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Abstract: In this paper, we used time delay feedback to minimize the vibrations of
a hybrid Rayleigh–van der Pol–Duffing oscillator. This system is a one-degree-of-
freedom containing the cubic and fifth nonlinear terms and an external force. We
applied the multiple scales method to get the solution from first approximation.
Graphically and numerically, we studied the system before and after adding time
delay feedback at the primary resonance case (� ffi !). We used MATLAB pro-
gram to simulate the efficacy of different parameters and the time delay on the
main system.

Keywords: Position time delay feedback; velocity time delay feedback; multiple
scales method; resonance cases

1 Introduction

The Duffing oscillator is used as a main type model for different engineering and physical problems such
that electric circuit, oscillation of plasma, optical stability and the buckled beam [1–6]. Wen et al. [7]
presented two kinds of Van der Pol oscillator containing fractional order terms. The averaging method
used for obtaining the approximation solution. The additional stiffness coefficient is almost zero and the
additional damping coefficient damping is almost the maximum value when the two kinds of Van der Pol
fractional existed. The vibrations of Van der Pol oscillator are suppressed by using the nonlinear time
delayed feedback controller and the effectiveness of the feedback gain on bifurcation point is studied
numerically [8]. In [9], the dynamic stable and unstable behavior of the ring of coupled Van der Pol
oscillators are discussed numerically also, the amplitude of the oscillator increased if the stability
conditions are not satisfied. The Homotopy analysis method is used to obtain the analytically solution for
the first time of a single–well, double–well and double–hump van der pol–Duffing oscillator [10].
Soleman et al. [11], utilized the position time delayed feedback control to restrain the auto parametric
dynamical system vibrations. The Rayleigh equation with a cubic nonlinearity oscillator is presented in
[12] and is studied for the following cases: positive linear and cubic coefficients, positive linear and
negative cubic coefficients and negative linear and positive cubic coefficients. [13–15], modified and
studied the bifurcation of Van der Pol–Duffing–Rayleigh oscillator. Of great importance to restrained the
vibrations of Van der Pol oscillator. One of the important kinds of controllers is the time delay control.
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The time delay control is used for suppression the nonlinear beam vibrations in [16] and they deduced that,
the vibrations could be reduced for some values of time delay, which called the vibration suppression region.
The positive position feedback controller is adjusted with the time delay to minimize the horizontal vibration
of a magnetically levitated body and to control the vibration of a forced and self-exited nonlinear beam
[17,18]. The time delay control is used to suppress the vibrations of many dynamical systems such that,
Stainless-steel beam, Helicopter blade flapping and Duffing oscillator [19–21]. In this article, the
vibrations of a hybrid Rayleigh–Van der Pol–Duffing oscillator exciting by external forces are suppressed
by using position and velocity time delay feedback controllers. Numerically, we simulated the behavior of
the system without and with time delay controllers. We used MATLAB program to simulate the efficacy
of different parameters and the time delay on the main system. The influences of some chosen
coefficients are illustrated numerically and analytically. The rapprochement between numeric and analytic
solution is offered.

2 Mathematical Formulation

The one-degree-of-freedom of a hybrid Rayleigh–Van der Pol–Duffing oscillator presented in [15] as:

€u� 2lx _uð1� g
x
_u� bu2 � d

x2
_u2 � h

x
_uu2Þ þ 2lx2u3ðk þ �u2Þ þ x2u ¼ 0 (1)

We used the position and velocity time delay to minimize the vibrations of a hybrid Rayleigh–Van der
Pol–Duffing oscillator subjected to an external force as the following:

€u� 2el̂x _uð1� g
x
_u� bu2 � d

x2
_u2 � h

x
_uu2Þ þ 2el̂x2u3ðk þ �u2Þ þ x2u

¼ ef̂ cosð�tÞ � eðĉ1uðt � s1Þ þ ĉ2 _uðt � s2ÞÞ
(2)

where, l̂ ¼ l
e
; f̂ ¼ f

e
; ĉ1 ¼

c1
e
; ĉ2 ¼

c2
e

and the displacement of van der pol oscillator is u. The

nonlinearities coefficients are g, b, d, h, k and �. The natural frequency of Van der Pol oscillator is x.
The excitation’s amplitude and frequency are f and �. l, is the damping coefficient. The time delay
feedback signals are c1 and c2.

2.1 Perturbation Analysis
We used the multiple scales method [22,23] to obtain the solutions of Eq. (2) up to the first

approximation:

uðt; eÞ ¼ u0ðT0;T1Þ þ eu1ðT0; T1Þ (3)

The first and second derivatives take the forms:

d

dt
¼ D0 þ eD1 þ… (4)

d2

dt2
¼ D2

0 þ 2eD0D1 þ… (5)

For the first approximation solution, we performed a two time scales Tr ¼ ert such that ðr ¼ 0; 1Þ. The
derivatives Dr ¼ @

@Tr
ðr ¼ 0; 1Þ. Inserting Eqs. (3)–(5) in Eq. (2) and equating the coefficients of the same

power of e.
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Oðe0Þ:
ðD2

0 þ x2Þu0 ¼ 0 (6)

OðeÞ:

ðD2
0 þ x2Þu1 ¼ �2D0D1u0 þ 2l̂xD0u0 � 2l̂gðD0u0Þ2 � 2l̂xbðD0u0Þu20 �

2l̂d
x

ðD0u0Þ3

� 2l̂hðD0u0Þ2u20 � 2l̂kx2u30 � 2l̂�x2u50 � ĉ1u0s1 � ĉ2D0u0s2 þ f̂ cos�t
(7)

Eq. (6) is a homogenous differential equation of second order its solution takes the form:

u0ðT0;T1Þ ¼ AðT1ÞeðixT0Þ þ c:c (8)

Denote that A is a complex function in T1. The complex conjugate parts collected in the term c.c. From
Eq. (8), we have

u0s1ðT0;T1Þ ¼ As1ðT1ÞeixðT0�s1Þ þ c:c (9)

D0u0s2ðT0; T1Þ ¼ ixAs2ðT1ÞeixðT0�s2Þ þ c:c (10)

By using Taylor expansion, we get the following form of As1 and As2 :

As1ðT1Þ ¼ AðT1 � es1Þ ffi AðT1Þ � es1D1Aþ Oðe2Þ (11)

As2ðT1Þ ¼ AðT1 � es2Þ ffi AðT1Þ � es2D1Aþ Oðe2Þ (12)

For computation the right hand sides of Eq. (7), we will use Eqs. (8)–(10) so that,

ðD2
0 þ x2Þu1 ¼

�
�2ixD1Aþ 2il̂x2A� 2il̂x2ðbþ 3dÞA2�A� 6l̂x2KA2�A� 20l̂�x2A3 �A

2

�ðĉ1As1e
�ixs1 þ ixĉ2As2e

�ixs2Þ
�
eixT0 þ

�
2l̂gx2A2

�
e2ixT0 þ ��2l̂x2A3ððkþ 5�A�AÞ

þiðbþ dÞÞ�e3ixT0 þ �2l̂hx2A4
�
e4ixT0 � �2l̂�x2A5

�
e5ixT0 þ

 
f̂

2

!
ei�T0 þ c:c

(13)

For the particular solution of Eq. (13) be bounded, we will remove the secular terms such that,

u1ðT0;T1Þ ¼ M1e
2ixT0 þM2e

3ixT0 þM3e
4ixT0 þM4e

5ixT0 þM5e
i�T0 þ c:c (14)

where M@ ð@ ¼ 1;…; 5Þ offering complex functions in T1 are defined in the “Appendix”. From the first
approximation, there is only one resonance case, which is the Primary resonance � ffi x.

3 Periodic Solutions

On this treatise, the primary resonance (� ffi x) is used to discuss the solvability conditions. We
introduced a detuning parameter ðrÞ so that:

� ¼ xþ er̂ ¼ xþ r (15)
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Including Eqs. (11), (12) & (15) into Eq. (13) for compiling the solvability conditions as:

� 2ixD1Aþ ðes1ĉ1e�ixs1ÞD1Aþ iðexs2ĉ2e�ixs2ÞD1Aþ 2il̂x2A� 2il̂x2ðbþ 3dÞA2�A� 6l̂x2KA2�A

� 20l̂�x2A3 �A
2 � ðĉ1e�ixs1ÞA� iðxĉ2e�ixs2ÞAþ f̂

2
eir̂T1 ¼ 0

(16)

Exchanging AðT1Þ by the polar form as:

A ¼ 1

2
a ei’ (17)

D1A ¼ 1

2
ða0 þ ia’0Þei’ (18)

where ’ and a are the motion’s steady state phases and amplitudes which are functions in T1 and ðÞ0 ¼ d

dT1
.

Subjoining Eqs. (17) and (18) into Eq. (16) such that:

� ixða0 þ ia’0Þ þ ðes1ĉ1
2

e�ixs1Þða0 þ ia’0Þ þ iðexs2ĉ2
2

e�ixs2Þða0 þ ia’0Þ þ il̂x2a� 1

4
il̂x2ðbþ 3dÞa3

� 3

4
l̂x2Ka3 � 5

8
l̂�x2a5 � ðĉ1

2
e�ixs1Þa� iðxĉ2

2
e�ixs2Þaþ f̂

2
eiw ¼ 0

(19)

where w ¼ r̂T1 � ’. For any two equal complex numbers, the real and imaginary parts are equal so that:

�x� 1

2
eĉ1s1sinðxs1Þ þ

1

2
exĉ2s2cosðxs2Þ

� �
a0 þ 1

2
eĉ1s1cosðxs1Þ þ

1

2
exĉ2s2sinðxs2Þ

� �
a’0

þ l̂x2 þ 1

2
ĉ1sinðxs1Þ �

1

2
xĉ2cosðxs2Þ

� �
a� 1

4
l̂x2ðbþ 3dÞ

� �
a3 ¼ � f̂

2
sinðwÞ

" # (20)

1

2
eĉ1s1cosðxs1Þ þ

1

2
exĉ2s2sinðxs2Þ

� �
a0 � �x� 1

2
eĉ1s1sinðxs1Þ þ

1

2
exĉ2s2cosðxs2Þ

� �
a’0

� 1

2
ĉ1cosðxs1Þ þ

1

2
xĉ2sinðxs2Þ

� �
a� 3

4
l̂x2k

� �
a3 � 5

8
l̂x2�

� �
a5 ¼ � f̂

2
cosðwÞ

" # (21)

Back to the main system parameters, we have the following equations:

�x� 1

2
eĉ1s1sinðxs1Þ þ

1

2
exĉ2s2cosðxs2Þ

� �
_aþ 1

2
eĉ1s1cosðxs1Þ þ

1

2
exĉ2s2sinðxs2Þ

� �
a _’

þ l̂x2 þ 1

2
ĉ1sinðxs1Þ �

1

2
xĉ2cosðxs2Þ

� �
a� 1

4
l̂x2ðbþ 3dÞ

� �
a3 ¼ � f̂

2
sinðwÞ

" # (22)

1

2
ec1s1cosðxs1Þ þ

1

2
exc2s2sinðxs2Þ

� �
_a� �x� 1

2
ec1s1sinðxs1Þ þ

1

2
exc2s2cosðxs2Þ

� �
a _’

� 1

2
c1cosðxs1Þ þ

1

2
xc2sinðxs2Þ

� �
a� 3

4
lx2k

� �
a3 � 5

8
lx2�

� �
a5 ¼ � f

2
cosðwÞ

� � (23)

where, a0 ¼ _a

e
; ’0 ¼ _’

e
and ð _Þ ¼ d

dt
. Since a _w ¼ ar� a _’ then, solve the Eqs. (22) and (23) to extract the

values of _a and a _w as the following:
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_a ¼ 1

n
�1a

5 þ �2a
3 þ �3a� �4cosðwþ xs1Þ � �5sinðwþ xs2Þ þ �6sinðwÞ

� 	
(24)

a _w ¼ � 1

n
�7a

5 þ �8a
3 þ ð�9 � rnÞa� �10sinðwþ xs1Þ þ �11cosðwþ xs2Þ � �12cosðwÞ

� 	
(25)

where, the coefficients n and �i; i ¼ 1; 2;…; 12 are defined in the “Appendix”.

3.1 Fixed Point Solution
For steady-state solution, we may be find the fixed point of the Eqs. (22) and (23) by putting _a ¼ 0 and

_w ¼ 0 leads to _’ ¼ r so,

lx2 þ 1

2
c1ðrs1cosðxs1Þ þ sinðxs1ÞÞ þ 1

2
xc2ðrs2sinðxs2Þ � cosðxs2ÞÞ

� �
a� 1

4
lx2ðbþ 3dÞ

� �
a3

¼ � f

2
sinðwÞ

� � (26)

xrþ 1

2
c1ðrs1sinðxs1Þ � cosðxs1ÞÞ � 1

2
xc2ðrs2cosðxs2Þ þ sinðxs2ÞÞ

� �
a� 3

4
lx2k

� �
a3 � 5

8
lx2�

� �
a5

¼ � f

2
cosðwÞ

� � (27)

Squaring then adding both sides of Eqs. (26) and (27) to obtain the following equation:

25

64
l2x4�2
� 	

a10 þ 15

16
l2x4k�
� 	

a8

þ 1

16
l2x4ð9k2 þ ðbþ 3dÞ2Þ � 20lx3�r� 10lx2�c1ðrs1sinðxs1Þ � cosðxs1ÞÞ
þ10lx3�c2ðrs2cosðxs2Þ þ sinðxs2ÞÞ

" #
a6

� 1

4

2l2x4ðbþ 3dÞ þ 6lx3krþ lx2c1ðbþ 3dÞðrs1 cosðxs1Þ þ sinðxs1ÞÞ
þlx3c2ðbþ 3dÞðrs2sinðxs2Þ � cosðxs2ÞÞ þ 3lc1kx

2ðrs1sinðxs1Þ
�cosðxs1ÞÞ � 3lc2x

3kðrs2cosðxs2Þ þ sinðxs2ÞÞ

2
64

3
75a4

þ 1

4

r2ðc21s21 þ x2c22s
2
2Þ þ x2ð4r2 þ 4l2 þ c21Þ þ 4xc1ðr2s1 þ lxÞsinðxs1Þ

�4xrc1ð1� lxs1Þcosðxs1Þ � 4x2rc2ð1� lxs2Þsinðxs2Þ � 4x2c2ðr2s2 þ lxÞcosðxs2Þ
þ2xc1c2ðs2 � s1Þcosðxs1 � xs2Þ � 2xc1c2ð1þ r2s2s1Þsinðxs1 � xs2Þ

2
64

3
75a2

� f 2

4

� �
¼ 0

(28)

3.2 Equilibrium Solution of a Fixed Point
While in movement to evolve the steady state solution’s stability, start with the following

procedures:

a ¼ a0 þ a1 ; w ¼ w0 þ w1
_a ¼ _a1 ; _w ¼ _w1



(29)
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Inserting Eq. (29) into Eqs. (24) and (25) then, we obtained the following system:

_a1 ¼ 1

n

� �
5�1a

4
0 þ 3�2a

2
0 þ �3

� �� �
a1 þ

"
1

n

� ��
�4 sinðw0 þ xs1Þ � �5cosðw0 þ xs2Þ

þ �6cosðw0Þ
�#

w1

(30)

_w1 ¼
1

n

� �
5�7a

3
0 þ 3�8a0 þ �9 � rn

a0

� �� �
a1 þ

�
1

na0

� ��
�10cosðw0 þ xs1Þ þ �11sinðw0 þ xs2Þ

� �12sinðw0Þ
��

w1

(31)

For the above system’s solution be stable, the real parts of its Eigen-values must be negative.

4 Numerical Illustration

Numerically, we applied Runge-Kutta 4th (RK-4) order method using MATLAB program to solve the
differential equation of the main system after using the time delay feedback controller. This study occurs
at the worst resonance case (Primary resonance) by the following values of parameters:

l ¼ 0:01; s1 ¼ 0:03; s2 ¼ 0:05; k ¼ 3; g ¼ 1:5;b ¼ 1; d ¼ 1

3
; � ¼ 2; f ¼ 0:5; c1 ¼ 5; c2 ¼ 2;x ¼ 1

Fig. 1 clarifies the amplitude of the uncontrolled main system, which equal 1.5. The influence of the
main system parameters (damping coefficient l and nonlinearities coefficients k; g;b; d; � and h) has been
presented on Fig. 2. From this figure, we note that, the amplitude of the main system is monotonic
decreasing in the damping coefficient l and nonlinearities coefficients k; g;b; d and � but monotonic
increasing in the nonlinear coefficient h. More increasing of the damping coefficient l leads to saturation
phenomena and the amplitude value equal to 0.9 so that, the system might be need a control. After using
time delay feedback controller, the main system amplitude reduced to reach 0.09 as represented on Fig. 3
this means that, the effectiveness of the controller (Ea = amplitude without control/amplitude with) equal 17.

Figure 1: The time history and phase plane of uncontrolled system at primary resonance case (� ffi x)
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Eq. (28) solved numerically to obtain the graphical solution for the amplitude via the detuning parameter
ðrÞ which, presented by one peak. The response curve of the amplitude-delay s1 at s2 ¼ 0 and s2 ¼ 0:05 for
different values of c1 was shown in Fig. 4. From this figure, we can see that, for small values of c1 the
vibration suppression region (is the region at which the amplitude-delay’s response curves demonstrates
stable solution) increased. The response curve of the amplitude-delay s2 at s1 ¼ 0 and s1 ¼ 0:03 was
shown in Fig. 5 for different values of c1. For s1 ¼ 0 we can notice that, the vibration suppression region
increased for small values of c2 but at s1 ¼ 0:03, the vibration suppression region increased for
large values of c2.

The response curves of the main system a against the detuning parameter r is presented for
s1 ¼ 0:03; s2 ¼ 0:05 such that the solid line expresses the stable solution of Eq. (28), while the dash one
expresses the unstable solution of the same equation as shown in Fig. 6a. For large values of the external
force, the main system’s amplitude increase also as notice in Fig. 6b. The amplitude increasing and shift
to right for small values of the time delay displacement’s feedback gain c1 and the real part of all Eigen-
Values is negative so, the solution is stable for small values of c1 as illustrated in Fig. 6c, and this is
consistent with Fig. 4. Fig. 6d shows that, the main system’s amplitude is monotonic decreasing function
on the time delay velocity’s feedback gains c2 and the solution is stable for large values of c2, and this is

Figure 2: The influence of the parameters of the main system without control
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τ
1 = 0.302 τ

1 = 0.283

τ
1 = 0.12 τ

1 = 0.11

τ
1 = 0.066 τ

1 = 0.06

(a) (b)

Figure 4: The response curve of the amplitude-delay s1 for (a) s2 ¼ 0 and (b) s2 ¼ 0:05

Figure 3: The time history and phase plane of controlled system at primary resonance case (� ffi x)

Figure 5: The response curve of the amplitude-delay s2 for (a) s1 ¼ 0 and (b) s1 ¼ 0:03
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consistent with Fig. 5b. For natural frequency x, the main system’s amplitude is monotonic decreasing
function and shifted to right as shown in Fig. 6e.

Fig. 7 presents the response of the main system a against the external force f before and after control,
from this figure we can see that, the effectiveness of the time delay control for suppression the vibrations of
the main system. The Eqs. (24) and (25) solved analytically and presented graphically by (———) lines
which be in agreement with the numerical solution of Eq. (1) as shown in Fig. 8. From Fig. 9, there is a

Figure 6: (a) The FRC of the controlled system. (b) The external force action. (c) The time delay
displacement’s feedback gain c1 action. (d) The time delay velocity’s feedback gain c2 action. (e) The
natural frequency x action
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Figure 7: Response curve of force-amplitude of the system

Figure 8: Comparison between the numerical solution ( ــــــــــــ ) and the perturbation analysis
(——————) for the controlled system

Figure 9: Comparison between the FRC Solution and RK-4 Solution
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good agreement between the frequency response curves (FRC) which given by the sold line and the
numerical solution of Eq. (1) using (RK-4) that marked by green circles.

5 Conclusion

Time delay control has been illustrated for the primary resonance case (� ffi x) of the hybrid Rayleigh–
van der Pol–Duffing oscillator. The solution of the nonlinear system from the first approximation is obtained
applying the method of multiple scales. We success to reduce the vibrations of the hybrid Rayleigh–van der
Pol–Duffing oscillator from 1.5 to 0.09 by using Time delay control.

The study divulged that:

1. For increasing the value of external excitation leads to increasing in the system amplitude.

2. The amplitude of the system is a monotonic decreasing function on the natural frequency x and the
time delay velocity’s feedback gains c2.

3. The vibration suppression region increased for small values of the time delay displacement’s
feedback gains c1.

4. For s1 ¼ 0, the vibration suppression region increased for small values of c2 but for s1 ¼ 0:03, the
vibration suppression region increased for large values of c2.

5. For the response curves, there is a good agreement between the FRC Solution and RK-4 Solution.
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