
Comput Syst Sci & Eng (2019) 4: 171–178
© 2019 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

An Upper Bound of Task Loads in a
Deadline-d all Busy Period for
Multiprocessor Global EDF
Real-Time Systems

Fengxiang Zhang∗

College of Computer and Information Science, Southwest University, China

This paper addresses a number of mathematical issues related to multiprocessor global EDF platforms. We present a deadline-d all busy period and backward
interference which are important concepts for multiprocessor EDF systems, and some general schedulability conditions for any studied job are proposed.
We formally prove that at most m-1 different tasks’ jobs could contribute their execution time to an interval starting with a Pbusy−d , and we propose an
approach for computing an exact upper bound of the total deadline-d task load in a given interval. Therefore, the proposed results are important foundations
for constructing exact schedulability analyses of global EDF scheduling systems.

Keywords: Real-time systems; Multiprocessor scheduling; EDF algorithm; Schedulability analysis

1. INTRODUCTION

Multiprocessor scheduling is known to be an NP-hard optimiza-
tion problem. Multiprocessor global scheduling where the jobs
are allowed to migrate from one processor to another is a much
more difficult problem than uniprocessor scheduling. EDF is
the most widely studied fixed-job priority scheduling algorithm
on multiprocessor platforms. The pessimism of existing global
EDF scheduling analysis has a strong impact on the schedula-
bility of small or medium-sized platforms [1], and this problem
remains one of the key open questions in the field today [2].

In a real-time system, any job must have sufficient processor
time to complete its execution within a given time interval.
However, this is not always true when some more urgent jobs
occupy all the processors in this interval to prevent a given job
getting its required execution time. In such a case, we say that
this job and the system are unschedulable. One important role

∗Email: zhangfx@swu.edu.cn

of scheduling analysis of real-time systems is to guarantee that
all jobs in a system are schedulable.

In a single processor platform, a processor busy period in
which there are always jobs with urgent deadlines executing or
waiting to execute is an important foundation for schedulability
analysis. However, this idea is not directly applicable to
multiprocessor systems since any job with deadline d can always
execute as soon as possible when there are no ready jobs with
di ≤ d on any one processor.

In order to study any given job’s schedulability on multi-
processor platforms, we present a deadline-d all busy period
Pbusy−d and a backward interference Pbusy−d which are two
important concepts for multiprocessor systems. Based on the
definitions of Pbusy−d and the backward interference Pbusy−d ,
two general schedulability conditions for any given job are
proposed for EDF global scheduling.

For any particular job, the amount of execution time required
by the more urgent jobs within a studied problem time interval
strongly influence the given job’s schedulability. A number of

vol 34 no 4 July 2019 171

AN UPPER BOUND OF TASK LOADS IN A DEADLINE-D ALL BUSY PERIOD FOR MULTIPROCESSOR GLOBAL EDF REAL-TIME SYSTEMS

papers have considered this issue for EDF global scheduling
(e.g. [3–8]), most of these approaches consider only the interval
between the arrival time and the deadline of a studied job
(i.e. relative deadline of this job), they consider a worst-
case scenario in a small length of time interval thus leading to
pessimistic schedulability analysis. Baurah [5] considered an
interval starting with a time point such that at least one processor
is idle, and he also concluded that the number of the carry-in jobs
contributing to this interval could be bounded to m−1. However,
a formal proof of this property was not provided.

An exact upper bound of the total task load in a studied interval
is essential for constructing a schedulability analysis with less
pessimism . Therefore, the proposed results provide some
theoretical foundations for constructing exact schedulability
analysis for multiprocessor EDF systems. The remainder of this
paper is organized as follows. In Section 2, the system model
used by this paper is described. Several important definitions
are presented in Section 3 and, based on these definitions, a
general schedulability analysis is proposed. In Section 4, we
provide a formal proof that at most m − 1 different tasks’ jobs
can have their loads contributions to a Pbusy−d . In Section 5,
a computation of the total deadline-d load of a time interval
starting with a backward interference Pbusy−d is presented. A
summary is given in Section 6.

2. SYSTEM MODEL

A real-time system model comprises a set of independent real-
time tasks {τ1, τ2, . . . , τn}, and each task consists of either
an infinite or finite stream of jobs which must be completed
before their absolute deadlines. Each job comprising the same
task requires the same worst-case execution time to complete
its execution on any processor. Hence any task τi (where
i = 1, 2, . . . , n) is characterized by a worst-case execution Ci ,
which must be completed before its relative deadline Di , and its
jobs’ minimum inter-arrival time Ti .

We denote jk to be any given job of a task τi . If a job jk arriving
at time ta , then it must be completed before its absolute deadline
at d = ta + Dk , otherwise jk and the system are unschedulable.

Each job in the system has a priority. The higher priority jobs
of jk are defined to be the jobs that are more urgent than jk (in
the case of a fixed job priority scheme such as EDF) or to be
the jobs with priorities higher than jk (in the case of a fixed task
priority scheme).

This paper focuses on the scheduling of real-time tasks in
a symmetric multiprocessor system. Let m be the number of
processors with unitary capacity in a system. At any time, if
there is any idle processor, an arrived ready job with the highest
priority is chosen for immediate execution. If there is no idle
processor, the arrival of a higher priority job could preempt a
lowest priority job’s execution at any time. Any job is allowed
to migrate from one processor to another one; when a job is
returned for execution, it is not necessary to execute it on the
same processor.

3. GENERAL SCHEDULABILITY
CONDITIONS

This section proposes general schedulability conditions for
any given studied job. At the beginning of this section,

several important terminologies are introduced for the
analysis.

3.1 Definitions and Terminologies

In a single processor platform, a processor busy period is an
important concept for schedulability analysis. In a global
multiprocessor scheduling system, the busy period is not directly
applicable since any job with a deadline equal to d can always
be executed as soon as possible when there are no ready jobs
with di ≤ d on any processor. In order to study any given
job’s schedulability on multiprocessor systems, the following
definition is presented.

Definition 1 (deadline-d all busy period) A deadline-d all
busy period, denoted by Pbusy−d , is a consecutive time interval
in which there are always ready jobs with absolute deadlines
di ≤ d executing or waiting to execute on each processor.

Note that the character d in Definition 1 could be any specified
time point; hence, it could be substituted with ANY time value
and notation.

It is obvious that only a deadline-d all busy period could stop
the execution of a job with a deadline equal to d and cause this
job to miss its deadline.

In a given time interval, if there exists any time point such that
any processor is executing a job with dk > d or it is idle, this
interval is not a Pbusy−d .

Definition 2 (start and end edges of a Pbusy−d) The start edge

of a Pbusy−d denoted by tedge
start is a time point such that

(tedge
start − ε, tedge

start) is not a Pbusy−d ; and the end edge of a Pbusy−d

denoted by tedge
end is a time point such that (tedge

end , tedge
end + ε) is

not a Pbusy−d ; where ε is an is an infinitesimally small positive
number.

According to Definition 2,at a time point that is infinitesimally
earlier than tedge

start or that is infinitesimally posterior to tedge
start , there

must be at least one processor on which there are no ready jobs
with di < d .

Definition 3 The total length of all the Pbusy−ds in a time
interval [ts, d] is denoted by Ltot

busy−d [ts, d].

When we study the schedulability of a given job jk with
deadline equals d , we have to separate jk from all other jobs,
and consider how much processor time that jk can have in an
interval; hence, the following definition is presented.

Definition 4 The total length of all the Pbusy−ds without jk’s

execution in an interval [ts , d], denoted by Ltot− jk
busy−d [ts , d],

represents the length summation of the intervals in which jk with
a deadline d may not get executed in this interval.

When a job jk arriving at time ts with a deadline equals d ,
the value of Ltot− jk

busy−d[ts , d] determines if jk can get sufficient

processor time in [ts, d]. However, the value of Ltot− jk
busy−d [ts, d]

is not only affected by the Pbusy−ds in [ts, d], but also affected
by a special Pbusy−d starting before ts .

172 computer systems science & engineering

F. ZHANG

t edge*
start t edge*

end

Dk

timeline
d

arrival of job jk

backward interference
Pbusy-d jkof job

ts

Figure 1 Backward interference Pbusy−d of a job.

Definition 5 (backward interference Pbusy−d of a job)
When a job jk arrives at ts with an absolute deadline
d = ts + Dk , then the jk’s backward interference Pbusy−d is

a consecutive Pbusy−d having a start edge tedge∗
start before or at

ts and an end edge tedge∗
end after ts if such a Pbusy−d exists, as

shown in Figure 1.

We can see that the value of Ltot− jk
busy−d [ts, d] is determined by

two parts:

(1) the remainder of backward interference Pbusy−d of job jk
after ts ; and

(2) the length summation of the Pbusy−ds having their start
edges after or at ts .

Definition 6 The total deadline-d task load EXCEPT j k’s con-
tribution in a time interval [ts, d] is denoted by Loadtot− jk[ts, d],
which represents the amount of execution time required by all
the jobs having both their arrival times and their deadlines in
[ts , d], plus the amount of unfinished jobs arriving before ts and
having their deadlines before or at d .

3.2 General Schedulability Conditions

As discussed in Section 3.1, for a job jk arriving at ts with
a deadline d and a worst-case execution time Ck , whether jk
can complete its execution time Ck depends on the value of
Ltot− jk

busy−d [ts, d]. It is obvious that the following conclusion holds.

Theorem 1 Any given job jk arriving at ts with a deadline d
and a worst-case execution time Ck will be schedulable iff

Ltot− jk
busy−d[ts , d] ≤ d − ts − Ck ,

where Ltot− jk
busy−d[ts , d] is given by Definition 4.

Proof: According to the global EDF scheduling policy, jk could
not get execution only in a deadline-d all busy period, and jk
gets execution immediately in all other cases, therefore, the
conclusion has been proven.

However, the length of [ts, d] equals Dk which is a relatively
small number. If we consider all the worst-case situations for
jk’s schedulability only in this small interval, this will lead to a
pessimistic analysis, as evident in past researches.

To construct a worst-case tasks’ arrival pattern and to decrease
inaccuracy, we can extend the period [ts , d] to a longer interval.
Denote tedge∗

start to be the start edge of jk’s backward interference
Pbusy−d , then the studied interval becomes [tedge∗

start , d].

Theorem 2 Let ts be the arrival time of a particular job jk
having a deadline d,and tedge∗

start be the start edge of jk’s backward
interference Pbusy−d if it exists (as shown in Figure 1). Then jk
is schedulable if and only if

Ltot− jk
busy−d[tedge∗

start , d] ≤ d − tedge∗
start − Ck,

where Ltot− jk
busy−d[ts , d] is given by Definition 4.

Proof: Since [tedge∗
start , ts] is a deadline-d all busy period and ts

is the arrival time of jk,

Ltot− jk
busy−d [tedge∗

start , ts] = Ltot
busy−d[tedge∗

start , ts] = ts − tedge∗
start ,

therefore, we have:

Ltot− jk
busy−d [tedge∗

start , d] = Ltot− jk
busy−d[ts , d]+ Ltot− jk

busy−d [tedge∗
start , ts]

= Ltot− jk
busy−d[ts , d]+ ts − tedge∗

start . (1)

Since jk is schedulable if and only if

Ltot− jk
busy−d [ts , d] ≤ d − ts − Ck, (2)

then by combing equation (1) and inequality (2), the theorem is
proven.

By Theorem 2, the schedulability of jk is determined by the
value of Ltot− jk

busy−d [tedge∗
start , d]. The following theorem concludes

that the maximum possible value of Ltot− jk
busy−d [tedge∗

start , d] is

determined by the value of Loadtot− jk[ts , d] which is given by
Definition 6.

Theorem 3 [9] Let Max Ltot− jk
busy−d[tedge∗

start , d] be the

maximum possible value of Ltot− jk
busy−d[tedge∗

start , d], and let

Loadtot− jk[tedge∗
start , d] be the total deadline-d task load

EXCEPT jk’s execution in the interval [tedge∗
start , d]. When

Loadtot− jk[tedge∗
start , d] is a fixed value, we have

Max Ltot− jk
busy−d[tedge∗

start , d] = 1

m
Loadtot− jk[tedge∗

start , d].

From the discussions of Theorem 2 and Theorem 3, the
schedulability of any given job jk’s schedulability is determined
by the value of Loadtot− jk[tedge∗

start , d]. Therefore, an exact upper
bound of Loadtot− jk[tedge∗

start , d] is important for constructing an
exact EDF global schedulability analysis.

vol 34 no 4 July 2019 173

AN UPPER BOUND OF TASK LOADS IN A DEADLINE-D ALL BUSY PERIOD FOR MULTIPROCESSOR GLOBAL EDF REAL-TIME SYSTEMS

Processor1

Processor2

Processor3

Processor4

Execution of jobs with

Key:

d

 di ≤ d

P prev
busy – d

t prev
end t edge

start

P busy – d

t edge
end

tℵ
1

tℵ
2

tℵ
3

tℵ
4

Figure 2 An illustrative example of Case one of Lemma 2’s proof when there are four processors in a system.

4. BOUNDING THE VALUE OF
DEADLINE-D TASK LOADS

According to Definition 6, any jobs with di ≤ d arriving before
any given time point ts could contribute their loads to the value of
Loadtot− jk[ts , d] if they have not completed by ts , and on each
processor, there could be more than one such job being executed
or waiting to be executed before ts . This assumption produces
too much deadline-d task load in a particular problem interval,
and thus leads to a pessimistic schedulability. The following
lemmas are needed to bound the value of Loadtot− jk[tedge∗

start , d].

Lemma 1 Let P prev
busy−d be the closest deadline-d all busy period

before any given Pbusy−d , and denote t prev
end to be the end edge

of P prev
busy−d , as shown in Figure 3. Then at any time during

the interval (t prev
end , tedge

start), there are no ready jobs with di ≤ d
waiting to execute in the system.

Proof: Since there are no other deadline-d busy periods
between P prev

busy−d and Pbusy−d , at any time in the interval

(t prev
end , tedge

start), there is at least one processor which is idle or is
executing some job with di > d , therefore, any job with di ≤ d
arrives in (t prev

end , tℵm) can be executed immediately and there are
no ready jobs waiting to execute.

Lemma 2 On any given processor Pκ , let tℵκ be the last time

before or at tedge
start of a Pbusy−d such that there are no jobs with

di ≤ d ,where κ ∈ {1, 2, . . . ,m}. Denote t prev
end to be the end

edge of P prev
busy−d which is the closest deadline-d all busy period

before Pbusy−d . As illustrated in Figure 2 and Figure 3. Then
on processor Pκ :

If t prev
end < tℵκ < tedge

start , there is only one job with di ≤ d

executing in the time interval (tℵκ , tedge
start).

If tℵκ ≤ t prev
end , there is only one job with di ≤ d executing in

the interval (t prev
end , tedge

start).

Proof: There are two cases to consider:
Case one: for ∀κ ∈ {1, 2, . . . ,m}, t prev

end < tℵκ ≤ tedge
start , as

illustrated in Figure 2. Then by Lemma 1, any job with di ≤ d
arriving in (t prev

end , tedge
start) can get executed immediately; hence,

no job in (t prev
end , tedge

start) will be preempted until it completes or

extends its execution to tedge
start . Therefore, for any κ ∈ {1, . . . ,m}

and tℵκ ≤ tedge
start : tℵκ is the arrival time of a job jℵκ with di ≤ d ,

jℵκ will not finish before tedge
start (or else tℵκ will not be the last time

before tedge
start such that there are no ready jobs with di ≤ d on

Pκ), and jℵκ is the only job executing in (tℵκ , tedge
start) on Pκ .

Case two: there exists κ ∈ {1, . . . ,m} such that tℵκ ≤ t prev
end ,

as illustrated in Figure 3, then there are always ready jobs with
di ≤ d in (tℵκ , tedge

start) on processor Pκ . There must be a job
jℵκ with di ≤ d arriving before or at t prev

end and executing in

(t prev
end , tedge

start), the same as for case one, jℵκ will not finish or be

preempted before tedge
start , and jℵκ is the only one job with di ≤ d

executing in (t prev
end , tedge

start) on Pκ .

The deadline-d task load of an interval starting with a Pbusy−d

can be bounded by the following theorems.

Theorem 4 On each processor, at most one task arriving before
tedge
start of a Pbusy−d could contribute its load to the deadline-d task

load of [tedge
start , tψ], where ∀tψ ∈ (tedge

start , d].

Proof: Let tℵi be the last time at or before tedge
start such that there

are no ready jobs with di ≤ d on a given processor Pi , and t prev
end

174 computer systems science & engineering

F. ZHANG

Processor1

Processor2

Processor3

Processor4

Execution of jobs with

Key:

d

P prev
busy – d

t prev
end t edge

start

Pbusy – d

t edge
end

tℵ
1

tℵ
4

tℵ
3

tℵ
2

di ≤ d

Figure 3 An illustrative example of Case two of Lemma 2’s proof when there are four processors in a system.

Processor i

Execution of jobs with

Key:

d

timeline

Execution of

P prev
busy−d

t prev
end t edge

start

Pbusy−d

t edge
end

jℵ
i

tℵ
i

jℵ
i

di ≤ d

Figure 4 Case when t prev
end < tℵi < tedge

start in Theorem 4’s proof.

be the end edge of the closest deadline-d all busy period before
tedge
start . There are two cases.

If t prev
end < tℵi < tedge

start (as shown in Figure 4): by Lemma 2,

there is only one job jℵi executing in (tℵi , tedge
start) on processor Pi ,

and tℵi must be the arrival time of jℵi , from Lemma 1, there are
no ready jobs waiting to execute; therefore, jℵi is the only job

which arrives before tedge
start and contributes its execution time to

the deadline-d load of [tedge
start , tψ].

If tℵi ≤ t prev
end : from Lemma 2’s discussions, there must be a

job j�i arrives before or at t prev
end and extends its execution to tedge

start,

and j�i is the only job executes during (t prev
end , tedge

start) on processor
Pi , since there are also no ready jobs with di ≤ d waiting to
execute during (t prev

end , tedge
start), j�i is the only job contributing to

the dead-line-d load of [tedge
start , tψ].

Theorem 5 At most m − 1 different tasks’ jobs arriving
before tedge

start of a Pbusy−d could contribute their task loads

to the total deadline-d task load of [tedge
start , tψ], where ∀tψ ∈

(tedge
start , d].

Proof: By Definition 2, tedge
start must be the arrival time of a job

with di ≤ d on a given processorPκ , and any other job arriving
before tedge

start on Pκ must have completed before tedge
start , hence

no job arriving before tedge
start on Pκ contributes its execution to

[tedge
start , tψ]. Theorem 4 has thus been proven.

Corollary 1 Let tedge∗
start to be the start edge of a studied job

jk’s backward interference Pbusy−d , then at most m − 1 tasks’

jobs arriving before tedge∗
start could contribute their task loads to

Loadtot− jk[tedge∗
start , d], where Loadtot− jk[tedge∗

start , d] is given by
definition 4.

Proof: Since tedge∗
start is a start edge of a Pbusy−d and d ∈

(tedge
start , d], this result is obtained directly from Theorem 5’s

conclusion.

vol 34 no 4 July 2019 175

AN UPPER BOUND OF TASK LOADS IN A DEADLINE-D ALL BUSY PERIOD FOR MULTIPROCESSOR GLOBAL EDF REAL-TIME SYSTEMS

Processor i

Execution of jobs with

Key:

d

timeline

Execution of

j ℜ
i

t prev
end t edge

start t edge
end

t ℵ
i

j ℜ
i

P prev
busy − d Pbusy−d

di ≤ d

Figure 5 Case when tℵi ≤ t prev
end in Theorem 4’s proof.

5. COMPUTATIONS TO THE MAXIMUM
VALUE OF Loadtot− jk [t edge∗

star t , d]

This section calculates maximum value of
Loadtot− jk[tedge∗

start , d]. There are two categories of the
jobs contributing to the value of Loadtot− jk[tedge∗

start , d] to
consider, they are

(A) The jobs with both their arrival times and deadlines in
[tedge∗

start , d].

(B) The jobs with their arrival times before tedge∗
start and deadlines

in [tedge∗
start , d].

In this section, we assume that all the jobs in Category (B)
can complete their executions before their deadlines, or else the
deadline-d task load in [tedge∗

start , d] cannot be bounded.
According to Corollary 1’s conclusion, the number of the jobs

in Category (B) is bounded by m−1, and they are from different
tasks. Therefore, we only need to calculate m−1 different tasks’
jobs with the greatest contributions under a given tasks’ arrival
pattern.

However, we still do not know the worst-case tasks’ arrival
pattern leading to the maximum deadline-d load to the interval
[tedge∗

start , d], the following lemma proves a worst-case arrival
pattern ofany given task τi in an interval.

Lemma 3 For any task τk , it contributes the maximum possible
deadline-d load in any given fixed length of interval [ts, d] under
the arrival pattern when:

(1) one of τi ’s absolute deadlines is coincident with d; and

(2) τi ’s arrival always keep the maximum rate.

Proof: Suppose ji,κ is one of task τi ’s jobs, and ji,κ ’s deadline
is coincident with d . On the timeline, there are two cases to
consider:

1) If we move ‘right’ all τi ’s jobs to let them arrive later and
at their minimum inter-arrival time, then ji,κ ’s absolute
deadline will be greater than d; hence, the deadline-d load

of [ts, d] will be decreased by Ci . Although the unfinished
execution time of τi ’s last job before ts may be increased
by C�

i , obviously C�
i ≤ Ci .

2) If we move ‘left’ all τi ’s jobs to let them arrive earlier, this
could decrease the unfinished execution time of τi ’s last job
before ts , therefore, the deadline-d load in [ts, d] could only
be decreased.

The discussions above support our conclusion.
The value of Loadtot− jk[tedge∗

start , d] takes the maximum when
all tasks in the system satisfy Lemma 3’s pattern. Therefore,
for any given task τi , when its deadline is coincident with d , let
jobi

prev be the last job of τi arriving at or before tedge∗
start , and let

t i
arri be the arrival time of jobi

prev, as shown in Figure 6. If t i
arri

is also coincident with tedge∗
start (i.e. the relative deadline of τi is

an integral multiple of d − tedge∗
start), then t i

arri = tedge∗
start .

Let L prev (τi) be the distance between t i
arri and tedge∗

start , we
have

L prev (τi) =
⌈

d − tedge∗
start

Ti

⌉
Ti −

(
d − tedge∗

start

)
, (3)

when L prev �= 0, since jobi
prev completes its execution before

its deadline at t i
arri+Di , the unfinished execution time of jobi

prev

at time tedge∗
start is at most

min
(
Di − L prev (τi) ,Ci

)
,

and this value must be positive, therefore, when L prev �= 0, the
maximum deadline-d load contributed by jobi

prev of τi is

Prev (τi) = max
(
min

(
Di − L prev (τi) ,Ci

)
, 0
)
.

It is obvious that when L prev = 0, Prev (τi) = 0, therefore, we
have

Prev (τi) =
{

max
(
min

(
Di − L prev (τi) ,Ci

)
, 0
)
, when Lprev (τi) �= 0

0, when L prev (τi) = 0
(4)

where L prev (τi) is given by equation (3).

176 computer systems science & engineering

F. ZHANG

timeline

arrival of
jobprev

i t edge
start

* arrival of job jk

Dk

d

Lprev ()iτ

backward interference
Pbusy-d of studied job jk

Di
t i
arri

Figure 6 Computations to the maximum value of Loadtot− jk [tedge∗
start , d].

As there are at most m − 1 different tasks’ jobs in Category
(B), only the maximum m − 1 tasks need to be considered. Let
xi ∈ {1, 2, . . . , n} and

Prev (τx1) ≤ Prev (τx2) ≤ . . . ≤ Prev (τxn) . (5)

Denote Ext f [tedge∗
start , d] to be the maximum value of the load

produced by the carry-in jobs of Category (B) in[tedge∗
start , d], then

Ext f [tedge∗
start , d] is calculated by

Ext f [tedge∗
start , d] =

m−1∑
i=1

Prev (τxi) (6)

where Prev (τxi) is defined by equation (4) and inequality (5).
The amount of the deadline-d load produced by the jobs in

Category (A) can be calculated using the traditional processor
demand bound function [10] for uniprocessor systems

Db f [tedge∗
start , d] =

n∑
i=1

max

(
1+

⌊
d − tedge∗

start − Di

Ti

⌋
, 0

)
Ci .

(7)
Therefore, the total deadline-d task load of [tedge∗

start , d] is
bounded by

Loadtot[tedge∗
start , d] = Ext f [tedge∗

start , d]+ Db f [tedge∗
start , d],

and let a given job jk’s execution time be subtracted
from Loadtot[tedge∗

start , d], then the maximum value of
Loadtot− jk[tedge∗

start , d] is calculated by

Loadtot− jk[tedge∗
start , d] = Ext f [tedge∗

start , d]+Db f [tedge∗
start , d]−Ck,

where Ext f [tedge∗
start , d] is given by equation (6), and

Db f [tedge∗
start , d] is given by equation (7).

6. CONCLUSION

In this paper, we address a number of problems for schedu-
lability analysis of multiprocessor EDF global scheduling.
The deadline-d all busy period Pbusy−d and the backward
interference Pbusy−d are important concepts firstly presented for
analyzing a particular job’s schedulability, and some general

conditions for schedulability are presented based on these
concepts. We consider an interval starting with a backward
interference Pbusy−d for a job’s schedulability; we formally
prove that the total deadline-d task load in such an interval can
be bounded to m−1 different tasks’ carry-in jobs; we present the
relationship between the maximum value of the total length of
all the Pbusy−ds and the total deadline-d task load in a particular
interval.

We provide approaches for calculating an exact upper bound
of the total deadline-d task load in a time interval starting
with a backward interference Pbusy−d ; this value determines
the maximum executable time of a studied job with a deadline
d in this interval. Therefore, the proposed results are
important theoretical foundations that can be used to build
exact schedulability analyses for multiprocessor EDF global
scheduling platforms.

7. ACKNOWLEDGEMENTS

This work is supported by the Fundamental Research Funds for
the Central Universities under the grant XDJK2019B025.

REFERENCES

1. R.I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems”, ACM Computing Surveys. 43(4):
Article 35, 2011.

2. T.P. Baker and S.K. Sanjoy, “Schedulabiliy Analysis of Multipro-
cessor Sporadic Task Systems”, in In Handbook of Real-Time and
Embedded Systems. 2007, Chapman & Hall/CRC.

3. T.P. Baker, “Multiprocessor EDF and Deadline Monotonic Schedu-
lability Analysis”, Proceedings 24th IEEE Real-Time Systems
Symposium, pp. 120–129, 2003.

4. T.P. Baker, “An Analysis of EDF Scheduling on a Multiprocessor”,
Real-time Systems. 32(1–2): 49–71, 2006.

5. S.K. Baruah, “Techniques for Multiprocessor Global Schedu-
lability Analysis”, Proceedings 28th IEEE Real-Time Systems
Symposium, pp. 119–128, 2007.

6. M. Bertogna, M. Cirinei, and G. Lipari, “Improved Schedulability
Analysis of EDF on Multiprocessor Platforms”, Proceedings of the
17th Euromicro Conference on Real-Time Systems, pp. 209–218,
2005.

vol 34 no 4 July 2019 177

AN UPPER BOUND OF TASK LOADS IN A DEADLINE-D ALL BUSY PERIOD FOR MULTIPROCESSOR GLOBAL EDF REAL-TIME SYSTEMS

7. M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability Analysis
of Global Scheduling Algorithms on Multiprocessor Platforms”,
IEEE Transactions on Parallel and Distributed Systems. 20(4):
553–566, 2008.

8. N. Guan, M. Stigge, W. Yi, and G. Yu, “New Reponse Time Bounds
for Fixed Priority Multiprocessor Scheduling”, Proceedings 30th
IEEE Real-Time Systems Symposium, pp. 387–397, 2009.

9. F. Zhang and A. Burns, “A Worst-Case Pattern of Task Load
Allocation and Execution for Multiprocessor Global Real-Time
Scheduling”, International Journal of Simulation – Systems,
Science & Technology, Vol. 17, Issue 17, Pages 9.1–9.4,
2016.

10. S.K. Baruah, A.K. Mok, and L.E. Rosier, “Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor”,
Proceedings 11th IEEE Real-Time System Symposium, pp. 182–
190, 1990.

Fengxiang Zhang received his Ph.D. degree in Computer
Science from the University of York (UK) in 2009. He is
currently an associate professor atthe College of Computer and
Information Science, Southwest University, China. His main
research interests are in the areas of scheduling analysis of real-
time and embedded systems.

178 computer systems science & engineering

