- When gradually increasing the value of the detection thresh-
old (μ), a refinement in the detection is achieved. In general,
when the value of this parameter increases, the number of out-
liers detected decreases. Given this decrease, it can be observed
that those that remain in each case are those that are contradictory
with a higher number of attributes. However, in certain cases and
for certain variations in μ, such refinement is not achieved. For
example, 24 outliers are detected when μ is varied from 0.2 to 0.4
and β = 0.0. The same results are found when μ is varied from
0.8 to 1.0 and β = 0.0. Additionally, in both cases, the number
of outliers detected was 9. Note that in the two examples, the
value of β = 0.0, which implies that no degree of declassification
has been allowed; therefore, these results are indicative of the
RSBM. Additionally, note that when a certain degree of declas-
sification (i.e., β �= 0.0) is allowed for the same variations in
μ as in the previous example, the amount of detected outliers is
different.

- After μ reaches its highest possible value (i.e., μ=1.0), the
number of detected outliers is 9; however, a higher detection
refinement can be achieved if β is varied until the most con-
tradictory outliers are identified. Thus, detection quality can be
improved if a controlled degree of declassification (β) is allowed
and increased gradually. However, we must be cautious with the
variation of β because allowing a high degree of declassification
can result in all elements that are near boundaries going into the
positive or negative region, leaving the inner boundaries with
no elements because all of them are removed. In the tests per-
formed, for example, it is evident that this phenomenon occurs
above β = 0.3 because no outliers are detected above this value.

4.2 Experiments to determine the algorithm’s
feasibility

To describe the behaviour of the proposed algorithm, we will
analyse its behaviour when considering the variation of all the
parameters that define the size of the algorithm input, which in-
clude the number of rows and columns of the dataset and the
number of equivalence relations considered in the analysis. Ad-
ditionally, the behaviour of the VPRSM algorithm was compared
with that of the original RSBM model.

In Fig. 8, the algorithm execution can be observed while
maintaining a constant number of equivalence relations (i.e., 5
relations) and a constant number of rows in the dataset (i.e.,
30,000 rows) and varying the number of columns of the dataset
from 5 to 14 columns.
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Table 2 Outliers introduced into the dataset. The values marked with * are contradictory with the concept.

Age WorkClass Education Marital-Status Occupation
7 self-emp-inc* 1st-4th never-married student
6 never-worked masters* never-married student
9 never-worked doctorate* never-married student
9 never-worked 5th-6th never-married Armed-Forces*
7 never-worked 1st-4th never-married Adm-clerical*
8 self-emp-inc* masters* never-married Student
8 never-worked doctorate* married-civ-spouse* Student
6 never-worked 1st-4th divorced* Armed-Forces*
9 federal-gov* 5th-6th never-married Adm-clerical*
3 self-emp-inc masters* married-civ-spouse* Student
7 never-worked doctorate* divorced* Adm-clerical*
2 federal-gov* masters* divorced* Armed-Forces*
8 self-emp-inc* doctorate* married-civ-spouse* Armed-Forces*
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Figure 8 Basic RS algorithm (RSBM) vs. VPRSM with regard to outlier detection.

The same experiment was performed, results shown in Fig.
9, while maintaining a fixed number of rows (i.e., 30,000 rows)
and columns (i.e., 14 columns) in the dataset and modifying the
number of equivalence relations from 2 to 14 relations. The cost
is shown to be nearly linear.

As shown in Fig. 10, an experiment was performed that main-
tained a fixed number of columns in the dataset (i.e., 14 columns)
and a fixed number of equivalence relations (i.e., 5 equivalence
relations) while the cardinality of the dataset was varied from
5,000 to 30,000 rows.

These results confirm that the temporal complexity orders un-
der execution correspond to those of the algorithm that were jus-
tified from the theoretical perspective. The results also demon-

strate that the constants of the orders are reasonable and allow
such algorithms to be used for realistic datasets. Another im-
portant aspect to highlight is that the execution times for both
versions of the algorithm (i.e., the RSBM and the VPRSM) do
not differ significantly when considering systems that are clas-
sified as basic.

5. CONCLUSIONS

The results obtained from the tests performed in this study
demonstrate that the proposed VPRSM-based algorithm can
eliminate the deterministic character with regard to the classi-
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5 6 7 8 9 10 11 12 13 14
RSBM 6,12 6,31 6,25 6,40 6,30 6,06 6,08 6,29 6,17 6,19
VPRSM 7,44 7,53 7,59 7,42 7,55 7,51 7,59 7,50 7,41 7,56
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Figure 9 Execution time of the RSBM vs. VPRSM when modifying the number of columns in the dataset while maintaining a constant number of rows and equivalence
relations.

2 3 4 5 6 7 8 9 10 11 12 13 14
RSBM 1,36 2,55 4,47 6,18 7,56 8,32 11,10 12,45 15,20 16,33 18,09 20,06 22,16
VPRSM 1,41 3,12 5,03 7,01 8,22 9,22 11,24 13,14 15,09 17,14 19,22 21,20 23,00
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Figure 10 Execution time of the RSBM vs. VPRSM while modifying the number of equivalence relations and maintaining a constant number of rows and columns in
the dataset.
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RSBM 0,16 1,08 2,16 4,28 6,49 10,26
VPRSM 0,46 2,09 3,34 4,41 6,57 10,35
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Figure 11 Execution time of the RSBM vs. VPRSM while varying the number of rows in the dataset and maintaining a constant number of columns and a constant
number of equivalence relations.
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fication that limits the algorithm based on the basic RS model.
Thus, a higher precision is achieved in the detection while main-
taining the most contradictory elements as outliers.

Additionally, the version of the VPRSM-based algorithm
achieves better results in the detection of outliers by refining
the candidates and focusing on detecting those outliers that are
more contradictory. The proposed method achieves this result
while maintaining the same temporal and spatial complexities
as the RSBM-based algorithm. The proposed method is shown
to provide a computationally efficient solution, offering the pos-
sibility of using quasi-linear algorithms, which is an advantage
that any data analyst or engineer will value, given the typically
elevated complexity of the procedures in the KDD-DM field and
the typically large size of datasets.

In the long term, our investigation seeks a much more ambi-
tious objective: to provide a tool that allows the probabilistic
prediction of an outlier condition for all elements of a given
dataset in a computationally feasible manner. To achieve this
goal, the next step in this field of research should consist of cre-
ating an algorithm that can automatically calculating the μ and β

thresholds involved in the proposed method that must be defined
by the user. Based on this algorithm, our investigation will be
focused on the creation of a new method that allows the set of
such thresholds under which a certain element of a dataset would
be an outlier to be determined.
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