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1. INTRODUCTION

A formal and systematic way to model spatial knowledge is
a very important step to design formalisms and systems in
contexts where visual representations are a key element, like in
modern human-computer interaction. Commonly, for a formal
discussion visual representations are conceived as a collection
of graphical objects and a set of spatial relations arranging
them in a two dimensional space. In this context, much
research has been done in particular towards the formalisation
of the spatial relations since spatial composition rules are
fundamental in representing spatial knowledge and in designing
visual systems. Indeed, a formal description of their structural
characteristics is crucial to provide a systematic base and avoid
ad-hoc implementations.

The literature presents a wide variety of spatial relation
formalisms (see Section 2 for a survey of the classic approaches),
most of which use a qualitative approach to represent spatial
information. In this field, we have proposed a framework that
includes common qualitative spatial relations such as topological
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(e.g., overlapping, adjacency, containment) and direction (e.g.,
left, up) relations, with the addition of new relations to model
interconnections. This reflects the two basic modalities that can
be used to compose graphical objects: by spatially arranging
or by connecting them. In [1] we describe recent advances
of this formalism whose main feature is that it is not domain-
specific, but general and flexible enough to be used in a
variety of contexts where the visual aspects, especially the
spatial ones, are relevant. As an example, so far it has been
profitably applied to the Information Extraction [2, 3, 4].
In those works we have developed a technique called VIE
(Visual Information Extraction) which enables users to perform
information extraction from visual documents driven by the
visual appearance and the spatial arrangement of the information.
Over the years, this technique has been used with success in
several domains such as html documents, biomedical imaging,
geospatial data and PDF files.

To open our formalism to other significant application fields,
in this paper we extend it with the notion of time in order to
apply spatial relations to moving graphical objects. As a case
study, we show how to use these relations to support gesture-
based interaction, which is a novelty in the classic spatial relation
literature.

vol 34 no 6 November 2019 325



USING SPATIAL RELATIONS FOR QUALITATIVE SPECIFICATION OF GESTURES

Figure 1 The “16 gesture types” of $1.

Gestures are 2D trajectories drawn by users with their fingers
on a touch screen or with a pen, and are increasingly relevant
to support designing user interfaces for mobile, tablet, large
display, and tabletop computers. Along with the naturalness of
gestures comes inherent ambiguity, making gesture specification
and recognition a topic of great interest. However, in the current
practice (see, e.g., [5, 6, 7, 8, 9, 10] for interesting applications
in some specific fields), gesture encoding and recognition is
commonly achieved through ad-hoc methods, sometimes even
platform- or device-specific, but always relying on quantitative,
geometric approaches, e.g., using numerical algorithms to match
shapes or sets of points, which add further complexity to this
task.

In this paper we focus on the gesture specification task and
illustrate how to specify gestures by using a subset of our
time-extended spatial relations (taken from [1]). Exploiting
spatial relations makes our technique a novelty in the gesture
specification field and provides two main advantages,as opposed
to the above-cited ad-hoc approaches:

• the underlying theoretical spatial relation framework gives
to the gesture specification a systematic and formal
foundation;

• the gesture encoding style is very similar to the regular
expression notation, making it easy to understand and
manipulate.

To test our approach, in the paper we refer to the “16 gesture
types” of $1 presented in [11] (see Figure 1),containing common
gestures useful for making selections, executing commands, or
entering symbols.

The paper is organised as follows. Related work is summa-
rized in Section 2. In Section 3 we provide the theoretical features
underlying our approach,recalling the notion of graphical object,
describing the fragment of spatial relations we use for gesture
specification and introducing the notion of time in order to apply
spatial relations to moving objects. Then, in Section 4 we show
how to use this augmented formalism for gesture specification
and, as an example, we illustrate the encoding of all the “16
gesture types”of $1 in our formalism. Conclusions are outlined
in Section 5, with a focus on the main further research.

2. RELATED WORK

Commonly, qualitative spatial relations are classified in two main
classes, i.e., topological and direction, both describing where an
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object is placed relative to another one. Topological relations
describe qualitative spatial relations that are invariant under
topological transformations such as translation, rotation and
scaling. Examples of topological relations include adjacency,
overlapping and containment. On the other hand, a direction
relation still describes where an object is placed relative to
another one, but without considering situations where the two
objects overlap.

In the last decades, much research has been done in this field.
In the following we briefly describe some of the main spatial
relation formalisms presented in the literature.

Topological Spatial Relation Formalisms. N-intersection and
RCC are the most widely recognised approaches to topological
relations since most of the other approaches in the literature are
based on these two formalisms.

In the N-intersection theory, an object is seen as a point set
embedded in a specified space. In this framework, a region x
is associated with three related point sets: the region interior
x◦, its boundary ∂x and its exterior x−. Then, a relationship
between any two regions x and y can be characterised by
a matrix defining the intersections between each pair of the
sets x◦, ∂x, x− and y◦, ∂y, y−. By considering only the
first two sets (i.e., interior and boundary) we obtain the 4-
intersection matrix [12]. Considering also the exterior leads
to the well-known 9-intersection model, which can be used to
define the relationships between all combinations of lines, points
and regions [13]. Even if many other formalisms derived from
the N-intersection theory have been presented (see, e.g., [14] or
[15]), the 9-intersection model is the most used to reason on the
topological relationships between spatial objects.

The Region Connection Calculus (RCC, see, e.g., [16]),
unlike the 9-intersection approach, takes regions rather than
points as a fundamental notion. Relations are defined in the
RCC formalism starting from the base connected relationship
C(x, y), which holds if and only if the regions x and y
share a common point. A very large number of relations can
be derived from C(x, y). In particular, the eight relations
disconnected DC(x, y), equal E Q(x, y), partially overlap-
ping P O(x, y)„ externally connected EC(x, y)„ tangential
proper part T P P(x, y) (with its inverse T P Pi(x, y)) and
non-tangential proper part NT P P(x, y) (with its inverse
NT P Pi(x, y)) are closed under weak composition and form
a Jointly Exhaustive and Pairwise Disjoint (JEPD) set of
relations known as the RCC8 formalism, (which has been more
exhaustively investigated in, e.g., [17]), where two regions stand
to each other in exactly one of these relations. However, by
adding new primitive relations and/or further combining the
derived ones, more complex sets of spatial relations can be
derived from RCC, as in [18].

Direction Spatial Relation Formalisms. Depending on the
dimension of the objects involved, direction calculi can be
divided into point-based, where objects are simplified into
points, or extended-object based, where object have a specific
shape.

Two well-known examples of point-based direction calculi
are the Oriented Point Relation Algebra (OPRA, see, e.g., [19,
20]), where the notion of point is extended to oriented point
(defined as a (point, direction) pair), i.e., an abstraction of object
with an intrinsic direction, and the Ternary Point Configuration

Calculus (TPCC, see, e.g., [21]), which uses ternary relations,
in contrast with the more common binary ones. In particular,
OPRA can be seen as an extension of another binary point-
based calculi, the Cone-Shaped Calculus [22], whose relations
are based on the eight disjoint sectors (north, south, east, west,
northwest, northeast, southwest, southeast) of the space divided
by lines going through the reference point. In addition, OPRA
has an adjustable granularity, i.e, it allows an arbitrary number
of oriented lines through the reference and target points, which
define finer relations. On the other hand, TPCC derives its
direction information from the double-cross calculus [23] and
introduces the notion of distance. The resulting calculus has 27
relations obtained as combinations of the space partitions front,
back, left, right, straight, distant and close. The TPCC relations
are invariant when all points are mapped by rotations, scalings
or translations.

Extended-object based calculi are more complex, since
extended objects have a shape. Thus, to simplify the process,
minimal bounding rectangles are often used as an approximation
of the actual objects.

The Cardinal Direction Calculus [24] is the most well-known
binary direction relation calculus. An arbitrary basic CDC
relation is a binary relation involving a target object and a
reference object, and a non-empty subset of the nine atomic
relations N, NW, N E, W, O, E, S, SW, SE , corresponding
to the possible intersections of sub regions of the target object
with the 3× 3 direction matrix [25] of the reference object. The
CDC has been also the subject of many extensions and theoretical
works. As an example, [26] merges the rectangle algebra
into the CDC, producing a tractable subset of 36 rectangular
relations. However, it is worth noting that the CDC cannot
handle direction information between overlapping and contained
regions properly.

Another well-known binary direction relation calculus is the
Rectangle Algebra (RA) [27], an extension of the Interval
Algebra [28]. Objects in this formalism are restricted to be
rational rectangles, i.e, rectangles whose sides are parallel to
the axes of some orthogonal basis in a 2-dimensional Euclidean
space. Relations between these objects are the 13 × 13
pairs of atomic relations which can hold between two rational
intervals, and can be used to express directional relations but
also topological relations such as disjoint and overlap. Spatial
information is represented by spatial constraint networks,
i.e., constraint satisfaction problems where variables represent
rational rectangles and constraints are relations. This model,
though restrictive, is sufficient for applications in domains like
architecture or GIS.

Finally, the Objects Interaction Matrix (OIM, see, e.g.,
[29]) aims to overcome a limitation of other direction calculi,
including advanced ones as the CDC, which may give erroneous
or counterintuitive results when applied to objects with a
complex shape like, e.g., the regions of a geographic map.
OIM consists of a two-phase model. The former is a tiling
phase, where a tiling strategy determines the zones belonging
to the nine cardinal directions around each individual object
and intersects them, creating a bounded grid called interaction
grid. The objects interaction matrix is then used to store the
information about which object intersects each grid cell. Then,
in the interpretation phase, a well-known interpretation method
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(e.g., the nine directions defined by the 9-interaction model)
is used on the matrix and determines the detail of cardinal
directions between the objects. However, as proved in [30], when
representing the cardinal direction of two regions by a consistent
pair of direction-relation matrices (DRMs), then the OIM is
actually not so different from the DRM, and thus essentially
the same as CDC.

Further references to topological and direction spatial relation
formalisms can be found in the extended survey presented in [31].

The spatial relation literature also contains some works about
qualitative spatio-temporal relations, which introduce the notion
of time in order to model the temporal evolution over time
of spatial aspects. Among the others, e.g., [32] analyses
the domains of interval temporal relations proposing a set of
algorithms to derive relations between intervals. In particular,
such algorithms are extended for objects in an arbitrary n-
dimensional space, so that presentation layouts in 2D space e can
be addressed, [33] introduces a two-dimensional logic capable
of describing topological relationships that change over time
and containing also various temporal extensions of the spatial
logic RCC8, whereas [34] presents a spatio-temporal querying
and retrieval system to interactively build subsequent spatio-
temporal queries using features of gaming controllers. On the
other hand, trends on qualitative spatio-temporal reasoning can
be found in, e.g., [35, 36, 37].

However, to the best of our knowledge, none of the spatio-
temporal relation approaches has been applied to the specifi-
cation of gestures which in the current practice is commonly
achieved using quantitative, geometric approaches. Among
these, in the following we briefly focus on the formalisms that
mainly inspired our approach to the gesture specification.

$1 [11] is a simple gesture recognizer based on gesture
templates which are suitably compared to the user gesture using
a path distance algorithm. In particular, the gesture is first
resampled, rotated, scaled and moved to match it as much
as possible with each template, and then the path distance is
obtained as the average distance between the gesture points and
the corresponding template points. The template associated with
the lower path-distance is chosen as the recognized gesture.

Protractor [38] is an evolution of $1 with simplified scaling
and rotation techniques. Indeed, Protractor adds a pre-
processing step which resamples the gesture into a fixed number
of equidistant points and translates them in order to position
the gesture centroid on (0,0). In this way, it removes noise
such as different drawing speed, different on-screen positions
and gesture orientation, etc. and transforms the gesture into a
uniform vector representation.

$P [39] is a further development of the “$ family”. Indeed,
other $-recognizers consider the order, direction, and number
of points in the sampled gesture, which however require much
more memory and time to be processed and make the gesture
recognition dependant on the input direction. To overcome
these limitations, $P considers the gesture as a point cloud (i.e.,
without order information).

Finally, PolyRec [40] is a scale- and rotation-invariant gesture
recognizer exploiting a peculiar sampling policy. Indeed, it does
not sample the gesture points with a fixed distance, but extracts
only a small number of “dominant points”, i.e., the points where
the gesture shows a big variation in its curvature, and uses these
points as the vertices of a polyline which encodes the main

movements of the gesture. When comparing two gestures, the
two corresponding polylines are adjusted, possibly adding new
vertices, in order to have the same number of segments, and the
corresponding segments are compared in pairs in order to obtain
the overall distance between the two gestures.

3. THEORETICAL BACKGROUND

In this Section we present the main theoretical concepts used in
our gesture specification approach.

3.1 Graphical Objects

In the following we recall the notion of graphical object as
defined in [1].

A graphical object is formally defined as pair O = (C, A),
where C denotes the set of all the points p ∈ R

2 forming the
external contour of O (which is disjoint from its internal area),
and A is the set of the object attributes. Each attribute is a pair
(a, v), where a is a property name and v its value.

We consider only graphical objects which do not contain holes
and have a contour that can be modelled as a closed curve without
self loops (simple curve).

Conventionally, we shall write p ∈ C to indicate a generic
point of C and px, py , to indicate the x and y-coordinate,
respectively, of p.

3.2 Disjoint Spatial Relations

In this Section we first recall the class of disjoint spatial relations
taken from the overall formalism presented [1]. This class
contains four distinct spatial relations, namely, UP, DOWN,
LEFT and RIGHT, that are sufficient to model any disjoint spatial
arrangement between two graphical objects.

In order to define them, we need to introduce the notation
yU M(C) to represent the highest y coordinate of the points in
the contour C, yDM(C) to represent the lowest y coordinate of
the points in the contour C, xL M(C) to represent the lowest
x coordinate of the points in the contour C and xRM(C) to
represent the highest x coordinate of the points in the contour
C . In particular, yU M(C) is the y coordinate of each point in
U M(C) = {p ∈ C|∀p′ ∈ C, p′y ≤ py} (in other words,
U M(C) denotes the set of upmost points of the contour C).
The three other points can be similarly defined. Note that, in our
formalism, we refer to the canonical orientation of the Cartesian
axes (i.e., the x coordinate increases rightwards, and the y one
increases upwards).

Then, given two graphical objects O = (C, A) and O ′ =
(C ′, A′), the four disjoint spatial relations are defined as
in Figure 2. Intuitively, the UP relation models a spatial
arrangement between O and O ′ whenever the graphical object
O ′ is completely (both internal points and external contour)
below the graphical object O.

It is also possible both to define weak versions of each
spatial relation and to compose spatial relations among them.
For example, the WEAK-UP disjoint spatial relation can be
formalised as follows by appropriately relaxing the involved
constraints:
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Figure 2 Definition of disjoint spatial relations.

( 1, 2)
 

( ) >= ( ) ( ) >= ( ) 1

( ) <= ( ) + 2
 

( 1, 2)  
( ) <= ( ) ( ) <= ( ) + 1

( ) >= ( ) + 2
 

( 1, 2)  
( ) <= ( ) ( ) >= ( ) + 1

( ) <= ( ) + 2
 

( 1, 2)  
( ) >= ( ) ( ) <= ( ) + 1

( ) >= ( ) + 2
 

O  STRAIGHT O'

O  STRAIGHT O'

O  STRAIGHT O'

O  STRAIGHT O'

Figure 3 Definition of straight disjoint spatial relations.

O W E AK −U P O ′ ⇔ yU M(C ′) ≤ yU M(C)

In other words, in this specific case it is not required for O ′ to
be completely below O (as in the case of UP) but also partially,
i.e., the uppermost point of O ′ must be below the uppermost
point of O. The other three weak relations (i.e, WEAK-DOWN,
WEAK-LEFT and WEAK-RIGHT) can be similarly defined.

On the other hand, we may use common logical connectives
to compose spatial relations in order to obtain derived relations
like, e.g., U P∧RI G H T , which models the spatial arrangement
where an object is both above and on the right with respect to
another one.

To effectively apply our formalism to the specification of
gestures, we also add four new spatial relations to the disjoint
class, namely the straight disjoint spatial relations STRAIGHT–
UP, STRAIGHT–LEFT, STRAIGHT–DOWN, and STRAIGHT–
RIGHT.

These relations describe spatial arrangements where two
objects are “aligned”, within a given threshold, in one of the four
cardinal directions, and can be defined as shown in Figure 3.

Moreover, to improve the notation that will be used for gesture
specification, we introduce the notion of inverse relation, useful

for description purposes and denoted as
←−
R . Actually, for each

spatial relation R, O
←−
R O ′ holds if and only if O ′RO holds.

3.3 Time

In this Section we introduce the basic concepts allowing to extend
our spatial relation formalism with the notion of time.

Timed graphical objects. In a spatio-temporal context, graph-
ical objects become dynamic elements, whose configuration

changes over time. The particular configuration of a graphical
object can be formalised as follows.

Definition 1 [Object instantaneous configuration] Let O
be a graphical object and T = {t0, t1, . . . , tn} be a discretised
timeline. We write Oi , with i ∈ [0 . . . n] to denote the
instantaneous configuration of the object O at the instant ti of
the timeline.

In general, the object instantaneous configuration may include
both its contour and its attributes, i.e., Oi = (Ci , Ai ). However,
as we are interested in specifying gestures, we will restrict our
attention to object movements only. To this aim, instantaneous
configurations of the same object will have the same attributes
(i.e., attributes are immutable over time) and contours cannot
change shape, i.e., when they move all the included points are
translated by the same amount. Formally, if Oi = (Ci , A) then
we have Oi+1 = (Ci+1, A) where Ci+1 = Ci + �v, i.e., every
point in Ci is translated by vector �v.

Spatial relations applied to timed objects. The spatial
relations defined in Section 3.2 can be naturally applied to
the object instantaneous configurations, e.g., if O and O ′ are
graphical objects, R is a spatial relation and ti , t j ∈ T we can
write Oi R O ′ j if and only if the position of object O at the
instant ti is in relation R with the position of the object O ′ at the
instant t j .

In order to inject the notion of time directly in the spatial
relation notation, let us define the AT operator as follows.

Definition 2 [AT spatial relation operator] Let R be a spatial
relation and ti , t j ∈ T . Then, AT (R, i, j) is a spatial relation
such that, for any graphical objects O and O ′,

O AT (R, i, j) O ′ ⇔ Oi R O ′ j
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Figure 4 Graphical object trajectory.

Graphical object trajectory. The central concept of our spatio-
temporal formalism is the notion of trajectory, i.e., the movement
on the plane of a graphical object.

Actually, it is possible to capture the notion of object
movement taking into account the relations holding among
consecutive configurations of the same graphical object. As an
example, we may write O AT (L E FT, 0, 1) O) to indicate that,
at the initial time t0, the object O is on the left of its position
at time t1, in other words it moved to the right. However,
using the LEFT relation to indicate a right-wise movement
may be counterintuitive, whereas the use of the RIGHT relation
would make the previous statement more clear. Then, we may

exploit the inverse RIGHT relation
←−−−−−
RI G H T writing simply

O AT (
←−−−−−
RI G H T , 0, 1) O instead of O AT (L E FT, 0, 1) O.

Formally, the trajectory of a graphical object can be defined
as follows.

Definition 3 [Object trajectory] Let T = {t0, t1, . . . , tn} be
a discretised timeline, O a graphical object and R a set of spatial
relations. A trajectory, denoted by �, of O from instant th ∈ T
to instant tk ∈ T with k > h can be written as

O AT (RE L1, h, h + 1) O∧
� =O AT (RE L2, h + 1, h + 2) O∧

. . . ∧ O AT (RE Lk−h , k − 1, k) O

where each RE Li is a spatial relation from R.
Of course, in the practice, RE Li will always be an inverse

relation to simplify the notation as discussed above. Moreover,
when the graphical object involved in the trajectory is clear from
the context, to encode trajectories in a more compact way we
shall rewrite the expression in the following simpler form

AT (RE L1, h, h + 1) ,

� =AT (RE L2, h + 1, h + 2) ,

. . . , AT (RE Lk−h , k − 1, k)

where the graphical object has been omitted and the symbol ∧
has been replaced by a comma.

Finally, since in trajectories the time always flows linearly,one
instant per relation, if the start time h is clear from the context,
the expression can be further simplified as

� = RE L1, RE L2, . . . , RE Lk−h

by completely omitting the time part.
As an example, the expression � = ←−−−−−RI G H T ,

←−−−−−
RI G H T ,←−−−−−−−−

U P RI G H T (where, intuitively, UPRIGHT represents the

derived relation U P ∧ RI G H T ) models the trajectory depicted
in Figure 4(a), where the graphical object O first moves to the
right for two instants and then right-upwards.

Sub-trajectories. Specific fragments of a trajectory can be
identified by enclosing them in numbered square brackets,

e.g., we can write � = [
←−−−−−
RI G H T ,

←−−−−−
RI G H T ]i ,

←−−−−−−−−
U P RI G H T to

capture the first part of the overall trajectory as the sub-trajectory
�1. As a convention, the index 0 is used to address the whole
trajectory, i.e., �0 = �.

Moreover, the first and last time instants occurring in a sub-
trajectory �i are denoted by bi and ei , respectively. As an
example, in the trajectory � depicted in Figure 4(b) we have
that b1 = 0 and e1 = 2. Note that, by abuse of notation, we
shall also write bi for Obi and ei for Oei , e.g., in the above
example, O1 can be used to indicate O2, too.

Finally, when spatial relations are repeated more times, we
use the “plus” operator + to denote a non empty sequence of
relations. For example, the trajectory � above may be rewritten

as � = [
←−−−−−
RI G H T + ]1,

←−−−−−−−−
U P RI G H T in our formalism. This

notation is feasible when specifying gestures, because in that
context the goal is to encode a continuative movement in a
specific direction (i.e., an unspecified length sequence of the
same spatial relation) as a whole, rather than as a discrete
sequence of steps.

In this way, we end with a trajectory encoding style which
is very similar to well-known formal notations as regular
expressions, making it more easy to understand and manipulate.

4. SPECIFYING GESTURES

In order to specify gestures, we represent the finger moving
on the touch screen as a timed graphical object. Of course,
we assume that such object has a size consistent with the area
activated by the finger pressure on the screen. Moreover, since
gestures are continuous movements, we need a suitable time
discretisation strategy to sample the finger position in order to
encode its movement as a trajectory over a discretised timeline.
In particular, we sample the finger position every n pixels,
obtaining a spatially meaningful sequence of instantaneous
configurations, through the use of variable-length temporal
intervals (i.e., not fixed-length, which would make the encoding
too much influenced by the execution time of the gesture). In
this way, any gesture will be encoded as a specific trajectory of
a timed graphical object (see Figure 5(a) for an intuitive sketch).
In our encoding formalism we will also exploit the notion
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Figure 5 A gesture sampled as a timed graphical object trajectory.

 
(a) LineRight (b) LineDownLe� 

(c) Detail of a possible LineRight valid trajectory 
Figure 6 Examples of basic gestures.

of sub-trajectory first and last time instant (as defined in the
previous Section) by comparing the instantaneous configurations
corresponding to those instants through the use of spatial
relations together with an appropriate function that measures the
distance between two graphical objects O, O ′ and it is formally
defined as follows:

distance
(
O, O ′

) = min p∈C,q∈C ′‖p − q‖
As an example, with reference to the trajectory shown in

Figure 5(b), we may write expressions like b1,
←−−−−−
RI G H T e1 ∧

distance(b1, e1) ≤ 0.2.
In general, such kind of expressions allow us to refine the

basic spatial gesture specification provided by the graphical
object trajectory as explained above, e.g., verifying whether
the beginning and ending points of the trajectory are close, or
comparing the lengths of two sub-trajectories.

4.1 Basic Gestures

In the following we present some examples showing how to
encode basic gestures like “LineRight” or “LineDownLeft”.
These gestures are not included in the “16 gesture types” of
$1, but are useful to support a simple composition of them.

Indeed, gesture compositionality is a key feature characterizing
our approach and allowing gesture specification reuse, as it will
be clear from the examples of Section 4.2.

Cardinal gestures. To begin, let us define in detail one of these
gestures, for example the LineRight gesture which is shown in
Figure 6(a), where the dot represents the starting point of the
gesture trajectory.

LineRight =←−−−−−−−−−−−−−−−−−−−−−−−−ST R AI G H T − RI G H T (30, 30)+

wi th b0
←−−−−−−−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − RI G H T (20, 20) e0

In this case, the trajectory models an “almost straight” right-
wise movement, i.e., allowing a suitable amount of “noise” (30
pixel in the specification), with respect to the ideal straight line,
between each trajectory object instantaneous configuration and
its next one, as sketched in Figure 6(c). Moreover, the trajectory
constraint requires the beginning and the end of the line (i.e.,
the first and the last object instantaneous configuration in the
sub-trajectory 0) to be better horizontally aligned, e.g., with a
smaller tolerance of 20 pixel.

This kind of notation also introduces in our gesture
specification formalism a certain degree of noise tolerance, in
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the sense that the formulas may tolerate unaligned points, within
the ranges defined by both the relations and constraints.

The other basic cardinal gestures LineLeft, LineUp and
LineDown can be defined similarly as follows:

LineLef t =←−−−−−−−−−−−−−−−−−−−−−−ST R AI G H T − L E FT (30, 30)+
wi th b0

←−−−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − L E FT (20, 20) e0

LineU p =←−−−−−−−−−−−−−−−−−−−−ST R AI G H T −U P(30, 30)+
wi th b0

←−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − U P(20, 20) e0

LineDown =←−−−−−−−−−−−−−−−−−−−−−−−ST R AI G H T − DOW N(30, 30)+
wi th b0

←−−−−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − DOW N(20, 20) e0

It is worth noting that these gestures are also useful stand alone
since they correspond to the common “swipe” gestures used in
the graphical interfaces.

Diagonal gestures. Again, let us define in detail one of these
gestures, for example the LineDownLeft gesture, which is shown
in Figure 6(b).

LineDownLe f t =←−−−−−−−−−−−−−−−−−−−−−W E AK − DOW N − L E FT+
wi th b0

←−−−−−−−−−−−−
DOW N − L E FT e0

where the spatial relation W E AK − DOW N − L E FT is
composed by W E AK − DOW N ∧W E AK − L E FT , whileas
DOW N − L E FT is composed by DOW N ∧ L E FT .

This time, the trajectory models an “almost straight” down-
left movement with a greater noise tolerance (motivated by
the larger approximation typical of non-cardinal movements)
obtained exploiting weak relations which prevent movements in
up or left direction.

Moreover, the trajectory constraint ensures a real diagonal
movement by requiring the beginning and the end of the line to

be in the (stronger)
←−−−−−−−−−−−−
DOW N − L E FT relation.

The other diagonal gestures LineUpRight, LineUpLeft and
LineDownRight can be defined similarly as follows:

LineU pRight =←−−−−−−−−−−−−−−−−−−W E AK −U P − RI G H T+
wi th b0

←−−−−−−−−−−
U P − RI G H T e0

LineU pLef t =←−−−−−−−−−−−−−−−−−W E AK −U P − L E FT+
wi th b0

←−−−−−−−−−
U P − L E FT e0

LineDown Right =←−−−−−−−−−−−−−−−−−−−−−−W E AK − DOW N − RI G H T+
wi th b0

←−−−−−−−−−−−−−−
DOW N − RI G H T e0

4.2 $1 16 gestures types mapping

In this Section we show how to encode the “16 gesture types” of
$1 (see Figure 1) within our formalism. In order to do this, we
will exploit the compositionality of our framework through the
basic gestures we have just defined.

triangle. The triangle gesture is defined as follows:

tr iangle = LineDownLe f t, [LineRight]1, LineU pLef t

wi th distance(b0, e0) ≤ 0.2 · distance(b1, e1)

This definition contains the triangle trajectory, decomposed
in three basic sub-gestures, together with an appropriate
constraint. These sub-gestures are expressed in the overall
trajectory notation as “macros” which are used to appropriately
accomplish the gesture compositionality. These macros are
suitably expanded in order to obtain an actual trajectory and
a corresponding set of constraints. In the above triangle gesture,
the resulting fully-expanded specification is the following:

[←−−−−−−−−−−−−−−−−−−−−−
W E AK − DOW N − L E FT + ]

1,
[←−−−−−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − RI G H T (30, 30)+ ]

2,
[←−−−−−−−−−−−−−−−−−
W E AK − U P − L E FT + ]

3

tr iangle = wi th b1
←−−−−−−−−−−−−
DOW N − L E FT e1 ∧

b2
←−−−−−−−−−−−−−−−−−−−−−−−−
ST R AI G H T − RI G H T (20, 20) e2 ∧

b3
←−−−−−−−−−
U P − L E FT e3 ∧

distance(b0, e0) ≤ 0.2 · distance(b2, e2)

Here, the first three constraints derive from expanding
the three basic sub-gestures, whereas the last one (i.e.,
distance(bb0, e0) ≤ 0.2 · distance(b2, e2)) requires the
beginning and end positions of the overall gesture, which should
ideally coincide to form the upper angle of the triangle shape, to
be “close enough”, that is with a distance (i.e., B in Figure 7(a))
which is no more than 20% of the triangle base (i.e., B in that
figure). This makes the gesture tolerance scalable with respect
to the actual size of the drawn triangle.

This example is suitable to show the qualitative nature of
our specification formalism, which is not affected by specific
numerical measures. Indeed, the formalism is itself inherently
scale invariant, unlike the traditional quantitative approaches,
where the scale invariance (when considered) is obtained through
numerical algorithms trying to adapt the gesture sample to its
actual instances.

It is worth noting that this kind of specification typical of our
formalism also makes it rotation invariant, in the sense that the
overall specification is still feasible even when the gesture is
slightly rotated within the limits set by the tolerances included
in the formulas.

rectangle. The rectangle gesture is defined as follows:

rectangle = LineDown,
[
LineRight

]
1, LineU p, LineLef t

wi th distance(b0, e0) ≤ 0.2 · distance(b1, e1)

As in the case of the triangle gesture, here the constraint (i.e.,
distance(b0, e0) ≤ 0.2 · distance(b1, e1)) ensures that the two
edges of the gesture are close enough, i.e. their distance is again
no more than 20% with respect to the rectangle size (estimated
through the length of its base). In particular, to model the specific
kind of rectangle in the $1 table (where the base is the longer
side) it would be enough to add a simple constraint between
the first two sub-gestures of the formula (i.e., LineDown and
LineRight) requiring that the length of the former is about half
of the latter one length.

It is worth noting that, by adding a further simple constraint
imposing that all the sides of the rectangle have about the same
length, the same formula could be used to define a square-like
gesture.
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(a) triangle (b) circle (c) star 

(d) left curly (e) arrow right (f) delete 

Figure 7 Specification details for gestures triangle, circle, star, leftcurly, arrowright and delete.

circle. The circle gesture is defined as follows:

[
LineDownLe f t

]
1,

[
LineDownn Right

]
2[

LineU pRight
]

3, LineU pLef t

circle = wi th distance (b0, e0) ≤ 0.2 · distance (b1, e1)∧
|distance (b1, e2)− distance (e1, e3) |
≤ 0.2 · distance (b1, e2)

We assume that the circle is represented as diamond-like
shape, as it actually happens when the user traces it on the screen.

In the formula, the former constraint (i.e., distance(b0, e0) ≤
0.2 · distance(b1, e1)) requires the gesture trajectory to be
approximatively closed, similarly to the previous cases, whereas
the latter one (i.e., |distance(b1, e2) − distance(e1, e3)| ≤
0.2 ·distance(b1, e2)) requires its width and height to be nearly
identical. To this aim, the last constraint simply checks that the
difference between the gesture “width” and “height” (i.e., A and
B in Figure 7(b)) does not exceed 20% of the gesture “size”,
here approximated by its width.

It is worth noting that, setting a different width/height ratio,
the same formula could be used to define an ellipse-like gesture.

caret and V. The caret and V gestures are defined as follows:

[
LineU pRight

]
1,

[
LineDown Right

]
2

caret = wi th |distance (b1, e1)− distance (b2, e2) |
≤ distance (b1, e1) · 0.2
[
LineDown Right

]
1,

[
LineU pRight

]
2

V = wi th |(distance(b1, e1)− distance(b2, e2)|
≤ distance (b1, e1) · 0.2

In these formulas the constraint (i.e., |distance(b1, e1) −
distance(b2, e2)| ≤ distance(b1, e1) · 0.2) is the same and re-
quires that the two lines composing both the gestures are of nearly
identical length, in the sense that their difference is at most 20%.

These gestures suitably show how, in our formalism, deriving
symmetric gestures (with respect to the horizontal and/or vertical
axis) is very natural, thanks to the inherent symmetry present in
the set of disjoint spatial relations of Section 3.2 (e.g., as in
the case of U P and DOW N that are symmetric with respect
to the x axis). This symmetry was already evident in the basic
gestures where, for example, by swapping the relations WEAK–
UP–RIGHT and UP–RIGHT with WEAK–DOWN–RIGHT and
DOWN–RIGHT, respectively, the basic diagonal gesture Line-
UpRight becomes its x-symmetric LineDownRight. Then, since
the V gesture is essentially a caret mirrored on the x axis, the
formula for the V gesture is simply obtained from the caret one
by appropriately inverting the basic gestures composing it.

star. In the definition of the star gesture we can further take
advantage of the compositionality of our formalism by exploiting
the caret gesture specification as a component of this more
complex gesture:

caret,
[
LineU pLef t

]
1, LineRight,

[
LineDownLe f t

]
2

star = wi th distance (b0, e0) ≤ 0.2 · distance (b1, e1)∧
|distance (b1, e1)− distance (b2, e2) |
≤ dis tan ce (b1, e1) · 0.2

Here, it is worth noting that the initial fragment of the star
(i.e., the one starting from the dot point as depicted in Figure
7(c)) is obtained reusing the caret specification.
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In the formula, the former constraint (i.e., distance(b0, e0) ≤
0.2 · distance(b1, e1)) requires again the gesture trajectory
to be approximatively closed, whereas the latter one (i.e.,
|distance(b1, e1)−distance(b2, e2)| ≤ distance(b1, e1)·0.2)
requires the two gesture diagonal lines not belonging to the caret
(i.e., lines A and B in Figure 7(c)) to have a nearly identical
length. We are confident that these constraints are sufficient
to specify an adequately regular shape, whereas additional
constraints (e.g., length similarity between all the diagonal lines
composing the gesture) would even make the gesture trajectory
hard to trace for the user in the practice.

check. The check gesture is defined as follows:

check =
[
LineDown Right

]
1,

[
LineU pRight

]
2

wi th distance (b1, e1) ≤ 0.6 · distance (b2, e2)

In this simple gesture, we only need to use a constraint (i.e.,
distance(b1, e1) ≤ 0.6 · distance(b2, e2)) to have the right
proportion (0.6 in the formula) between the two sides of the check
mark and make it distinguishable from the V gesture (where the
two sides must have approximatively the same length).

pigtail. The pigtail gesture is defined as follows:

pigtail = LineRight, LineU pRight, LineU pLef t,
LineDownLe f t, LineDown Right, LineRight

In this case, the specification does not include any constraint
in order to provide the user with a wide degree of freedom in
the gesture proportions, according to the usual semantics of this
kind of gesture.

left square. The leftsquare gesture is defined as follows:

le f tsquare =

[
LineLe f t

]
1,

[
LineDown

]
2,

[
LineRight

]
3

wi th |distance (b1, e1)− distance (b3, e3) |
≤ 0.2 · distance (b1, e1)∧
distance (b1, e1) ≤ distance (b2, e2) · 0.6

The formula constraints naturally reflect the fact that in
a square bracket the two horizontal lines must be very
similar in length (|distance(b1, e1) − distance(b3, e3)| ≤
0.2 · distance(b1, e1)), and shorter than the vertical line
(distance(b1, e1) ≤ distance(b2, e2) · 0.6).

left curly. The leftcurly gesture is defined as follows:

le f tcurly =

[
LineDownLe f t

]
1,[

LineDown,
[
LineDownLe f t

]
3,[

LineDown Right
]

4, LineDown
]

2,[
LineDown Right

]
5

wi th |distance (b1, e1)− distance (b5, e5) |
≤ 0.2 · distance (b1, e1)∧
|distance (b3, e3)− distance (b4, e4) |
≤ 0.2 · distance (b3, e3)∧
distance (b1, e1) <= distance (b2, e2) · 0.6

In the formula, the trajectory specification determines a left
curly brace approximation as depicted in Figure 7(d). On the
other hand, the constraints, according to the generic shape of
a curly brace, require that the pairs of diagonal fragments (i.e.,
(A, F) and (C, D) in that figure) must be very similar in length,
and that the upper and lower diagonal fragments (i.e., A and
F) must be shorter than the central part of the gesture(i.e.,
informally, B + C + D + E).

zigzag. The zigzag gesture can be easily defined by composing
two carets with a final diagonal line:

zigzag = caret, caret, LineU pRight

This specification does not require any dependency between
the two carets’ size and between the carets’ size and the length
of the final line, since in real zigzag trajectories such a strong
regularity is not required and even difficult to obtain in the
practice. On the other hand, each single caret maintains a certain
degree of regularity thanks to the constraints included in its own
specification.

arrowright. The arrowright gesture is defined as follows:

arrowright =

LineRight,
[
LineU pLef t

]
1,[

LineDown Right
]

2,
[
LineDownLe f t

]
3

wi th |distance(b1, e1)− distance (b2, e2) |
≤ 0.2 · distance (b1, e1)∧
|distance (b1, e1)− distance (b3, e3) |
≤ 0.2 · distance (b1, e1)

In the formula, the constraints reflect the fact that in an arrow
the head must be barycentric, and this is obtained by requiring
that the three lines composing it (i.e., A, B, C in Figure 7(e))
should have a very similar length.

X . The X gesture is defined as follows:

X =
[
LineDown Right

]
1, LineU p,

[
LineDownLe f t

]
2

wi th |distance (b1, e1)− distance (b2, e2) |
≤ 0.2 · distance (b1, e1)

In order to match the common “X” shape, the specification
only requires that the two diagonal lines must have a very similar
length.

delete. To appropriately model this gesture, we can take
advantage of another qualitative issue of our formalism, that
is the ability to easily derive new gestures as 45-degrees-rotated
variants of other gestures.

To clarify this aspect we can refer to Figure 8 showing how
each basic gesture has a corresponding rotated variant, e.g.,
LineDownRight corresponds exactly to LineRight rotated by 45
degrees clockwise. Of course, this is accomplished at lower level
by appropriately manipulating the corresponding underlying
spatial relations. As a matter of fact, complex gestures, which
are obtained composing the basic ones, can be in turn rotated by
simply rotating their components.

Indeed, in this case, the delete gesture can be obtained from the
X one through two steps, as shown in Figure 7(f). In the former
step, the X is rotated 90 degrees clockwise (i.e., twice 45 degrees
in Figure 8), obtaining the following gesture specification:

[
LineDownLe f t

]
1, LineRight,

[
LineU pLef t

]
2

wi th |distance(b1, e1)− distance(b2, e2)|
≤ 0.2 · distance(b1, e2)

Then, in the latter step, the above gesture is mirrored on the y
axis, producing the final specification for the delete gesture:

delete =
[
LineDown Right

]
1, LineLe f t,

[
LineU pRight

]
2

wi th |distance(b1, e1)− distance(b2, e2)|
≤ 0.2 · distance(b1, e1)

334 computer systems science & engineering



DELLA PENNA AND OREFICE

Figure 8 Basic gesture rotations.

Figure 9 Basic gesture transformations.

As a final consideration, Figure 9 shows the overall admissible
transformations (i.e., symmetries and rotations) applied to our
set of basic gestures. In the table, gesture names are shortened
omitting the initial “Line” term (e.g., Left stands for LineLeft),
moreover M(x) and M(y) represent mirroring on the x and y
axis, respectively, whereas R(α) represents a clockwise rotation
of α degrees. For example, the LineU pLef t gesture, if mirrored
on the x axis (i.e., the M(x) column in the table) becomes
LineDownLe f t , whereas if rotated by 225 degrees clockwise
(i.e., the R(225) column in the table) becomes LineDown.

By applying such transformations, it is possible to easily
derive the other three missing $1 gestures, i.e., rightsquare,
rightcurly and arrowleft, since they are symmetric gestures of
leftsquare, leftcurly and arrowright, respectively.

4.3 Towards Gesture Recognition

We are working on a gesture recognition technique based on our
qualitative formalism in order to obtain a complete framework
for gesture specification and recognition. To this aim, we have
developed a Java support tool that we are currently experimenting
on $1 gestures.

In particular, this tool includes a complete object model
covering the gesture notation of our formalism, so that gesture
specification formulas as the ones presented in the paper can be
easily encoded and manipulated in Java, and a prototype gesture

matching algorithm, which has been built on the underlying
regular expression gesture encoding style.

The tool front-end allows the user to draw a gesture, internally
sampled as a timed graphical object trajectory that can be
later shown on the tool interface and/or recorded for further
elaboration. For instance, Figure 10 and Figure 11 show the tool
interface where the user has drawn an arrowright-like and a star-
like gesture, respectively, in the upper left pane. These gestures
have been encoded as the trajectories shown in the upper right
pane, where the squares represent the sampled positions of the
graphical object. As shown, the tool correctly recognized both
the gestures, whose name is reported in the green box below
the upper right pane together with the recognition confidence,
in both cases 100%. Moreover, the rightmost pane shows a
tree representation of the object model for the gestures currently
loaded in the tool library, where the structure of the recognized
gesture is highlighted in green.

Finally, the bottom part of the interface shows the complete
results of the recognition phase, i.e., the similarity ratio between
the drawn gesture and the other gestures in the library. In
detail, for each gesture (named in the first column), the table
reports the path similarity ratio (i.e., how much of the regular
expression corresponding to the gesture matches the drawn path),
the constraint satisfaction ratio (i.e., how many of the gesture
trajectory constraints are satisfied), the derived total match ratio
and the time requiredfor the overall matching process. As an
example, in the case of the star gesture shown in Figure 11 the
time required is 0.376 milliseconds.
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Figure 10 The interface: recognition of the arrowright gesture.

 

Figure 11 The interface: recognition of the star gesture.

5. CONCLUSIONS AND FURTHER
RESEARCH

In this paper we have extended the spatial relation formalism
presented in [1] with the notion of time in order to represent
spatio-temporal knowledge. As a first application, we exploited
the augmented formalism to support a qualitative specification
of gestures, which is a novelty in the spatial relation literature.

The resulting technique provides gesture specification with
a systematic and formal foundation. In particular, it supports a
very natural gesture encoding style which is similar to the classic
regular expression notation, making it easy to understand and
manipulate. In fact, the qualitative nature of our framework
makes it able to easily address a variety of relevant aspects like
noise tolerance, scale- and rotation-invariance, compositionality
and gesture derivation by rotation or symmetry.

Further research will be oriented both to theoretical and
practical issues. First of all, we intend to refine the framework in

order to apply spatial relations to general “evolving” graphical
objects, i.e., objects which may change over time in different
aspects like position, shape, colour, content, etc., and therefore
not only moving objects as treated in the paper. In this way,
the new time-extended formalism would open to a variety of
challenging applications. Among these, we intend to investigate
how to apply this framework in order to perform Visual
Information Extraction on dynamic visual documents, e.g., web
pages whose content changes over time or biomedical images
acquired in successive phases (starting from preliminary works
in [38, 39]).

On the other hand, in the gesture context, we intend to
exploit our formalism to specify more complex gestures than
the ones in the $1 set (see Section 5.1 for an early sketch on this
aspect) and to refine the prototype tool shown in Section 4.3,
in particular its recognition algorithm, in order to compare our
overall qualitative gesture specification/recognition framework
with others, starting from our inspiring approaches (i.e., [11],
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(a) question       (b) A 

Figure 12 Examples of punctuation and alphabetic gestures.

[40], [41] and [42]), also with respect to aspects like speed and
accuracy of recognition.

5.1 Beyond $1

We are investigating a number of complex gestures to test the
expressive power of our specification method. As an example,
so far we have already completed the specifications of some
gestures within two classes partially addressed by $1, i.e.,
alphabetic letters and punctuation marks. For instance, let us
briefly show the specification of the A and question gestures.

question. The question gesture (see Figure 12(a)) is defined
as follows:

question =
[
LineU pRight, LineDown Right

]
1,[

LineDownLe f t, Down
]

2
wi th distance(b2, e2) ≥ distance(b1, e1) · 1.2

In the formula, the constraint (i.e., distance(b2, e2) ≤
distance(b1, e1) · 1.2) requires the descending part of the
question mark to have a length slightly greater than the width
of its top part.

A. The gesture corresponding to this upper-case letter (see
Figure 12(b)) is defined as follows:

A =

[
LineU pRight,

]
1,

[
LineDown Right

]
2,

[
LineU pLef t

]
3,[

LineLe f t
]

4
wi th |distance(b1, e1)− distance(b2, e2)|
≤ 0.2 · distance(b1, e1)∧
|distance(b2, e2) · 0.5− distance(b3, e3)|
≤ 0.2 · distance(b3, e3)∧
distance(b4, e4) > distance(b1, e2) · 0.5

This time, the constraints require that, respectively

• the two vertical sides of the letter are of nearly identical
length,

• the horizontal line is more or less in the middle of the overall
gesture,

• the horizontal line length is at least half of the letter base,
that is the distance between the beginning of the left side
and the end of the right one.
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