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This study proposes an efficient algorithm for improving flattening result of triangular mesh surface patches having a convex shape. The proposed approach,
based on barycentric mapping technique, incorporates a dynamic virtual boundary, which considerably improves initial mapping result. The dynamic
virtual boundary approach is utilized to reduce the distortions for the triangles near the boundary caused by the nature of convex combination technique.
Mapping results of the proposed algorithm and the base technique are compared by area and shape accuracy metrics measured for several sample surfaces.
The results prove the success of the proposed approach with respect to the base method.
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1. INTRODUCTION

Finding planar counterparts of curved surfaces is a commonly
known problem in the field of production (such as ships, toys,
clothes, shoes and furniture industries). In the conventional
method, during manufacturing, 2D pieces are sheared and
assembled to form the final product. Ideally, strain factor should
be taken into account in these shearing and assembling processes,
because the strain produces an elastic energy that reduces
quality and creates material fatigue in the final product. The
conventional design process used in these industries is based on
the trial-and-error method. The designer sketches 2D pieces on
paper and makes a prototype of the desired product. If the result
is unsatisfactory, the designer changes the patterns based on his
experience and makes another prototype. This prototyping and
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modification steps are repeated, which are ineffective, expensive
and exhausting process [1].

The design of 3D surface patches for the shape of products
and the determination of their 2D blank patterns for production
by surface flattening method cannot give the desired production
quality due to the stresses in the materials today. The surface
flattening technique is independent of strain only for surface
meshes with isometric mapping properties [2]. Current com-
mercial CAD/CAM (Computer Aided Design/Manufacturing)
systems do not have the functions to model any complex, free-
form surfaces, and current approaches to developable surfaces
in the literature are insufficient to model free-form surfaces [1].

A number of approaches [3,4,5] have been proposed regarding
the problem of building curved surfaces from planes (devel-
opment). This problem is trivial when the surface has zero
curvature, but when the surface has a curvature larger than zero,
the problem becomes complicated. There may be many different
planar development approaches for the same surface. A large
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number of complex surface products manufactured today can
be represented using the cloud of points. The choice of which
method to use for the planar development is a sensitive issue,
because there are lots of matters to consider such as production
method, material properties, surface geometry.

Surface texture characterization formulations for conventional
Euclidean surfaces are well-established. For example, Euclidean
surfaces are defined by a single height value for each point in the
plane. Free-form surfaces have a more complicated structure
by nature [6]. This domain is no longer a plane and contains
points with a non-zero curvature value. Therefore, such surfaces
are referred to as non-Euclidean surfaces. According to Gauss’
theorem of differential geometry, that is, the Egregium Theorem,
surfaces with the same curvature can be projected between each
other without any distortion. On the other hand, surfaces with
different curvatures cannot be projected without distortion. For
example, the Earth cannot be displayed on a planar surface
without distortion [7]. Thus, a freeform Euclidean surface
cannot be projected without distortion or without loss of some
surface information. As a result, freeform surfaces can no longer
be represented as height values on a two-dimensional grid. As
another example, when trying to represent a hemisphere on a 2D
grid, it causes distortion in the geodesic distances on the surface.
That is, when projected onto the 2D grid, the geodesic distances
between the different points on the real surface will be distorted
and shrunk [6]. By the way, the geodesic distance between two
points on a given surface is the shortest distance between two
points on that surface.

With 3D scanning technology advancing rapidly, free-form
surfaces quickly come to light and are used in numerous indus-
trial product designs in many different applications. Free-form
surfaces play an important role in today’s graphics applications.
Results of applications related to freeform surfaces, such as
surface tessellation, surface rendering and surface sampling,
are highly dependent on the surface parametrization. In these
applications, it is often desired that the parametrization be shape
preserving and done quickly.

2. RELATED WORK AND MOTIVATION

The process of flattening a complex surface is the phenomenon of
projecting a surface of 3D space onto a planar surface according
to certain rules [8]. A lot of studies have been done so far,
and when examined, the flattening of complex surfaces can be
summarized under three basic flattening approaches: geometric
flattening, mechanic flattening and the hybrid flattening, which
is a combination of the first two [9]. The presented study deals
mainly with geometric flattening techniques.

In the study by Bodduluri and Ravani [10], freeform surfaces
were first divided into simple sub-surfaces and then approached
to developable surfaces. In that work, a new technique has been
proposed for the geometric design of developable surfaces based
on rational Bezier and B-spline curves.

In another study [11], a grid approximation flattening
algorithm was proposed. In that study, an approximate local
coarse projection relationship was established between a given
parametric surface patch and its triangular area by minimizing
the projection error function.

Ping presented a flattening algorithm [12] for complex
surfaces in 1997. In the study, the metal sheet was divided into a
series of strip areas and then approximated to a striped surface.
Each striped surface was then divided into triangular meshes and
each triangular element was mapped onto plane. From the results
obtained, it is seen that the smoothed surface contains overlap
and gaps. In the following year, along with some researchers,
mainly by the same author, a study [13] was conducted to address
the overlaps and gaps arising between stripes.

A deep research was done about interactive parametrization
design in 2002 [14]. The novel family of intrinsic parametriza-
tions of surface meshes was introduced in the study. The study
produced least-distorted parametrizations by proposing a robust
and fast technique. The reported results show that technique
is effective in automatically designing optimal maps with or
without boundary conditions.

In the early 2000s, two theoretical research findings were
released by Floater. In the first one [15], he used Mean Value
Theorem in the calculation of harmonic functions simplifying
and improving methods for parametrization and morphing.
The other study [16] was about using discrete form of Rado-
Kneser-Choquet theorem for harmonic maps. Provided that the
boundary of the triangulation is homeomorphic to a disk, then
such mappings are one-to-one fulfilling a discrete maximum
principle, stated in the study.

In another study, an innovative technique that alleviates the
drawback of convex combination approach was presented [17].
The technique proposed using a virtual boundary serving to get
rid of the high distortions produced by convex combination
approach for the triangles near the boundary. The results
reported in that study shows that the technique produced
a parametrization of 3D triangular mesh surfaces with less
distortion than the original approach.

In the work of Yang et al. [18], an optimization algorithm
using the rational bilinear re-parametrization was proposed to
improve the uniformity and orthogonality of iso-parametric
curves for general rational Bézier surfaces. The reported results
show that their algorithm generates more uniform and orthogonal
iso-parametric curves across the rational Bézier surfaces.

In a study [19], Liu et al. proposed a fast mesh parametrization
algorithm based on subdivision technique. Their method based
on 4-point interpolatory subdivision approximation is indeed
an extension of the chordal parameterization to surface case.
Their algorithm reportedly avoids computation of linear system
of equations, which makes it computationally efficient than
previous methods. The proposed subdivision algorithm which
is easy to implement is of high efficiency, especially in case of
large number of vertices.

A simple and fast low-stretch mesh parametrization method
was proposed in 2004 [20]. The study based on Floater’s
shape preserving parametrization and took its success one step
further. As the parameter domain is a convex-shaped polygon,
the optimization process in their proposed method does not
generate flipped triangles as reported in that study. The efficiency
and speed of the method was tested on several complex surfaces
and compared with other techniques in literature.

In this work, an efficient technique has been developed to
utilize the barycentric mapping theory and a dynamic virtual
boundary technique in order to ensure that the length information
of arbitrary 3D mesh surfaces is preserved as much as possible
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and to find the 2D planar equivalents. The parametrization of
the 3D surface can be described as an operation to produce
a function that will correspond to a 2D planar surface. This
concept plays an important role in geometry processing, since
it allows to open the way to convert 3D modeling problems
into 2D space, and doing it here is relatively easy. Owing to
the advances in range scanning and 3D printing technologies,
effective parametrizations are important for large meshes since
complex 3D surfaces are widely used everywhere. In this
context, an efficient algorithm for improving flattening result
of triangular mesh surface patches homeomorphic to a disk
is presented in this study. The proposed method incorporates
a dynamic virtual boundary to reduce the distortions for the
triangles near the boundary caused by the nature of convex
combination approach. The proposed algorithm produces good
parameterization outputs with relatively low distortions, which
can be presented as input to a further energy releasing process
by an energy-based approach.

The rest of this work is organized as follows: Section 3 gives
the theory and concept of barycentric mapping. The proposed
initial mapping approach is elaborated in Section 4. Metrics for
measuring accuracy of planar developments are given in Section
5. An illustrative example about the proposed approach is given
in Section 6. Experimental results and discussion are presented
in Section 7. Finally, Section 8 concludes the paper.

3. BARYCENTRIC MAPPING THEORY

Barycentric mapping is a very efficient mapping method to
produce parameterization of triangular surfaces [21]. This
approach is based on Tutte’s barycentric mapping theory [22]
and also provides a basis for surface parameterization and
approximation studies [23] of Floater, who is renowned for its
successful works in the fields. This theorem states that for a
triangular surface homeomorphic to a disk, if boundary nodes are
on a convex polygon and internal nodes are a convex combination
of their neighbors, then all (u, v) planar coordinates form a valid
parameterization [21, 23].

A scheme is needed for determining specification of convex
combinations which guarantees a planar shape preserving local
shapes of the 3D surface. Let S(X,F) be a triangulated surface
defined by vertices (X={(xi = (xi , yi , zi ))}, 1 ≤ i ≤ N)

and facets F (a matrix storing indices of triangles generated by
Delaunay Triangulation). Considering the definitions here, the
barycentric mapping method is composed of the following steps.

Step 1: Boundary node coordinates of the polygon on which
the mapping will be done is specified. This polygon may be unit
circle, square or an arbitrary enclosure resembling the original
3D surface. To summarize,

un+1, . . . , uN (1)

are determined to be on the polygon (which is defined in D ⊂
R2) in an anti-clockwise manner.

Step 2: Choose λi, j as real values for j = 1,…N for each
i ∈ {1, . . . , n} satisfying the following conditions [21, 23].

λi, j > 0
−λi,i = −

∑N
j �=i λi, j

λi, j = 0

⎫
⎬

⎭

if i th and j th nodes are
connected by an edge,
λi, j = 0 otherwise

(2)

Step 3: u1,…,un are defined as the solution of the following
linear equations where

ui =
N∑

j=1

λi, j u j, i = 1, . . . , n (3)

Solving these equations yields P=P(F, Ub,∧) where Ub = {
un+1, …, uN } and ∧ = (λi, j )i=1,...,n; j=1,...,N . Here P is an
embedding of S(X,F) in R2 and u1, …, uN represent positions
of nodes connected to each other by straight lines.

Tutte studied how to draw straight lines of planar graph
[24] years ago. He suggested for large scale graphs including
triangulated ones that Eq. 3 be run as λi, j =1/di for neighboring
nodes (i = 1, . . . , n) where di represents number of neighbors
of i th node. Therefore, ui can be regarded as barycenter of
neighbors. He has proven that there exists a unique solution, and
P is a solution consisting of straight lines [23]. In other words,
u1,…,un are distinct guaranteeing that no two edges intersect
except at common end points of triangles [24]. Considering the
general case in Eq. 2, the equations can be rewritten as follows
in order to show that Eq. 3 has a unique solution [20, 22].

ui−
n∑

j=1

λi, j u j =
N∑

j=n+1

λi, j u j , i = 1, . . . , n (4)

The reason for arranging the equation as above is that
boundary nodes are fixed on border line of the polygon and then
internal nodes are obtained by solving Eqs. 2 and 3. When
considering that ui has two separate components u and v, this
equals two matrix equations:

Au = b1, Av = b2 (5)

These two linear system of size n (number of internal nodes)
are solved in order to find two column vectors storing positions
of internal nodes: (u1, . . . , un)T and (v1, . . . , vn)T . Right hand
side of the equations, b1 and b2 store weighted coordinates of
neighboring nodes. A is square matrix of size n × n and its
elements are:

ai,i = 1, ai, j = −λi, j , j �= i (6)

That is to say, the matrix takes the following form.

A =

⎡

⎢
⎢
⎢
⎣

1 −λ1,2 −λ1,n

−λ2,1 1 · · · −λ2,n
...

. . .
...

−λn,1 −λn,2 . . . 1

⎤

⎥
⎥
⎥
⎦

(7)

The existence of unique solution of Eq. 3 is dependent on the
non-singularity of the matrix A. In other words, this is obtained
by computing the inverse of A. There are a few ways to solve
Eq. 3. Sparse iterative and direct methods are the ones which
are most effective for large-scale meshes. On the other hand,
Gauss-Siedel solvers can be used for reasonable small meshes
[21].

4. PROPOSED INITIAL MAPPING
APPROACH

The proposed initial mapping method for computing planar
equivalents of 3D surface patches is based on Floater’s
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Figure 1 Virtual boundary in 3D and 2D space:mesh surface patch and virtual boundary (a), and its equivalent on the plane (b).

barycentric mapping theory, mathematical foundations of which
is given in the previous chapter. The proposed approach
effectively improves outputs of the base method by incorporating
virtual boundary nodes computed dynamically depending upon
the complex surface patch to be flattened. Fig. 1 illustrates
virtual boundary nodes created dynamically in order to improve
flattening result of 3D surface patch and its planar equivalent.

In the convex combination approach, fixing the real boundary
nodes of a surface patch directly on a polygon causes the triangles
near the boundary in 2D parametric space to be highly deformed
and distorted [17] . So, a set of virtual nodes encompassing real
nodes of the 3D surface patch are adaptively created. For the ease
of computability, virtual nodes are placed on the trajectory of a
circle, whose diameter is determined according to total triangular
area of the 3D surface patch to be flattened. Radius of the circle
that hosts dynamic virtual nodes is computed according to the
formula:

rv =

n−1∑

i=0
Ai

π
(8)

where Ai is the area of the i th triangle in the facet model, n
is the triangle number in the facet model. As the boundary
polygon in the barycentric mapping method fixes the boundary
nodes of planar equivalent of the 3D surface patch at the
beginning, these boundary nodes remain constant throughout
the planar development process. Thus, determination of the
bounding polygon is critically important for the output of planar
development to be of high fidelity to its original 3D counter-
part.

Number of virtual boundary nodes to be placed on the
trajectory of the circle affects the extent of similarity to the
shape of original 3D surface patch. Therefore, number of virtual
boundary nodes should be large enough to provide reasonable
resolution on the trajectory. It is determined to be proportional
to total node number of the 3D surface patch. How the
determination of number of virtual boundary nodes affects the
initial flattening result is explored for several resolution values
later in the study. Fig. 2 shows virtual boundary polygons
created for a particular 3D surface patch at various resolutions,
such as the number of boundary nodes nv = 4, 6, 8 and 16
respectively in figures (a) through (d).

Boundary nodes are positioned on the trajectory of virtual
circle of radius rv at equal angle intervals αv determined by the
following equation:

αv = 360◦

nv

(9)

The proposed initial mapping approach with a dynamic virtual
boundary is presented in Algorithm 1. Globally, the proposed
algorithm takes two arguments X and F as input, and produces
the planar equivalent P of S(X,F) as output. The output P
consists of n nodes in the u-v coordinate system, i.e. planar
coordinates.

In the barycentric mapping approach, neighborhood weights
are computed by the simple expression λi, j = 1/di , which
evenly distributes weighting shares inversely proportional to the
number of neighbors. In the proposed study, these weights are
determined by computing reciprocal of the distances between
neighbors and then normalizing the result by a scaling factor.
For this purpose, the expression λi, j = 1/di , used by Tutte for
representation of graphs[19], is replaced by the two expressions
given in steps 10 and 11 of Algorithm 1. The Euclidean distance
between each neighboring vertex in the 3D triangular mesh is
computed by the expression in the step 10. The expression
in the step 11 normalizes the result dividing di j by the total
cost of neighbors of the each central vertex. Thus, it is aimed
to preserve shape of the triangular mesh surface locally in the
parametric space [25], which is substantiated by the test results
in the following sections.

5. ACCURACY MEASUREMENT

Generally, two metrics are used in order to evaluate accuracy
of the planar surface being developed. These metrics are area
and shape accuracies, details of which are explained under the
following subheadings.

5.1 Area Accuracy

During the development process, planar surface area may
change, and the final relative area difference is computed by
the formula [26]:
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Figure 2 Virtual boundary polygons at various resolutions: number of boundary nodes (a) nv = 4; (b) nv = 6; (c) nv = 8; (d) nv = 16.

ES =
∑ ∣

∣A − A′
∣
∣

∑
A

(10)

where A is the real area of the original mesh surface patch
before the development and A′ is the area of the corresponding
surface patch on the planar surface after the development.
A relatively complex relation of the double integral must be
solved in order to calculate the area of a surface defined by
S(u, v) [26]. Since the facet model is adopted in order to
represent a complex surface in the approach, it is not possible
to determine the analytical form of the surface S in this study.
Therefore, the area A can approximately be calculated simply
by adding up area of each triangle in the facet model using the
formula:

A =
n−1∑

i=0

Ai (11)

where Ai is the area of the ith triangle and n is the number of
triangles.

5.2 Shape Accuracy

Shape accuracy represents the total difference rate between the
length of arc on the surface mesh and its corresponding edge
length [26]. The final relative shape accuracy is computed by
the formula:

EC =
∑ |L − L ′|

ΣL
(12)

where L is the real length of an arc on the original mesh
surface patch before the development and L ′ is the length of
the corresponding edge on the plane after the development.
Assuming that the curve segment L is on the curve defined by
the formula C = S (u(t), v(t)) on the surface S, computing
the segment length requires to solve a complex double integral
problem. Similar to the aforementioned problem related to the
adopted model, it is not possible to determine the analytic form
of the curve C . Therefore, the length L can approximately be
calculated by simply adding up lengths of each triangle in the
facet model using the formula:

L =
m−1∑

i=0

Li (13)
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Algorithm 1 Initial Map With Virtual Boundary
Input: A given 3D triangular mesh surface S(X,F) where

X contains 3D points (nodes) and F contains vertex indices of
triangles.

Output: The initial 2D shape P of the
surface S.
1: Compute the radius of the virtual boundary circle rv

according to the Eq. (8).
2: Determine nv , the number of virtual boundary nodes

according to the total number of original surface
3: Compute the step angle of the virtual nodes αv according to

the Eq. (9).
4: Append computed virtual nodes to the original mesh surface

S(X,F) to obtain the augmented surface S*(X,F).
5: Examine the 3D mesh surface S*(X,F) and determine

boundary nodes (n+1,…,N).
6: Sort X(size of which is N x 3)in an order so that the boundary

nodes follow internal nodes.
7: Choose un+1, …,uN to be K -sided convex polygon D ⊂R2

in an anticlockwise sequence, corners of which are placed at
angular intervals αv on the virtual circle.

8: for i from 1 to n do
9: for j from 1 to N do

10: di, j = 1/‖xi,i−xi, j‖
11: Set λi, j = di, j /Σ

N
j=1(di, j ) obeying to the general rules

in Eqs.(2, 6).
12: end for
13: end for
14: Compute inverse of the matrix A (holding λi, j values) using

one of the aforementioned iterative methods.
15: Multiply both b1 and b2in Equation (5) by the inverse matrix

A−1 in order to get final planar coordinates of internal nodes
u1, …,un .

where Li is the length of the ith triangle and m is the number of
triangles.

6. NUMERICAL EXAMPLE

The proposed initial mapping algorithm has been run on a
simple surface patch of 7-vertices (named Surf1) in order for
the intermediate results to be tracked easily. For this purpose,
the simple surface patch given in Fig. 3 is presented to the
algorithm.

The cloud of points, defined by X, corresponding to the
vertices of the mesh surface patch Surf1 and the topology data
F defining its triangular facets are as follows:

X =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.4 1
0.6 0.5 1
0.2 0.2 0
0.1 0.6 0
0.4 0.9 0
0.8 0.7 0
0.7 0.3 0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

6 5 2
6 2 7
1 5 4
1 2 5
4 3 1
3 7 1
1 7 2

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(14)

The number of virtual boundary nodes is arbitrarily chosen to
be nv = 8 for this sample surface patch. Augmented surface

patch S*, which is obtained by incorporating a virtual boundary
polygon is given in Fig. 4.

The augmented surface with virtual boundary vertices, S*
represented by X* and F* is given by

X* =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

rx+ 0.3 ry+ 0.4 1
rx+ 0.6 ry+ 0.5 1
rx+ 0.2 ry+ 0.5 1
rx+ 0.2 ry+ 0.6 0
rx+ 0.4 ry+ 0.9 0
rx+ 0.8 ry+ 0.7 0

0.28 0.28 0
1.05 0.28 0
1.65 1.65 0
0.96 1.93 0
0.28 1.65 0

0 0.96 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, F* =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

15 4 14
5 12 13
13 14 5
5 14 4
11 12 6
6 5 2

12 5 6
7 10 11
11 6 7
7 6 2
9 10 7
15 8 3
3 4 15
3 8 9
9 7 3
1 7 2
1 3 7
4 3 1
2 5 1
1 5 4

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

(15)

Herein, the new vertices given in green color in the matrix
X*, corresponding to the points in 3D space are the vertices
augmented to the original mesh surface patch by using a virtual
boundary polygon. Translation offset values added to positions
of original vertices are calculated to be rx=ry=rv/2=0.48 for this
sample surface patch. When the augmented surface is presented
as the input to Algorithm 1, the matrix ΛΛΛ is computed to be as
the following:

ΛΛΛ =

⎡

⎢
⎢⎢
⎢
⎢
⎣

−1 0.46 0.14 0.14 0.13 0 0.13 0 0.0 0 0 0 0 0 0
0.53 −1 0 0 0.15 0.16 0.16 0 0 0 0 0 0 0 0
0.1 0 −1 0.25 0 0 0.2 0.18 0.14 0 0 0 0 0.14
0.11 0 0.27 −1 0.26 0 0 0 0 0 0 0 0 0.17 0.19
0.08 0.08 0 0.21 −1 0.2 0 0 0 0 0 0.11 0.16 0.16 0

0 0.11 0 0 0.25 −1 0.28 0 0 0 0.17 0.19 0 0 0
0.09 0.09 0.19 0 0 0.24 −1 0 0.12 0.14 0.13 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎥
⎦

(16)

Size of matrixΛΛΛ is determined both by the numbers of original
and augmented mesh surface patches. For this sample surface,
its size becomes 7×15. First seven vertices, coordinates of
which are given in black color, of the matrix given in Eq. 15
correspond to internal nodes. On the other hand, the remaining
eight vertices, coordinates of which are given in green color are
the virtual boundary nodes computed dynamically for the sample
surface. Then, the square matrix A is formed using the elements
of the matrix ΛΛΛ as in the way defined in Eq. 7. Flattening result
(in u-v parameter space) for the subject augmented surface is
given in Fig. 5a.

Ultimate flattening result of the original mesh surface patch
Surf1, which is given in Fig. 5b is obtained by removing the
virtual nodes from the flattening result of the augmented surface.
At the end of initial planar development process, area and shape
accuracies for the subject mesh surface are obtained as ES =
0.7570 and EC = 0.5825 under the chosen conditions.
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Figure 3 A sample surface patch of 7-vertices (Surf1), two different viewpoints (a, b)
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Figure 4 Augmented surface obtained by adding 8 virtual boundary vertices to the original surface patch Surf1.

7. EXPERIMENTAL RESULTS AND
DISCUSSION

The proposed initial flattening algorithm is tested on several ar-
bitrary triangular mesh surface patches of various sizes and only
three of them are included in this section. One of the triangular

mesh surface patches is Surf1, given in the previous section and
the other two are Surf2 and Surf3, seen in Figs. 6 and 7.

The cloud of points, defined by X, corresponding to the
vertices of the mesh surface patch and the topology data F
defining its triangular facets for Surf2 and Surf3 are given in
Eq.17 and 18 respectively.
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Figure 5 Flattening result of mesh surface patch for Surf1:the augmented surface (a) and its ultimate result obtained by removing virtual nodes (b).
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Figure 6 An arbitrary sample surface patch of 15-vertices (Surf2).
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Figure 7 An arbitrary sample surface patch of 40-vertices (Surf3).
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Figure 8 The augmented surface patch of Surf1 for nv = 64 (a) and its planar equivalent (b).
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Figure 9 The augmented surface patch of Surf2 for nv = 64 (a) and its planar
equivalent (b).

7.1 Effect of Virtual Boundary Node Number
on Flattening Accuracy

The three sample mesh surfaces mentioned above are given as
input to Algorithm 1 and initial flattening results are obtained
for several number of virtual boundary nodes. However, only
one flattening result is given for each sample surface patch
due to the page limitation. Flattening results of the sample
surface patches for nv = 64 are given in Figs. 8, 9 and
10.

For all of the sample surface patches, virtual boundary
polygons with 4, 6, 8, 12, 16, 32 and 64 nodes have been formed
and their mappings to the plane have been realized. Area and
shape accuracies measured for the obtained flattening results are
tabulated in Table 1.

Area and shape accuracies for the sample surface patch Surf1
are also illustrated in the bar graph in Fig. 11. When the
number of virtual boundary nodes is nv = 4, the area accuracy
and the shape accuracy is calculated to be ES = 0.8875 and
EC = 0.7098, respectively. The accuracies decreased gradually
with the increase in the number of virtual boundary nodes
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Figure 10 The augmented surface patch of Surf3 for nv = 64 (a) and its planar
equivalent (b).

and are measured as ES = 0.2038 and EC = 0.4202 for
nv = 64.

Area and shape accuracies for Surf2 are also illustrated in the
bar graph in Fig. 12. When the number of virtual boundary nodes
is nv = 4, the area accuracy and the shape accuracy is calculated
to be ES = 0.9211 and EC = 0.6974, respectively. The
accuracies decreased gradually with the increase in the number
of virtual boundary nodes and are measured as ES = 0.4906
and EC = 0.2697 for nv = 64.

Area and shape accuracies for Surf3 are also illustrated
in the bar graph in Fig. 13. When the number of virtual
boundary nodes is nv = 4, the area accuracy and the shape
accuracy is calculated to be ES = 0.8400 and EC = 0.6521,
respectively. The accuracies decreased gradually with the
increase in the number of virtual boundary nodes and are
measured as ES = 0.3351 and EC = 0.2905 for nv = 64.
The test results reported here indicates that increasing the
number of virtual boundary nodes (based on the size of the
surface patches) by a certain extent improves area and shape
accuracies of the planar projection obtained in the flattening
result.

vol 34 no 6 November 2019 349



IMPROVING INITIAL FLATTENING OF CONVEX-SHAPED FREE-FORM MESH SURFACE PATCHES USING A DYNAMIC VIRTUAL BOUNDARY

nv=4 nv=6 nv=8 nv=12 nv=16 nv=32 nv=64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
ra

te
s

 

 
Es
Ec

Figure 11 Area and shape accuracies measured for Surf1 for various number of virtual boundary nodes.
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Figure 12 Area and shape accuracies measured for Surf2 for various number of virtual boundary nodes.
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Figure 13 Area and shape accuracies measured for Surf3 for various number of virtual boundary nodes.
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Figure 14 Flattening comparison for Surf1 regarding area accuracy (a) and shape accuracy (b).
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Figure 15 Flattening comparison for Surf2 regarding area accuracy (a) and shape accuracy (b).
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Figure 16 Flattening comparison for Surf3 regarding area accuracy (a) and shape accuracy (b).

Table 1 Area and shape accuracies measured for the three sample surfaces with various number of virtual boundary nodes.

Sample
Surface

Surf1 Surf2 Surf3

Number of
virtual
boundary
nodes

Area
accuracy, ES

Shape
accuracy, EC

Area
accuracy, ES

Shape
accuracy, EC

Area
accuracy, ES

Shape
accuracy,
EC

nv = 4 0.8875 0.7098 0.9211 0.6974 0.8400 0.6521
nv = 6 0.8183 0.6337 0.8056 0.5049 0.7825 0.6071
nv = 8 0.7570 0.5825 0.7565 0.4543 0.7420 0.5700
nv = 12 0.6544 0.5504 0.6579 0.3548 0.6513 0.5104
nv = 16 0.5627 0.5231 0.6178 0.3107 0.5911 0.4810
nv = 32 0.3312 0.4664 0.4685 0.2704 0.4341 0.3745
nv = 64 0.2038 0.4202 0.4906 0.2697 0.3351 0.2905

Table 2 Flattening accuracies of the proposed and basic methods for Surf1.

Sample Surface: Surf1

10
0

it
er

at
io

ns

Basic Method Proposed Method
Number of virtual
boundary nodes

Area accuracy, ES Shape accuracy, EC Area accuracy, ES Shape accuracy,
EC

nv = 4 0.8903 0.6355 0.8875 0.7098
nv = 6 0.8425 0.5678 0.8183 0.6337
nv = 8 0.8212 0.5462 0.7570 0.5825
nv = 12 0.7861 0.5146 0.6544 0.5504
nv = 16 0.7649 0.5020 0.5627 0.5231
nv = 32 0.7637 0.5122 0.3312 0.4664
nv = 64 0.8247 0.5676 0.2038 0.4202
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Figure 17 Flattening result of Surf3 surface patch on the plane by basic method (a) and proposed method (b) .

7.2 Effect of Neighborhood Weights on
Flattening Accuracy

In the section describing the principle of the barycentric mapping
theory, the method of calculating the neighborhood weight
values λi, j for each node has been described in detail. For
each node in the basic method proposed by Tutte in the
drawing of graph and later adopted by Floater, this value is
simply calculated to be inversely proportional to the number
of neighbors. However in the proposed method, it is calculated

using the inverse of the Euclidean distance between neighboring
vertices of a node (with the changes given in the steps 10 and 11
in Algorithm 1). In this way, the local geometry shape in the 3D
space is transferred in an efficient way to the parametric space
where the planar development is realized. For this purpose, the
basic method has been executed for all of the sample surface
patches under the same conditions as the proposed method, and
the results are given in Tables 2–4.

The area and shape accuracies given in Tables 2–4 for the
three sample surface patches are also presented visually in the
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Table 3 Flattening accuracies of the proposed and basic methods for Surf2.

Sample Surface: Surf2

10
0

it
er

at
io

ns

Basic Method Proposed Method
Number of virtual
boundary nodes

Area accuracy, ES Shape accuracy, EC Area accuracy, ES Shape accuracy,
EC

nv = 4 0.9164 0.6632 0.9211 0.6974
nv = 6 0.7747 0.4653 0.8056 0.5049
nv = 8 0.7382 0.4191 0.7565 0.4543
nv = 12 0.6556 0.3634 0.6579 0.3548
nv = 16 0.6597 0.3428 0.6178 0.3107
nv = 32 0.5761 0.3739 0.4685 0.2704
nv = 64 0.5825 0.3437 0.4906 0.2697

Table 4 Flattening accuracies of the proposed and basic methods for Surf3.

Sample Surface: Surf3

10
0

it
er

at
io

ns

Basic Method Proposed Method
Number of virtual
boundary nodes

Area accuracy, ES Shape accuracy, EC Area accuracy, ES Shape accuracy, EC

nv = 4 0.8535 0.6141 0.8400 0.6521
nv = 6 0.8148 0.5669 0.7825 0.6071
nv = 8 0.7834 0.5456 0.7420 0.5700
nv = 12 0.7403 0.5042 0.6513 0.5104
nv = 16 0.7082 0.4866 0.5911 0.4810
nv = 32 0.6665 0.4473 0.4341 0.3745
nv = 64 0.6623 0.4253 0.3351 0.2905

bar graph in Figs. 14–16. The number of virtual boundary nodes
is increased from 4 to 64 at certain intervals to provide the virtual
boundary polygon in various resolutions. In each case, the initial
projection results of the basic method and the proposed method
for the surface patch appear in the bar graph in terms of area and
shape accuracy.

It is seen from both Fig. 14 and Table 2 that the difference
in area accuracy starts from 0.8903 and decreases to 0.8247 in
the basic method, while in the proposed method it starts from
0.8875 and decreases to 0.2038 for this sample surface patch.
Similarly, the difference in shape accuracy starts from 0.6355 in
the basic method and decreases to 0.5676, while in the proposed
method it starts from 0.7098 and decreases to 0.4202.

It is seen from both Fig. 15 and Table 3 that the difference in
area accuracy starts from 0.9164 and decreases to 0.5825in the
basic method, while in the proposed method it starts from 0.9211
and decreases to 0.4906 for Surf2 surface patch. Similarly, the
difference in shape accuracy starts from 0.6632 in the basic
method and decreases to 0.3437, while in the proposed method
it starts from 0.6974 and decreases to 0.2697.

It is seen from both Fig. 16 and Table 4 that the difference in
area accuracy starts from 0.8535 and decreases to 0.6623 in the
basic method, while in the proposed method it starts from 0.8400
and decreases to 0.3351 for Surf2 surface patch. Similarly, the
difference in shape accuracy starts from 0.6141 in the basic
method and decreases to 0.4253, while in the proposed method
it starts from 0.6521 and decreases to 0.2905.

The coordinates of the nodes on the u − v parametric space
are plotted in Fig. 17, with the projection of the sample surface
for nv = 64 by the basic method and the proposed method. All

these results show that the proposed method is better than the
basic method (for the same iteration number in finding the inverse
matrix by iterative methods) regarding flattening accuracies. The
proposed method produces planar equivalents with relatively
high fidelity to their original surfaces when compared to those
of the basic method.

8. CONCLUSION

This paper proposes an effective approach for flattening convex-
shaped mesh surface patches. The proposed method exploits
barycentric mapping theory and a dynamic virtual boundary
approach to improve initial flattening result. Barycentric
mapping, also known as convex-combination approach is a
base method suitable for realizing mappings of convex-shaped
mesh surfaces. A dynamic virtual boundary is efficaciously
incorporated so as to reduce the distortions of the triangles near
the real boundary of the surface. In the proposed approach,
accuracy of base barycentric mapping method is improved by
using the inverse of the Euclidean distance between neighboring
vertices of a node, which is normalized by the total cost of its
neighbors. In this way, the local geometry of the surface in
3D the space is transferred efficiently to the parametric space
where the planar development is realized. The experimental
results prove that the proposed approach effectively improves
flattening results regarding area and shape accuracy. In a future
work, initial mapping results obtained may further be enhanced
by incorporating an energy-based flattening approach to release
strain energy inherent in them.
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