
Comput Syst Sci & Eng (2019) 5: 283–296
© 2019 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Investigating The Effect of Software
Packaging on Modular Structure
Stability

Shouki A. Ebad1∗, Moataz Ahmed2†

1 Computer Science Department, Faculty of Science, Northern Border University, Saudi Arabia
2Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Saudi Arabia

In object-oriented development, packages form the basic modular structural components of large-scale software systems. Packaging processes aim to group
classes together to provide well-identified functions/services to the rest of the system. In this context, it is widely believed that packaging quality has an
influence on the software stability so that it should be useful predictors for modular structural stability. In this paper, we investigate the effect of packaging
configurations on the modular structure stability of object-oriented systems. Using genetic algorithms, we conducted a series of experiments to find the
relation between the packaging quality and modular structure stability. We conducted experiments on open source systems using an automatic packaging
approach recently proposed by the authors. Results show that the stability of releases automatically packaged using that approach was better or at least
comparable to those of the corresponding original releases manually packaged by the software developers. Moreover, the different parameters settings of
the genetic algorithms used in our experiments play an important role to improve the overall quality. The experimental results suggest that the considered
packaging approach is useful for practitioners to develop architecturally stable software systems.

Keywords: Software Engineering, Search-Based Software Engineering (SBSE); Object-Oriented Design & Analysis (OODA); Software Modularization; Software
Architecture; Software Stability

1. INTRODUCTION

Software packaging (interchangeably referred to as modular-
ization [1][2], clustering [3][4][5][6], and decomposition [7]
is the process of grouping object-oriented (OO) classes into
packages so that each package, desirably, offers a single service
that is entirely offered by that package [8]. Because this
process targets the software structure and architecture without
affecting its internal behavior, packaging is mainly meant to
achieve quality objectives such as high maintainability and
high reusability [1][3]. Packaging is often employed during
the architectural design stage of the software development life
cycle [8]. The organization and modularization of code into
components such as classes and files represent architectural

∗Email: shouki.abbad@nbu.edu.sa
†moataz@kfupm.edu.sa

views of a software system [9]. In such a context, packages form
the basic architectural components of large-scale OO software
systems [8][10].

Software continues to change during its lifetime due to
evolution in the requirements and/or changes in the environment.
System structure stability measures the extent to which software
is flexible to endure requirement and environment changes while
preserving the architecture [11]. Well-designed OO software
systems should be able to evolve without major changes in their
architecture [12]. This is highly desirable because implementing
architectural changes is very expensive such changes are likely
to have high-amplified changes through the design [13][14][15].
Consequently, the corresponding maintenance cost and effort is
higher. Undesirable instability can exist at the different levels of
software design ranging from architecture level to detailed class
level [10][16]. A number of measures for stability at architecture
level have been defined [10][14][17][18][19][20][21][22].

vol 34 no 5 September 2019 283

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

In order to optimize the software modular structure for
maintainability, for instance, architects should target building
highly stable software. To this end, we herein study the effect
of packaging on software modular structure stability. Software
packaging is often treated as a search-based software engineering
(SBSE) optimization problem where a relevant software metric is
used as the fitness function to guide the search using appropriate
algorithms, popularly heuristic. In this paper, we use Genetic
Algorithms (GA) to automatically re-package two real-world
open-source Java frameworks: JHotDraw and AWT. We show
that re-packaging the frameworks can improve stability over
different releases, compared to the original manual packaging.
A recent survey has shown that most relevant research in the
literature have been focusing on using internal quality attributes
(e.g., cohesion and coupling) to guide such a packaging process
[23]. To the best of our knowledge, few studies [24] investigated
the effect of packaging on the modular structure stability as an
external quality attribute.

The rest of the paper is organized as follows. In Section 2
we give a background on the functionality-based packaging
approach and the architectural stability metric which are used in
the assessment conducted in this research. We also give a brief
background on GA in the same section. Section 3.2 describes
our process to extract the artifacts required for the assessment.
In Section 3 we investigate the relation between packaging and
modular structure stability using two real-world case studies of
open-source Java frameworks: JHotDraw and AWT. Section 5
discusses some threats to the study’s validity. Section 6 reviews
the literature of packaging approaches and measures of stability
at architecture level. We finally present the conclusions and
future work in Section 7.

2. BACKGROUND

In this section we provide the necessary background about the
packaging approach [8] and the architecture stability metric [10]
which we use in assessing the impact of the functionality-based
packaging on the software architecture stability. We conclude
the section with a brief background on GA.

2.1 Functionality-Based Packaging Approach

According to Jacobson [25], the functionality (i.e., the services)
that users require of the OO system is documented in use cases
(UCs). Each UC is realized by at least one sequence diagram
(SD) that depicts how the objects interact and work together
to provide services. Unlike other packaging approaches which
are applicable at source code level, Ebad and Ahmed [8] have
recently presented a functionality-based approach that can be
applied during the architecture design phase to group classes
into packages using SDs. The rationale behind this was that
packaging should decompose the system into packages where
each package performs a single task that is, as much as possible,
entirely carried out in that package. To this end, they designed
a packaging metric to consider two aspects: (1) each UC
should be covered by the least number of packages, and (2)
classes in each package should be related in the sense that the

intersection of the sets of UCs they contribute to is as large
as possible. The first aspect (degree of UC coverage) reflects
loose coupling; while the second (degree of class relevancy)
reflects high cohesion. Consequently, to reflect both aspects,
Ebad and Ahmed consider the weighted sum of two measures:
UC coverage and class relevancy. Conceptually, and in a
nutshell, UC coverage by package Pi considers, for each UC,
the percentage of UC interactions and percentage of UC methods
available in Pi compared to all interactions and methods needed
to offer that UC. For example, let’s assume that offering a use
case UCj requires five interactions and four methods; if only
25% of interactions and 50% of methods are available in Pi,
then the coverage of UCj by Pi, is the weighted sum of the
two components; it is reported as 0.38 (with weight 0.5 for
each component). Similarly, the degree of class relevancy of
Pi considers, for each pair of classes in Pi, the percentage of the
UCs that involves the pair together compared to the number of
UCs that involve any or both classes of the pair (this measure
is named functionality). It also considers, for each class in Pi,
the percentage of methods interacting with other methods in Pi
(this measure is named utilization). For example, consider two
classes, C1 and C2, exist in Pi; with two and three methods for
each, respectively. Let’s assume that C1 and C2 are required
together in 7 UCs. If 10 UCs require either C1 or C2, or the
two together; and only one method in C1 interacts with two
methods in C2, then the functionality is 0.7 and utilization is
0.5 (for C1) and 0.67 (for C2); the class utilization is obtained
by taking the average of utilization for each class i.e., 0.59.
The degree of class relevancy of Pi is then the weighted sum
of the two components; it is reported as 0.64 (with weight
0.5 for each component). Actually, each of these measures
considers a number of components in its calculation. For
example, the distinction between direct interactions vs. indirect
interactions between classes is considered in the calculations of
class relevancy. The corresponding components are designed in
a way that credits loose coupling and high cohesion,respectively.

Actually, the objective of using “weights” in our context is
not for traditional multi-objective optimization. The weights in
our case are semantically relevant as you have seen in the above
example, the considered approach uses weighted sum to establish
the “semantically strength” of some of the metric components
than the others. For example, featuring “strong” intra-package
dependencies (i.e., highly cohesive) leads to higher weights of
some components in the metric (i.e., class relevancy) than other
components. Similarly, a direct interaction reflects a “stronger”
relation than an indirect one. Therefore, the weight of direct
interaction should have a higher value than that of indirect one.
Setting weights to 0.5 means the considered components have
equal participation or strength. Using weighted sum is already
used in some of the exiting works such as [26]. The aggregate of
these two measures is used to calculate the quality of a package
Pi , PackagingQlty(Pi)

PackagingQlty(Pi) = wU × degree of UC Coverage by Pi

+ wC × degree of Class Relevancy of Pi
(1)

where wU is the weight of the UC’s coverage in a package and
wC is the weight of the class relevancy in a package, so that
wU , wC∈ [0, 1] and wU + wC = 1. These weights have been

284 computer systems science & engineering

S. A. EBAD AND M. AHMED

optimized through trial and error to allow maximum positive
correlation with stability [27]. The overall packaging metric
is defined as the average PackagingQlty of all packages in the
system. Formally, it is calculated as:

OverallPackaging(system) = Avg (PackagingQlty(P j))

∀ package P j in the system (2)

The packaging effort should try to maximize the proposed
metric. The OverallPackaging metric would be used as the
fitness function to guide the search using appropriate algorithms.
The metric being used in the research has different weight
structures at different levels. The weights themselves are being
optimized; however, this is beyond the scope of this paper. We
cite the relevant references for interested readers.

2.2 Modular Structure Stability Metric

The stability metric also proposed by Ebad and Ahmed [10]
focused on inter-package message passing connections. In this
context, inter-package connection (IPC) is a connection where
the caller and callee belong to different packages. The metric
considers the number of changed and unchanged IPCs between
release i + 1 and release i . For example, consider two releases
r1 and r2 with two packages P1 and P2, Let A be the set of added
IPCs in r2, D be the set of deleted IPCs in r1, and O be the set
of IPCs that exist in r1. Let |D ∪ A| be the cardinality of the
union of the sets D and A. Let |O ∪ D ∪ A| be the cardinality of
the union of the three sets: O, D, and A. The former represents
the number of changed IPCs while the latter represents the total
number of IPCs. As D is included in O, then |O ∪ D ∪ A| could
be simplified as |O ∪ A|. The change ratio (ChRatio) between
r1 and r2 is then calculated as in Eq. (3):

ChRatio = |D ∪ A|
|O ∪ A| (3)

where |O| > 0, |D| ≥ 0, |A| ≥ 0, D ⊆ O, O ∩ A = Ø.
Thus, the architectural stability metric ASM is then calculated

as in Eq. (4):
ASM = 1 − ChRatio (4)

Both Eq. (3) and Eq. (4) could be simplified as in Eq. (5):

ASM = |0| − |D|
|0| + |A| (5)

The ASM value ranges from 0 to 1 where ASM value of 0
indicates the highest possible amount of changes between r1
and r2 (i.e., unstable architecture) and ASM value of 1 indicates
the lowest possible amount of changes between r1 and r2 (i.e.,
stable architecture).

2.3 Heuristic Algorithms

Heuristic algorithms have been successfully applied to solving
a software packaging optimization problem in the presence of
many extrema along with many parameters and in the presence
of conflicting constraints [23]. Examples of such algorithms

are hill-climbing (HC), simulated annealing (SA), tabu search,
and genetic algorithms (GA). In our experiments, we use GA
as it has been one of the most popular among others in solving
complex problems in general and SBSE problems in specific;
especially in case of packaging medium and big-size systems
[23][28].

GA is inspired by the survival-of-the-fittest phenomena in
biological evolution. It searches for optimal solutions by
sampling the search space at random and creating a set of
candidate solutions called a ‘population’. These candidates
(called individuals) are combined and mutated to evolve
into a new generation of solutions that is sought be fitter.
Combination is done through crossover, which is fundamental
to GA and provides a mechanism for mixing individuals within
the population. Mutation is instrumental in introducing new
individuals, thereby preventing the search from stagnating. The
next population of individuals is chosen from the parent and
offspring generations in accordance with a survival strategy
that normally favors fit individuals but nevertheless does not
preclude the survival of the less fit. Interested readers are
advised [29] to consult or details on the fundamentals of
GA.

3. RESEARCH/EXPERIMENT DESIGN

3.1 Objective and Motivation

We can apply the goal-question-metric (GQM) template [30] to
express the goal of our study as follows:

“The purpose of this study is to investigate the impact of soft-
ware packaging on modular structure stability through real-
world systems from the point of view of software architects in
the context of architectural design phase. Accordingly, we use
JHotDraw and AWT as a representative of state-of-the-art for
real-world systems”.

Often, the original packaging was done manually. Practi-
tioners typically try to structure their systems into components
where each component is internally cohesive and loosely coupled
to other components. We assume that this was the case in the
systems we considered in our experiments. Our experiments are
meant to investigate the effect of different software packaging
on modular structure stability of the system. We use heuristic
optimization GA to show that different structures may be able
to achieve better stability.

We conducted experiments on two case studies: JHotDraw
and AWT. We used consecutive releases of the software in each
case study. Good software structuring is expected to result in
small structure changes from one release to another. Intuitively,
assessing the stability across non-consecutive releases might be
a bit misleading as the software might have significantly evolved
overtime where original structure might not be viable anymore.
Accordingly, we assessed the stability across consecutive
releases as it is desirable that moving from one release to another
should not have significant structural changes. While, it would
not matter much whether we consider older releases vs. new
releases, we experimented with older releases in our case studies
as they might be less mature and may experience more changes
than later releases.

vol 34 no 5 September 2019 285

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

Figure 1 DFD to describe the reverse engineering process.

3.2 Data Collection

Clearly, packaging becomes much more important and more
difficult as the size of the software increases. In trying
to apply the Ebad and Ahmed’s approach to real-world
systems, we faced the “data scarcity” problem common to
many software engineering research. We were not able to
find requirement/design level artifacts such as UCs and SDs
were available for public access. Accordingly, we considered
the source code of an open-source project, JHotDraw and
reverse engineered it to obtain the required SDs along with
the corresponding list of classes. We applied the considered
packaging approach and analyzed the observations according
to ASM values. We used AltovaUModel1 (Enterprise Edition
version 2012 sp1); it is an OO unified modelling language (UML)
software modeling tool which includes reverse engineering
utilities. Although AltovaUModel can generate SDs from source
code, the generated SDs are based on methods behavior at run
time. The source code of real software systems has many
statements representing the run time context such as control and
loop statements . After generating the SDs, all runtime variables
and messages shown in UML-SDs are eliminated via a filtering
process. This makes the generated “runtime” SDs mimic the
“functional” SDs that describe the “functional” behavior of UCs
through objects and messages starting from the pre-condition to
the post-condition. Details of the overall process are not included
here; interested readers should consult [8][10]. Moreover, we
used the Ebad and Ahmed’s tool (XMI2UC) to extract UCs from
the XMI documents generated by AltovaUModel. A detailed
discussion on XMI2UC can be found in their work [31]. The
above reverse engineering process could be modeled through
data flow diagram (DFD) shown in Figure 1 (borrowed from
[8][10])

1http://www.altova.com/umodel.html

4. REAL-WORLD CASE STUDIES

4.1 JHotDraw

JHotDraw2 is an open source Java GUI framework meant for
developing custom-made drawing editor applications. Because
a wide amount of historical data of JHotDraw is available in its
CVS repository, several researchers used JHotDraw as a case
study in their research [7][8][31].

4.1.1 JHotDraw-Experiment Material

In our experiments we considered only these four packages [7]:
contrib, figures, standard and util as they make up most of the
application’s core. Table 1 shows a brief description of each
package.

Table 2 shows the statistics produced by the reverse engi-
neering process described in Figure 1 for the three releases
of JHotDraw project 5.1, 5.2, and 5.3. It also shows the
OverallPackaging and ASM values. Interested readers can
consult [31] for looking at a sample of UCs generated by
XMI2UC tool.

4.1.2 JHotDraw-Experiment Settings

We used a Grouping Genetic Algorithm (GGA), which is
particularly well suited for grouping problems [29]. We
conducted the experiment using the Evolver software tool,
version 6.0 2012. Evolver3 is a GA solver offered as a plug-
in for Microsoft Excel. As it is the practice when using GA, we
used trial and error to set the GA parameters such as population
size, crossover rate, and mutation rate. Table 3 shows the
settings for the GA parameters. It is worth noting here that

2www.jhotdraw.org
3www.palisade.com/evolver

286 computer systems science & engineering

S. A. EBAD AND M. AHMED

Table 1 A brief description of each package in JHotDraw.

Package name Description

Contrib Classes that where contributed by others.
Figures A kit of figures together with their associated support classes (tools,handles).
Standard The standard package provides standard implementations of the classes

defined in the framework package.
Util This package provides generally useful utilities that can be used independent

of JHotDraw.

Table 2 Raw data of three JHotDraw releases.

r 5.1 r 5.2 r5.3

No. of packages 4 4 4
No. of classes after filtering 62 68 82
No. of UCs generated by XMI2UC tool 130 131 165
OverallPackaging (original) 0.25 0.27 0.34
ASM (original) N/A 0.76 0.55

Figure 2 OverallPackaging and ASM values for JHotDraw releases where the initial population is the ‘from scratch’ configuration.

in Evolver, a “trial” means a call to the function evaluator
i.e., OverallPackaging metric. During an optimization, Evolver
generates several trial solutions and uses GA to continually
improve outcomes of each trial.

4.1.3 JHotDraw-Experiment Results

Three experiments were conducted. The first experiment was
performed using ’from scratch’ initial population. Figure 2
shows the corresponding results. It particularly compares
the original packaging of the JHotDraw releases (i.e., the
system structure before using the considered packaging) against
the suggested packaging using our packaging approach; the
comparison was in terms of OverallPackaging and ASM
values. The figure shows that GGA-Evolver suggested a better
packaging than the original one in terms of the OverallPackaging
value that was higher than that of the original packaging with
the releases (0.58 vs. 0.27 and 0.57 vs. 0.34 in r5.2 and r5.3,
respectively). However, the stability values (i.e., ASM) were not
much better; they were slightly less than those of the original

packaging (0.75 vs. 0.78 and 0.45 vs. 0.56 in r5.2 and r5.3,
respectively).

Intuitively, we expect to obtain better stability if original JHot-
Draw packaging was used in the initial population. Accordingly,
we conducted another experiment using the same parameter
settings of the first experiment shown in Table 3 except that we
GGA did not start ’from scratch’; rather, the original packaging
was seeded in the initial population (i.e., using the existing
configuration). Figure 3 describes this process for the three
releases.

The result here did not significantly differ from the result of
first experiment. The stability (ASM) value of the suggested
packaging by GGA-Evolver was slightly less than that of the
original JHotDraw packaging especially with r5.3 release (i.e.,
0.51 vs. 0.56). However, as depicted in Figure 4, the stability
of the suggested packaging and the original one were the same
(i.e., 0.78) with case of r5.2 release.

The third experiment showed improvement in both Overall-
Packaging and stability. In this experiment, we changed the
weights of the main two components of the OverallPackaging,

vol 34 no 5 September 2019 287

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

Table 3 Parameter settings for the GGA-Evolver experiment using JHotDraw.

Parameter Setting

Crossover 0.5
Mutation 0.06
Population Size 100
Number of Trials/Generations 2000 with progress i.e., it stops when no improvement within the

last 250 trials. These values are chosen because of the limitation
in run time.

Weights Weights of the OverallPackaging’s components are all set to 0.5
Initial Population Two options: (1) The initial configuration used is based on

placing each class in one package; this is referred to as ’ from
scratch’ packaging, and (2) An existing JHotDraw configuration
was used as the highly fit initial population

Machine features PC with Intel®Core™i3-530 Processor,2.93 GHz, 4.00 GB
RAM (3.43 usable). Windows 7 Enterprise.

GGA-Evolver packaging r
5.1

GGA-Evolver packaging r
5.2

GGA-Evolver packaging r
5.3

initial r5.1 is the existing
packaging

r5.1 packaging suggested
by GGA-Evolver

r5.2 packaging suggested
by GGA-Evolver

r5.3 packaging suggested
by GGA-Evolver

Figure 3 Initial packaging used in JHotDraw packaging.

UC coverage (wU) and class relevancy (wC). The rationale
of such change came from the functionality perspective of
OverallPackaging in which packaging classes in a small
number of packages means that the UC coverage aspect has a
greater contribution to the fitness function than class relevancy.
Therefore, we carried out the third experiment using the original
configuration of JHotDraw as the initial population and with
weights 0.55 for UC coverage and 0.45 for class relevancy; that
is, wU = 0.55 and wC = 0.45. The option of using the existing
JHotDraw configuration as initial population is good starting
population in packaging the system, the strategy for finding
highly fit individuals may vary depending on the availability
of existing packaging: If a suitable packaging is given (e.g. by
the package structure of a Java system as in JHotDraw case), we
use it as the highly fit initial population. Actually, if appropriate
initial packaging is not available, GGA-Evolver will just require
more time to be able to propose the same quality packaging.

With the above settings, the GGA-Evolver achieved better
results than the previous two experiments; in terms of both
OverallPackaging and ASM values. Table 4 shows the results
of five different runs with these settings. In these runs, the
best suggested packaging for release 5.2 (at Run 3 where ASM
is 0.808) is used as initial population for release 5.3. After
repeating that run three times, the OverallPackaging value was

not changed i.e., the suggested packaging on release 5.3 is best
possible one.

Table 5 summarizes the best, worst, and average values
extracted from the five runs shown in Table 4.

The best result achieved by of GGA-Evolver is summarized
in Figure 5 that states that the OverallPackaging values are 0.56
and 0.54 forr5.2 and r5.3 respectively compared to the original
values 0.26 and 0.27 forr5.2 and r5.3 respectively. The stability
is 0.81 and 0.52 forr5.2 and r5.3 respectively.

The above experiments indicate that the more the system
is functionally packaged (i.e., the OverallPackaging value
increases), the more stable its modular structure is (i.e., the
ASM value also increases). This result was achieved using these
parameters: (1) using the original configuration of JHotDraw
as the initial population, and (2) weights of the two main
components of OverallPackaging, UC coverage (wU) and class
relevancy (wC), are set to 0.55 and 0.45, respectively.

4.2 AWT

The Java AWT (Abstract Windowing Toolkit) Library is a
collection of classes for creating lightweight user interfaces and
for painting graphics and images. It is part of the standard Java
platform.

288 computer systems science & engineering

S. A. EBAD AND M. AHMED

Figure 4 OverallPackging and ASM values for JHotDraw releases where the initial population is the existing packaging configuration.

Table 4 GGA-Evolver Results for the three JHotDraw releases.

Run OverallPackaging metric r 5.1 OverallPackaging metric r 5.2 ASM (r5.1,r5.2)

R1 0.785

R 2 0.779

R 3 0.808

4.2.1 AWT-Experiment Material

The java.awt is the main package of the AWT Library.
This package is structured into relatively large packages, we
concentrated on the nine main packages that make up the
library’s core: color, datatransfer, event, font, geom, im, image,

image.renderable, and print4. Table 6 shows a brief description
of each package. For simplicity, we refer to java.awt as
AWT.

4AWT Documentation. available https://docs.oracle.com/javase/8/docs/api/
index.html?java/awt

vol 34 no 5 September 2019 289

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

Table 4 Continued.

R 4 0.776

R 5 0.74
Run OverallPackaging metric r 5.3 ASM (r5.2,r5.3)

R1 0.491
R 2 0.541, As the above plot 0.506
R 3 0.541, As the above plot 0.516
R 4 0.541, As the above plot 0.502
R 5 0.541, As the above plot 0.513

Table 5 Reports the best, the worst, and the average values of OverallPackaging matric for five runs shown in Table 4.

Statistic OverallPackaging
r 5.1

OverallPackaging
r 5.2

ASM
(r5.1, r5.2)

OverallPackaging
r 5.3

ASM
(r5.2, r5.3)

Best 0.552 0.559 0.808 0.541 0.516
Worst 0.532 0.546 0.74 0.541 0.491
Avg. 0.543 0.556 0.778 0.541 0.506

Compared to JHotDraw case study, AWT library is larger
in size. The size does not only depend on the number of
classes but also on the number of UCs generated by XMI2UC
tool which in turn depends on the number of methods in
the whole system. For instance, some classes in AWT have
tens of methods e.g., BufferedImage and ColorModel; such
cases would generate tens of UCs/SDs by Altova. We filter
these UCs/SDs by XMI2UC tool to avoid any overlapping or
duplication (Ebad & Ahmed 2012). Table 7 shows the raw
data of AWT library of JDK 1.4 and 1.5 which are used in
our experiment. It indicates to higher number of UCs in AWT
compared to JHotDraw. Therefore, we reduced the number of
trials/generations in GGA-Evolver experiment to 300 due to the
experiment run time.

4.2.2 AWT-Experiment Settings

It is worth noting here that, due to the large number of classes,
we restricted the maximum number of packages to 20 to avoid
having large number of packages with very few number of
classes each, which is not practically acceptable. Figure 6 shows
the initial population used in the GGA-Evolver experiment for
packaging AWT Library.

4.2.3 AWT-Experiment Results

Contrary to the original AWT packaging having 0.44 and 0.47
OverallPackaging values in release 1.4 and 1.5 respectively (see
Table 8), the suggested packaging generated by GGA-Evolver is

290 computer systems science & engineering

S. A. EBAD AND M. AHMED

Figure 5 The GGA-Evolver best result in terms of OevrallPackaging metric and ASM values. This result was achieved using (1) original configuration as the initial
population, and weights of the UC coverage (wU) and class relevancy (wC) were set to 0.55 and 0.45, respectively.

Table 6 A brief description of each package in java.awt

Package name Description

Color provides classes for color spaces
Datatransfer provides interfaces and classes for transferring data between and within

applications
Event provides interfaces and classes for dealing with different types of events fired

by AWT components
Font provides classes and interface relating to fonts.
Geom provides the Java 2D classes for defining and performing operations on

objects related to two-dimensional geometry
Im provides classes and interfaces for the input method framework
Image provides classes for creating and modifying images
image.renderable provides classes and interfaces for producing rendering-independent images
Print provides classes and interfaces for a general printing API.

Table 7 Raw data of AWT Library.

r 1.4 r 1.5

No. of packages 9 9
No. of classes after filtering 81 82
No. of UCs generated by XMI2UC tool 196 271
OverallPackaging (original) 0.44 0.47
ASM (original) N/A 0.31

Table 8 Summarizes the settings of GGA-Evolver experiment.

Parameter Setting

Crossover 0.5
Mutation 0.06
Population Size 100
No. of Trials 300
Initial Population Using the existing packaging
Constraint Maximum number of generated packages is 20
Machine Features PC with Intel®Core™i3-530 Processor,2.93 GHz, 4.00 GB RAM (3.43

usable). Windows 7 Enterprise

vol 34 no 5 September 2019 291

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

Figure 6 Initial packaging used in AWT packaging.

Figure 7 OverallPackaging metric for AWT releases

Figure 8 Trials course in AWT packaging.

better; it has 0.52 and 0.50 values for both releases respectively.
This result is shown in Figure 7.

Figure 8 illustrates the trials’ course during the GGA-Evolver
execution for packaging AWT 1.4 and 1.5.

Figure 9 illustrates the stability values. Despite the stability
of AWT releases automatically packaged using the considered
approach was not better than that of the corresponding original
releases, it was at least comparable (0.28 versus 0.31). We think
there are several “better” configurations to improve the stability
value. More investigation is then needed to find the optimal
values for all considered parameters: those related to the GA
and those related to the weights.

4.3 A General Summary

As you have seen, we applied Ebad and Ahmed’s packaging
approach to two open-source projects (JHotDraw with three
releases and AWT with two releases). The measurements
achieved from our structures are, if not better, close to the
measurements archived from the original structure. It is worth
noting here that this observation is two-fold: 1) shows that
automatic packaging can get results that are as good as or even
better than experts’; and 2) confirms that different structuring in
effect affects the system stability. The former is interesting to
the software industry as it would save time and money during

292 computer systems science & engineering

S. A. EBAD AND M. AHMED

Figure 9 ASM value of the original and GGA-Evolver packaging for AWT.

the architecture design effort. The latter is also interesting
since it offers an approach to improve future stability of the
system.

5. THREATS TO VALIDITY

As with any empirical study, there are some threats to the validity
of the results of this study. Here is a list of what we consider
internal and external threats to our study:

• Internal validity: the most important concern is the use
of different tools for data collection. This threat is
not expected to be of serious concern because we used
readily available commercial tools such as Evolver and
Altova. Although the other tool, XMI2UC, is developed
for experimentation purposes only, several previous studies
relied on it and we reported sufficient information about
it. Another factor that may lead to internal threat is the
selection of parameter setting of the heuristic technique
used in the packaging approach. We intend to carry out
more experiments to obtain appropriate values for such
settings especially weights of the different components of
OveralPackaging.

• External validity: the systems tested in this study were
open-source ones. A threat here is that we used Altova and
XMI2UC tools to reverse engineer the considered open-
source systems; which may not be good representative of
actual requirements artifacts.

6. RELATED WORK

In this section, we briefly discuss the existing approaches on
software packaging; we also discuss metrics to measure stability.

6.1 Packaging Approaches

Mancoridis et al. [5] developed a tool called Bunch [6] that uses
HC and GA to aid its clustering algorithms. They defined the
modularization quality (MQ) of a system as an objective function
to express the trade-off between intra- and inter-connectivity
attributes at the module level. Doval et al. [26] applied a GA
in the Bunch tool to find the optimal grouping using MQ as

the fitness function. Mitchell & Mancoridis [33] integrated
a new version of MQ into Bunch; the new version supports
weights. Liu et al [34] used GGA to present a method for
decomposing a large number of objects into mutually exclusive
groups. The min-cut algorithm was used in the clustering
approach presented by Chiricota et al. [4]. The resultant
software structure was evaluated by applying the original
MQ metric proposed by [5]. Bauer and Trifu [3] proposed
an approach that combines clustering with pattern-matching
techniques to produce meaningful decomposition. Using GGA,
Seng et al. [7] proposed a decomposition approach with a
multi-modal fitness function that included cohesion, coupling,
complexity, cycles, and bottlenecks. In their approach, Abdeen
et al. [1] defined the fitness function using several measures
inspired by the principle stating that “packages are desired to
be loosely coupled and cohesive to a certain extent”. Compared
with previous approaches, this modularization approach allows
maintainers to define certain constraints. Alkhalid et al. [35]
packaged classes from the source code using two approaches:
(1) fixed number of packages, and (2) variable number of
packages. They evaluated their approaches using the similarity
measure of Lung et al. [36]. Corazza et al. [37] worked
on six parts of the source code: class, attribute, method
and parameter names, comments, and source code statements.
They grouped source files according to the lexical information
using a hierarchical clustering algorithm. Beck & Diehl [24]
found that none of the investigated forms of coupling (e.g.,
structural dependencies, evolutionary coupling, and conceptual
similarity) reflects the modular structure of the studied systems.
Risi et al. [38] automated the architecture recovery process
of systems. They used (1) latent semantic indexing (LSI)
to get similarities among software entities, (2) the k-means
clustering algorithm to form groups of entities, and (3) fold-
in and fold-out mechanisms to improve computational time.
Bavota et al. [39] focused on a specific restructuring: given
a package with poor cohesion, decompose it into smaller and
meaningful packages that have higher cohesion. To measure
package cohesion, they used information-flow-based coupling
(ICP) [40] and conceptual coupling between classes (CCBC)
[41]. The measures capture structural and semantic relationships
between classes, respectively. They then used an aggregated
measure to determine classes that should belong together in
a package. Ebad and Ahmed [8] proposed a new packaging
approach that was based on UCs which in turn are realized by
sequence diagrams (SDs). This approach came to reflect the
functionality packaging classes of the conceptual class model

vol 34 no 5 September 2019 293

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

developed during the requirements engineering phase. Besides
theoretical validation, the approach was validated empirically
using different heuristic algorithms. Paixao et al. [28] discusses
developers’ perception on coupling and cohesion based on
different software systems. The results reveal that developers
agreed with the fitness functions measured to calculate coupling
and cohesion.

6.2 Measures of Stability at Architecture Level

Martin [42] hinges the stability of a system on the dependency
between the different packages in the system. However, it was
not clear how the metric assesses the impact of evolution on
the software architecture. Bansiya [19] proposed an approach
to evaluate the architectural stability of frameworks by means
of a suite of OO design metrics. These metrics are computed
from the class model of successive releases of frameworks;
corresponding measurements are compared to determine the
extent-of-change in the structural characteristics of the different
releases. Alshayeb [16] used Bansiya’s approach [19] to assess
the effect of software refactoring on architecture stability. He
recommended the designers interested to optimize their design
for architecture stability to avoid using refactoring methods
that affect the class hierarchy. Instead, the designers can
use those methods that affect field/method levels. Jazayeri
[14] has applied retrospective analysis to twenty releases of a
large telecommunication software system. The analysis uses
simple metrics such as software size metrics (e.g. module
size, number of modules changed, and the number of modules
added in the different releases); coupling metrics; and color
visualization to outline the evolution pattern of a software
system across releases. Bahsoon and Emmerich [11] used a
predictive approach for measuring architectural stability. They
present an architectural review approach, called ArchOptions,
with stability as the primary review objective. Tonu et al. [43]
have identified complexity, cohesion, and coupling as the factors
that contribute to the architectural stability. They presented
a metric-based approach to assess architecture stability. Both
retrospective and predictive analyses are applied in the approach.
By using the metric-based approach, they identified where the
architecture of the systems used in the experiment become
stable. Ahmed et al. [20] introduced an approach to measure
architectural stability of an OO system by using similarity
metrics. These metrics compare the base version of a system
with the next versions. Then a regression line is generated
from these similarity values. A higher value represents a
stable architecture. Raemaekers et al. [44] introduced a
way to measure interface and implementation stability of a
library. To that end, they proposed four metrics which provide
different insights in both implementation and interface stability.
Aversano et al. [45] presents an empirical study aimed at
assessing software architecture stability and its evolution along
the software project history. Two metrics were defined based
on a previous work [21]. Ebad and Ahmed [10] proposed
architectural stability metric (ASM) based on the inter-package
connections (IPCs); such connections were represented by
message passing messages conduct at architectural design
phase.

6.3 Gaps in the Prior Work

In conclusion, most of the researchers evaluated the effect of
their packaging approaches on software using internal quality
attributes such as cohesion and coupling [1][7][24][28][34][35].
However, some researchers considered somehow external qual-
ity attributes such as stability but their packaging (refactoring)
was not at architectural design level but at source code level
with different granularity levels [16][24]. The literature survey
revealed there is a lack of studies to assess the effect of packaging
on software stability at architecture level. In this paper, we
assess the impact of the functionality-based packaging on the
software modular structure stability. Key in the packaging
approach proposed by Ebad and Ahmed (2015a), chosen in
our work herein, is that decomposing should be based on
functionality view. Effective functionality based packaging
allows independent offerings and reuse. To the best of
our knowledge, that approach is the first functionality-based
modularization approach that can be used during the architecture
design phase using conceptual models. It is based on the system
UCs and their corresponding SDs, which offer the functional
view of the system.

7. CONCLUSION AND FUTURE WORK

Effective software packaging is meant to group OO classes
into packages so that each package performs a single task that
is entirely carried out in that package. Because this activity
is concerned with the structure without affecting its internal
behavior, packaging aims at improving the software quality
manifested in improving its maintainability, and reducing the
impact of future changes. This is achieved via improving the
software architecture stability. In this paper we assess the impact
of system packaging on the modular structure stability. This
assessment is done through conducting different experiments
on two real-world case studies (JHoDraw or AWT) using
a functionality-based packaging approach and architectural
stability metric proposed recently by Ebad and Ahmed. While
it might be a common knowledge that functionally cohesive
and loosely coupled structures are expected to be stable over
time, we actually use this common knowledge to validate
and confirm that using the OverallPackaging measure/fitness
is meaningful and indeed can lead to functionally modular
structures. Experiments show that using OverallPackaging
can guide the structure design to be more stable. To the
best of our knowledge, the approach presented is the first
one that uses UCs to represent the functionality during the
structure design. We used GA as a heuristic technique to
allow evolving optimal package structures. Experiments show
that GA parameter settings (for example, the initial population
and weights) have a significant impact on the GA solution
quality.

It is worth noting here that each run of each experiment on
JHoDraw or AWT take considerable amount computational time
(around 20 hours). However, we do not consider this to be
an issue since, in practice, the packaging activity spans over
a period of time. Actually, for large systems, it could typically
take designers days and even weeks to structure the system. The
proposed automated approach is expected to be used offline, and

294 computer systems science & engineering

S. A. EBAD AND M. AHMED

not in real-time. Having the program running overnight would
be very practical. In general, all optimization parameters are
not easy to address in this research especially that the number
of parameters in our case is not small. Additionally, we plan to
apply other heuristic techniques (e.g., simulated annealing and
particle swarm optimization) for comparison with the results of
GGA-Evolver reported in this work. The last point to further
research includes working on multi-level packaging. Recall that
the packaging process may continue recursively. An architect
may decide to package OO packages rather than OO classes. In
other words, packaging the packages into a higher level (second
level); and probably packaging the resultant packages (third
level), and so forth. In such a context, the package is considered
to be a big logical class.

ACKNOWLEDGMENT

The authors wish to acknowledgeKing Fahd University of
Petroleum and Minerals (KFUPM) for providing the facilities
to carry out this research.

REFERENCES

1. Abdeen H, Ducasse S, Sahraouiy H, Alloui I. (2009) Automatic
package coupling and cycle minimization. In: Proceedings of the
16th Working Conference on Reverse Engineering (WCRE). Lille,
France, pp.103–122.

2. Abdeen H, Ducasse, S, Sahraouiy, H, Alloui, I. (2011) Modulariza-
tion metrics: assessing package organization in legacy large object-
oriented software. In: Proceeding of the 18th Working Conference
on Reverse Engineering (WCRE), USA, pp.394–398.

3. Bauer, M, Trifu, M. (2004) Architecture-aware adaptive clustering
of OO systems. In: European Conference on Maintenance and
Reengineering (CSMR 04), Karlsruhe, Germany, pp. 3–14.

4. Chiricota, Y, Jourdan, F, Melancon, G. (2003) Software com-
ponents capture using graph clustering. In: the 11th IEEE
International Workshop on Program Comprehension (IWPC),
USA.

5. Mancoridis S, Mitchell B, Rorres C, Chen Y, Gansner R.
(1998) Using automatic clustering to produce high-level system
organizations of source code. In Proceedings of the International
Workshop on Program Comprehension (IWPC). USA, pp. 45–53.

6. Mancoridis S, Mitchell B, Chen Y, Gansner R. (1999) Bunch: a
clustering tool for the recovery and maintenance of software system
structures. In: Proceeding of the IEEE International Conference on
Software Maintenance, USA, pp 50–59.

7. Seng O., Bauer M., Biehl M., Pache G. (2005) Search-based
improvement of subsystem decompositions. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’05),
USA.

8. Ebad S, Ahmed M. (2015) Functionality-based software packaging
using sequence diagrams. Software Quality Journal, 23(3), 453–
481.

9. Rozanski N. and Woods, E. (2012) Software systems architecture:
working with stakeholders using viewpoints and perspectives, 2nd

edition, Addison Wesley.
10. Ebad S, Ahmed M. (2015) Measuring stability of object oriented

software architectures, IET Software, 9(3), 76–82.
11. Bahsoon R, Emmerich W. (2004) Evaluating the stability of

software architectures with real options theory. In Proceedings of
the 20th IEEE International Conference on Software Maintenance,
Chicago Illinois, USA, pp. 11–17.

12. Grosser D, Sahraoui HA, Valtchev P. (2003) An analogy-based
approach for predicting design stability of java classes. In:
Proceedings of the 9th International Software Metrics Symposium,
Sydney, Australia, pp. 252–262.

13. Alshayeb M, Li W. (2004) An empirical study of system design
instability metric and design evolution in an agile software process.
Journal of Systems and Software, 74(3), 269–274.

14. Jazayeri M. (2002) On architectural stability and evolution. In:
Proceedings of the 7th Ada-Europe International Conference on
Reliable Software Technologies, Vienna, Austria, pp 13–23.

15. Le D.M., Behnamghader P., Garcia J., Link, D., Shahbazian, A.,
and Medvidovic, N. (2015) An empirical study of architectural
change in open-source software systems. In Proceedings of
the IEEE/ACM 12th Working Conference on Mining Software
Repositories, 235–245.

16. Alshayeb M. (2011) The impact of refactoring on class and archi-
tecture stability. Journal of Research and Practice in Information
Technology, 43(4), 269–284.

17. Mattsson M, Bosch J. (2000) Stability assessment of evolving
industrial object-oriented frameworks. Journal of Software Main-
tenance: Research and Practice, 12(2): 79–102.

18. Mattsson M, Bosch J. (1999) Characterizing stability in evolving
frameworks. In: Proceedings of Technology of Object-Oriented
Languages and Systems, Nancy, France, pp.118–130.

19. Bansiya J. (2000) Evaluating framework architecture struc-
tural stability. ACM Computing Surveys (CSUR), 32(1), doi:
10.1145/351936.351954.

20. Ahmed M, Rufai R, Alghamdi J, Khan S. (2003) Measuring
architectural stability in object oriented software. In: Proceedings
of 1st Workshop on Stable Analysis Patterns: A True Problem
Understanding with UML, San Francisco, CA, pp. 21–28.

21. Olague H, Etzkorn L, Li W, Cox G. (2006) Assessing design
instability in iterative (agile) object-oriented projects. Journal of
Software Maintenance and Evolution: Research and Practice,
18(4): 237–266.

22. Hassan YS. (2007) Measuring Software Architectural Stability Us-
ing Retrospective Analysis. Master Thesis, King Fahd University
of Petroleum & Minerals, Saudi Arabia.

23. Ebad S, Ahmed M.(2011) Software packaging approaches – a
comparison framework. In: Proceedings of the 5thEuropean
Conference on Software Architecture (ECSA 2011), Essen,
Germany, pp. 438–446.

24. Beck F, Diehl S. 2011. On the congruence of modularity and code
coupling. In: Proceedings of the 19thACM SIGSOFT Symposium
and the 13thEuropean Conference on Foundations of Software
Engineering(ESEC/FSE’11). 354–364.

25. Jacobson I. (1992) Object-oriented software engineering: a use
case driven approach. Addison-Wesley.

26. Doval D, Mancoridis S, Mitchell B. (1999) Automatic clustering
of software systems using a genetic algorithm. In: Software
Technology and Engineering Practice (STEP ’99). Pittsburgh, PA,
pp. 73–81.

27. Ebad, S. (2012). Functionality-based software packaging ap-
proach for higher architecture stability. Ph.D. Dissertation.
Department of Computer Science and Engineering, King Fahd
University of Petroleum and Minerals (KFUPM), Saudi Arabia.

28. Paixao, M., Harman, M., Zhang, Y., Yu, Y. (2018). An Empirical
study of cohesion and coupling: balancing optimisation and
disruption. IEEE Transactions on Evolutionary Computation,
22(3): 394–414.

29. Falkenauer E. (1998) Genetic Algorithms and Grouping Problems.
Wiley, New York.

30. Basili, V.R. and Weiss, D.M. (1984) A method for collecting
valid software engineering data, IEEE Transactions on Software
Engineering, 10(6): 728–38.

vol 34 no 5 September 2019 295

PRACTICAL APPLICATION OF FRACTIONAL ORDER CONTROLLERS TO A DELAY THERMAL SYSTEM

31. Ebad S, Ahmed M. (2012) XMI2UC: an automatic tool to extract
use cases from object-oriented source code. In Proceeding of
the International Conference on Advancements in Information
Technology (ICAIT 2012), Hong Kong.

32. Lu, G, Bahsoon, R., Yao, X. (2010) Applying elementary
landscape analysis to search-based software engineering. In:
Proceedings of the 2nd International Symposium on Search Based
Software Engineering (SSBSE ’10), Benevento, Italy, pp. 3–8.

33. Mitchell B, Mancoridis S. (2002) Using heuristic search techniques
to extract design abstractions from source code. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference
(GECCO’02), USA.

34. Liu X, Swift S, Tucker A. (2001) Using evolutionary algorithms
to tackle large scale grouping problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’01),
USA.

35. Alkhalid A, Alshayeb M, Mahmoud S. (2011) Software refactoring
at the package level using clustering techniques. IET Software,
5(3), 274–286.

36. Lung C-H, Xu X, Zaman M, Srinivasan A. (2006) Program
restructuring using clustering techniques. The Journal of Systems
and Software, 79 (9), 1261–1279.

37. Corazza A, Martino SD, Maggio V, Scanniello G. (2011) Investi-
gating the use of lexical information for software system clustering.
In: the 15th European Conference on Software Maintenance and
Reengineering, Mar 1–4, Oldenburg, Germany.

38. Risi M, Scanniello G, Tortora1 G. (2012) Using fold-in and fold-out
in the architecture recovery of software systems. Formal Aspects
of Computing (24), pp. 307–330.

39. Bavota G, Lucia AD, Marcus A, Oliveto R. (2013) Using structural
and semantic measures to improve software modularization.
Empirical Software Engineering, 18(5), pp. 901–932.

40. Lee Y, Liang B, Wu S, Wang, F. (1995) Measuring the coupling
and cohesion of an object-oriented program based on information
flow. In: International conference on software quality, Maribor,
Slovenia, pp.81–90.

41. Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T. (2009) Using
information retrieval based coupling measures for impact analysis.
Empirical Software Engineering, 14(1):5–32.

42. Martin, R. (1997) Stability, C + + report, pp. 54–60.
43. Tonu S, Ashkan A, Tahvildari L. (2006) Evaluating architectural

stability using a metric-based approach. In: Proceedings of the
Conference on Software Maintenance and Reengineering, Bari,
Italy, pp. 261–270.

44. Raemaekers S, Deursen A, Visser J. (2012) Measuring software
library stability through historical version analysis. In: The IEEE
28th International Conference on Software Maintenance, Trento,
Italy, pp. 378–387.

45. Aversano L, Molfetta M, Tortorella M. (2013) Evaluating archi-
tecture stability of software projects. In: Procedings of the 20th

Working Conference on Reverse Engineering, Koblenz, Germany,
pp.417–424.

296 computer systems science & engineering

