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Abstract: This study determines the natural frequencies of the lock gate structure,
considering the coupled effect of reservoir fluid on one side using the finite ele-
ment method (FEM). The gate is assumed to be a uniformly thick plate, and its
material is isotropic, homogeneous, and elastic. The reservoir fluid is assumed
to be inviscid and incompressible in an irrotational flow field. The length of the
reservoir domain is truncated using the far boundary condition by adopting the
Fourier series expansion theory. Two different assumptions on the free surface,
i.e., undisturbed and linearized, are considered in the fluid domain analysis.
The computer code is written based on the developed finite element formulations.
The natural frequencies of the lock gate are computed when interacting with and
without reservoir fluid. Several numerical problems are studied considering the
effects of boundary conditions, aspect ratios, and varying dimensions of the gate
and the fluid domain. The frequencies of gate reduce significantly due to the pre-
sence of fluid. The frequencies increase when the fluid extends to either side of
the gate. The frequencies reduce when the depth of the fluid domain above the
top edge of the gate increases. The frequencies drop considerably when the free
surface condition is taken into account. The results of frequencies of lock gate
structure may be useful to the designer if it is experienced in natural catastrophes.

Keywords: Lock gate; reservoir fluid; fluid-structure interaction; frequency;
HSDT; FEM

1 Introduction

Fluid-structure interaction problems occur in various structures like storage tanks, dams, offshore
structures, piping systems, etc. The lock gate structure is mainly used to regulate the passage of water in
the dam-reservoir system. The lock gate structure analysis is quite difficult, while the effect of reservoir
fluid is taken into account. When the reservoir system is subjected to any external excitation, an extra
force acts on the lock gate structure due to the effect of hydrodynamic pressure. The additional forces
generated into the system may damage the structural part of the gate wall. Hence, it is essential to
investigate the coupling effects between the lock gate and the reservoir fluid, particularly when the lock
gate structure is flexible in type. The motion of the lock gate influences the developed hydrodynamic
pressure. At the gate and reservoir fluid interface, the gate’s acceleration is transferred to the reservoir
fluid, and the hydrodynamic pressure is transferred to the gate. In contact with a fluid, a vibrating
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structure transfers its vibration to the adjacent fluid and gives rise to fluid motion. This causes an increase in
the kinetic energy of the surrounding fluid. Because of increased energy, the natural frequencies of structure
and particularly the fundamental frequency decrease significantly compared to the frequencies in a vacuum.
The analytical solution of such fluid-structure interaction problems is quite difficult and challenging task.
FEM is widely used to solve the coupled fluid-structure interaction problems. A good amount of literature
is available on the plate and the fluid problems independently. But, whenever the plate and the fluid
interact, the problem becomes difficult, and in such cases, not much literature is available. The above
lacuna motivates the author to investigate the lock gate structure in dam-reservoir system to study
reservoir’s fluid role on the free vibration frequencies of the lock gate.

In the last few decades, fluid-structure interaction problems were investigated by different researchers
using various numerical techniques. A few of such relevant literature is presented hereunder, considering
the importance of the present problem. Maity et al. [1] presented the hydrodynamic pressure distribution
on rigid dams using FEM. The authors modeled the infinite fluid domain by truncating the far boundary
considering the classical wave equation. The pressure was assumed as an unknown nodal parameter for
compressible fluid. The investigation was limited to two-dimensional analysis only. Zhou et al. [2]
studied the free vibration characteristics of a rectangular plate, contact with water on one side. The
authors derived the Eigen frequency equations using the Rayleigh-Ritz approach. The effects of depth
and width of water, support stiffness, location, and aspect ratio of plate on the Eigen frequencies of plate-
water system were investigated. Cheung et al. [3] evaluated the frequencies of a thin plate, connected to a
rectangular hole of rigid bottom slab in a liquid-filled rectangular container. The fluid was assumed as
incompressible, inviscid and irrotational without taking the effect of surface waves. An analytical-Ritz
method was considered to analyze the interaction of the rectangular plate in contact with fluid on one
side. Maity et al. [4] studied the coupled effect of elastic structure and fluid using FEM. The domains of
the elastic structure and fluid domain were treated as two separate systems (i.e., dam structure and fluid)
in the analysis. The governing equation of fluid was expressed in terms of pressure variable, considering
the fluid as inviscid and compressible. Teixeira et al. [5] simulated 3D fluid-structure interaction problems
using FEM. Authors considered Taylor–Galerkin’s scheme and linear tetrahedral elements to analyze the
fluid domain. The fluid was assumed as highly or slightly compressible. Maity [6] modeled an infinite
reservoir system with an efficient truncation boundary condition, including the radiation effects.
Hydrodynamic pressure was evaluated considering the effect of the reservoir’s geometry and the adjacent
structure. The fluid was assumed as incompressible, inviscid, and irrotational. Pani et al. [7] investigated
a lock gate structure in rigid dam, considering the coupled effects of fluid-structure interaction. The
authors evaluated the dynamic pressure for both compressible and incompressible fluids. Pani et al. [8]
investigated the free vibration characteristics of a rectangular lock gate using FEM, considering the
effects of coupled fluid-structure interaction. To discretize the domain, the authors considered four noded
plate elements with three degrees of freedom at each node for the lock gate and eight noded brick
elements for the fluid domain. The hydrodynamic pressure on a vertical rectangular gate, subjected to
ground acceleration, was investigated by Pani et al. [9]. The unknown nodal variables i.e., pressure and
displacement, were considered for analysis of fluid domain and gate, respectively. The unbounded
reservoir was truncated adjacent to the gate. Pani et al. [10] evaluated the dynamic pressure on a
rectangular plate, subjected to a harmonic ground excitation. The authors used the Helmholtz equation for
the analysis of fluid domain and Mindlin’s theory for the plate. The coupled problem was solved by
transferring the plate’s acceleration to the fluid and the pressure of the fluid to the plate. Pal [11–14] and
Pal et al. [15–16] investigated the coupled frequencies of two-dimensional liquid-filled flexible container
considering the effect of sloshing of liquid. Meshless local Petrov-Galerkin (MLPG) method was used to
analyze both the liquid and the structural domains. The displacement for the structural wall and pressure
for the liquid domain were considered as independent nodal variables. The authors evaluated the
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sloshing response in a two-dimensional liquid-filled rigid tank. The MLPG technique was used for the
numerical simulation of nonlinear sloshing, and the results were validated with the experimental data.
Further authors investigated the sloshing characteristics of liquid in a two-dimensional composite
container subjected to external excitation using MLPG technique. Several numerical examples were
studied by varying the fiber orientation and aspect ratio of the laminated container wall. Pal et al. [17]
studied the free vibration analysis of lock gate structure using first order shear deformation theory
(FSDT) for the gate considering the effect of varying fluid domain geometry using truncated far
boundary condition. The authors evaluated the natural frequencies of lock gate structure interacting
with and without fluid. Singh et al. [18] investigated stiffened lock gate structure frequencies
considering the undisturbed liquid free surface using the truncated far boundary condition. The natural
frequencies of both bare and stiffened lock gate structures were compared. The aforementioned
literature contains little information on the fluid-structure interaction problems. To the best of author’s
knowledge, it appears that the problem of gate coupled with fluid has not been studied as yet with the
importance it deserves.

The present study aims to evaluate the natural frequencies of the lock gate, considering the effects of
coupled fluid-structure interaction. A similar study was found in literature where the investigators’ used
four noded FSDT plate elements with three degrees of freedom at each node to discretize the gate
structure and eight noded brick elements for the fluid domain. But, in this study, nine noded HSDT plate
elements having seven degrees of freedom at each node for the gate structure and twenty-seven noded
hexahedron elements for the fluid domain are considered to acquire more precise results. Further, few
studies are available in literature only on the undisturbed free surface of the fluid domain. Here two
different conditions are assumed at the fluid’s domain top free surface, i.e., undisturbed and linearized
free surface. Computer codes are written for the developed methodologies using FORTRAN language to
compute the lock gate’s natural frequencies. The codes are supplemented with both pre & post-processing
modules. At first, the developed code is verified for the problems, already published in the literature, and
a good agreement is found. Several numerical problems are solved, and the interesting findings are
presented below.

2 Model of Investigation

The mathematical model of a lock gate structure with reservoir fluid used in the present study is shown
in Fig. 1b. The model is developed based on an existing lock gate structure model, situated in Texas [19],
which is shown in Fig. 1a. It is part of a rigid dam with reservoir fluid on one side. The lock gate is
considered to be a vertical rectangular plate of width bp, height d, and a uniform thickness of tp
connected to an infinitely long rigid dam with the vertical upstream face. The various fluid domain
surfaces are labeled in the figure, where h0 is the depth of reservoir fluid, b is the width of the fluid
domain, and L is the truncated length of the fluid domain. At the first stage of analysis, it is assumed
that the fluid domain’s free surface matches the top edge of the gate, and the sides of the fluid domain
match the side edges of the gate (i.e., h0 = d and b = bp). Hence, the edges of the fluid domain at the
interaction interface exactly match the edges of the lock gate. The fluid domain is extruded in a
perpendicular plane to that of the gate by developing the truncated far boundary. In the next stage of
analysis, the fluid domain extends beyond the lock gate’s size, and the investigation is carried out
through a parametric variation. The reservoir floor is assumed to be horizontal and rigid.

Two different types of boundary conditions, i.e., simply supported on all edges (SSSS) and clamped on
all edges (CCCC), are considered for the lock gate. The gate is assumed to be uniformly thick, and its planar
dimensions are varied. Pressure and displacement are taken as unknown nodal variables for the fluid domain
and the lock gate, respectively. The top surface of the fluid domain is assumed to be as: (a) undisturbed free
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surface, and (b) linearized free surface. The flow diagram of the analysis is demonstrated in Fig. 2. The
mathematical formulations for the lock gate and the fluid domain are presented separately, which is
finally coupled with each other. The resulting coupled equation is then used for determining the
frequencies of the lock gate structure. Nine noded isoparametric HSDT plate bending elements with
seven degrees of freedom at each node for the lock gate and twenty-seven noded isoparametric
hexahedron elements with a single degree of freedom at each node for the fluid domain are considered to
discretize the domain of system.

3 Governing Equations of the Gate

The displacement components in the plate with respect to the global coordinate system (x-y-z) are
assumed as [20–24]

u x; y; zð Þ ¼ u0 x; yð Þ þ zhx x; yð Þ þ z3h�x x; yð Þ
v x; y; zð Þ ¼ v0 x; yð Þ þ zhy x; yð Þ þ z3h�y x; yð Þ
w x; y; zð Þ ¼ w0 x; yð Þ

9=
;; (1)

Figure 1: Model for investigation. (a) Existing model [19]. (b) Mathematical model
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where u, v, and w are the displacements in x, y, and z directions, respectively, at any point. At the mid-plane,
u0; v0 are the membrane displacements and w0 is the transverse displacement. The parameters hx and hy are
the rotations in the y-z, and x-z planes, respectively. The parameters h�x and h�y are the corresponding higher-
order terms. The constitutive equation of an isotropic plate in local coordinate can be written as [24–25]

rx
ry
sxy
syz
sxz

8>>>><
>>>>:

9>>>>=
>>>>;

¼

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

2
66664

3
77775

ex
ey
cxy
cyz
cxz

8>>>><
>>>>:

9>>>>=
>>>>;
; (2)

where the material constants are given by

Q11 ¼ Q22 ¼ E

1� l2ð Þ ;Q12 ¼ Q21 ¼ El
1� l2ð Þ ;Q66 ¼ Q44 ¼ Q55 ¼ E

2 1þ lð Þ ; (3)

whereE is the Youngmodulus, and l is the Poisson’s ratio. The element stiffness matrix is given by [18,21–24]

Ke½ � ¼
Z1

�1

Z1

�1

B½ �T D½ � B½ � Jj jdndg; (4)

where [B] is the strain-displacement matrix obtained by solving the Eq. (1) by differentiating the shape
functions of nine-noded isoparametric Lagrangian element for the strain components expressed in Eq. (2).
The Jacobian and the material constant matrices have the forms of

Analysis of lock gate structure 
coupled with reservoir fluid

Structural domain (lock gate) Fluid domain (reservoir)

Discretization of lock gate plate with 
9 noded isoparametric HSDT plate 

bending elements

Discretization of reservoir fluid with 
27 noded isoparametric hexahedron 

elements

Coupling of fluid and structural domain

Free vibration analysis using Jacobi 
iterative method

Development of truncated far boundary

Undisturbed free 
surface (inertial mass)

Linearized free surface 
(inertial & convective mass)

Figure 2: Flow diagram of analysis
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J½ � ¼
@x

@n
@y

@n
@x

@g
@y

@g

2
664

3
775; (5)

D½ � ¼
A G E
G C F
E F H

2
4

3
5& DS

� � ¼ AS GS

GS CS

� �
; (6)

where

Aij;Gij;Cij;Eij;Fij;Hij

� � ¼ R t=2
�t=2 1; z; z2; z3; z4; z6ð ÞQijdz i; j;¼ 1; 2; 6

& AS
ij;G

S
ij;C

S
ij

� 	
¼ R t=2

�t=2 1; z; z4ð ÞQijdz i; j;¼ 4; 5

9=
;: (7)

The element mass matrix is given by

Me½ � ¼
Z1

�1

Z1

�1

N½ �T m½ � N½ � Jj jdndg; (8)

where [N] is the shape functions of nine-noded isoparametric Lagrangian element. Here, [m] is defined
as follows:

m½ � ¼

I1 0 0 I2 0
c

3
I4 0

0 I1 0 0 I2 0
c

3
I4

0 0 I1 0 0 0 0

I2 0 0 I3 0
c

3
I5 0

0 I2 0 0 I3 0
c

3
I5

c

3
I4 0 0

c

3
I5 0

c2

9
I7 0

0
c

3
I4 0 0

c

3
I5 0

c2

9
I7

2
66666666666666664

3
77777777777777775

(9)

with

I1; I2; I3; I4; I5; I7ð Þ ¼
Z t=2

�t=2
q 1; z; z2; z3; z4; z6
� �

dz and c ¼ � 4

3t2
: (10)

The discretized system of equations of free vibration of the isotropic lock gate can be written as

M½ � €�X
n o

þ K½ � �Xf g ¼ 0f g; (11)

where [M] and [K] are the assembled mass and stiffness matrices. €�X
n o

and �Xf g are the acceleration and
displacement vectors, respectively.
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4 Governing Equations of the Fluid

4.1 Undisturbed Free Surface
The actual free surface of the fluid domain is nonlinear in nature. When the free surface fluctuation is

small compared to the depth of the fluid domain, the free surface may be assumed to be linear. Further,
simplification can be made considering the free surface as undisturbed. In another case, the effect of free
surface waves can be considered, which may resemble the actual situation. Linear wave theory, given by
Airy [26], is used for accounting the free surface waves. This theory holds effective when the depth of
fluid is more than the amplitude of the free surface wave. For inviscid, compressible fluid with a small
amplitude motion, the dynamic pressure can be written as [1,4,7,9–10]

r2p x; y; z; tð Þ ¼ 1

c2
€p x; y; z; tð Þ; (12)

where ∇2 is the Laplacian operator, x, y, z are the coordinates of the point, and t is the time. c ¼ ffiffiffiffiffiffiffiffiffi
k=rf

p
is the

acoustic wave velocity, k is the bulk modulus, and qf is the density of fluid. For inviscid, incompressible,
irrotational fluid flow and considering the acoustic wave velocity to be infinite, Eq. (12) can be modified
as [6–7,16–18]

r2p x; y; z; tð Þ ¼ 0; (13)

here p is the dynamic pressure at a point at any instant of time, which can be derived using finite element
formulation considering the appropriate time-dependent boundary conditions.

4.1.1 Boundary Conditions
At the fluid-structure interface (Bfs), the pressure gradient is generated, and the pressure vanishes at a

very far distance away from the lock gate.

@p

@n
x; y; 0; tð Þ ¼ �qf a; p x; y;1; tð Þ ¼ 0: (14)

There is no change in pressure around the side surfaces (Bs) of the fluid domain due to the gate’s
negligible displacement, as it vibrates along the rigid dam.

@p

@n
x; 0; z; tð Þ ¼ 0;

@p

@n
x; b; z; tð Þ ¼ 0: (15)

There is no change in pressure at the bottom surface (Bb) of the fluid domain. Also, there is no surface
wave at the top free surface (Bf).

@p

@n
0; y; z; tð Þ ¼ 0; p h0; y; z; tð Þ ¼ 0: (16)

where h0 and b are the height and width of the fluid domain, respectively. qf is the mass density of the fluid,
and a(x, y, 0, t) is the acceleration of the fluid-gate interface in the direction of n.

4.1.2 Development of Far Boundary
The far boundary of the fluid domain may be considered at a large distance away from the lock gate. The

boundary condition at a far truncated boundary may be developed using the Fourier half range cosine series
by solving the Eq. (13) which can be represented as [17–18]
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p ¼ 4h0rf a�
X1
m¼0

�1ð Þ mþ1ð Þ

�2
m

Cos�m
y

h0

� �
e
� �m

z

h0

� �� �
; (17)

where

�m ¼ 2m� 1ð Þp
2

: (18)

At the truncated boundary (Bt), the normal gradient of pressure may be represented as follows:

@p

@n
¼ @p

@n

� �
z¼L

¼ �p

h0
zi; (19)

where

zi ¼

P1
m¼0

�1ð Þ mþ1ð Þ

�2
m

Cos�m
x

h0

� �
e
� �m

z

h0

� �� �

P1
m¼0

�1ð Þ mþ1ð Þ

�3
m

Cos�m
x

h0

� �
e
� �m

z

h0

� �� � : (20)

To obtain the effect of the unbounded fluid domain at the truncation part, fi is determined analytically by
assuming m to be a large number.

4.1.3 Finite Element Formulation
The pressure at any point inside the fluid domain may be represented as follows:

p ¼
Xn
i¼1

Ni�pi; (21)

where Ni is shape function, �pi is nodal pressure values corresponding to node i, and n is the
number of nodes in an element. Using Galerkin’s weighted residual approach, Eq. (13) may be
represented as follows:XZ :

�e

NT r2p
� �

d�e ¼ 0: (22)

The weak form of Eq. (22) may be yielded as follows:

XZ :

�e

rNT :rp
� �

d�e �
Z :

�e

NT @p

@n

� �
d�e ¼ 0; (23)

where
P

refers to the summation over all the elements, �e for one element, and �e indicates the boundary
surface of an element. Further, using the Green’s theorem Eq. (23) may be expressed in the concise matrix
form as follows:

G½ � �pf g ¼ Bf g; (24)
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in which

G½ � ¼
XZ :

�e

rNT :rN
� �

d�e; (25)

and

Bf g ¼
X

s

Z :

�e

NT @p

@n
d�e: (26)

However, the boundary term {B} may split into the components (Fig. 1) as follows:

Bf g ¼ Bf


 �þ Bfs


 �þ Bbf g þ Bsf g þ Btf g: (27)

At the free surface,

Bf


 � ¼ 0: (28)

At the fluid-structure interface,

Bfs


 � ¼ �qf Rfs

� �
�af g; (29)

where

Rfs


 � ¼
X

Sfs

Z :

�e

NTNsd�e; (30)

where Ns is the shape functions of gate corresponding to the nodes at the fluid-gate interface, and �af g is the
nodal accelerations vector.

At the bottom surface of fluid domain,

Bbf g ¼ 0: (31)

At the two side faces of fluid domain,

Bsf g ¼ 0: (32)

At the truncated boundary,

Btf g ¼ � 1

h0
Rti½ � �pf g; (33)

where

Rti½ � ¼
X

St

Z :

�e

NTfiN
� �

d�e: (34)

Combining all the boundary conditions in Eq. (27), Eq. (24) may be represented as follows:

Gi½ � �pf g ¼ �qf Rfs

� �
�af g; (35)
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where

Gi½ � ¼ G½ � þ 1

h0
Rti½ �: (36)

4.1.4 Coupled Motion of the Gate and the Fluid
Replacing �af g by �€�X

n o
in Eq. (36), the resulting equation is as follows:

Gi½ � �pf g ¼ qf Rfs

� � €�X
n o

: (37)

When the effect of dynamic pressure is considered, Eq. (11) may be written as follows:

M½ � €�X
n o

þ K½ � �Xf g ¼ fs

 �

; (38)

where fs

 �

is the forcing term developed due to fluid pressure at the interface. Since p ¼ N½ � �pf g and fs

 �

is
yielded as follows:

fs

 � ¼ �

X
Sfs

Z :

�e

Ns½ �Tpd�e ¼ � Rfs

� �T
�pf g: (39)

Eq. (38) may be rewritten as follows:

M½ � €�X
n o

þ K½ � �Xf g þ Rfs

� �T
�pf g ¼ 0f g: (40)

From Eq. (37), the following is obtained

�pf g ¼ qf Gi½ ��1 Rfs

� � €�X
n o

: (41)

Substituting �pf g in Eq. (40), the free vibration equation of the coupled problem can be expressed
as follows:

�M½ � €�X
n o

þ K½ � �Xf g ¼ 0; (42)

where

�M½ � ¼ M½ � þ qf Rfs

� �T €�X
n o

Gi½ ��1 Rfs

� �
: (43)

4.2 Linearized Free Surface
4.2.1 Boundary Conditions

Except for the boundary conditions at the top surface and at the truncated far boundary, all other
boundary conditions adopted here are the same as that of undisturbed free surface condition. At the top
surface (Bf), it is assumed that there is a linearized free wave, which is given by Linear wave theory.

@p

@n
h0; y; z; tð Þ ¼ �€p

g
: (44)
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4.2.2 Development of Far Boundary
The far boundary of the fluid domain may be considered at a large distance away from the lock gate

structure. The far truncated boundary may be developed using the Fourier half range cosine series by
solving Eq. (13) and can be represented as follows:

p ¼ 4qf a

h0

X1
m¼0

Sin �mð Þ
�m

h0

� �2 ðe
��m

z

h0ÞCosð�m
x

h0
Þ: (45)

The pressure gradient at the far truncated boundary may be represented as follows:

@p

@n
¼ @p

@n

� �
z¼L

¼ �p

h0
@i; (46)

where

@i ¼

P1
m¼0

Sin �mð Þ
�mð Þ2 ðe

��m
z

h0ÞCosð�m
x

h0
Þ

P1
m¼0

Sin �mð Þ
�mð Þ3 ðe

��m
z

h0ÞCosð�m
x

h0
Þ
; (47)

where x, y, and z refer the axis along the height, side, and length of fluid domain, respectively.

4.2.3 Finite Element Formulation
In the case of linearized free surface wave, the governing equations considered are the same as presented

in Eqs. (21)–(27). Here, the components of Eq. (27) remain unchanged except Bf


 �
and Btf g. Hence, at the

top free surface

Bf


 � ¼ �
X

Sf

Z :

�e

NTN
� �

d�e

2
64

3
75 €pf g

g
; (48)

and at the truncated boundary,

Btf g ¼ � 1

h0
Rtis½ � �pf g; (49)

where

Rtis½ � ¼
X

St

Z :

�e

NT@iN
� �

d�e: (50)

Combining all the boundary conditions in Eq. (27), Eq. (24) may be represented as follows:

Ei½ � €pf g þ Gis½ � �pf g ¼ �qf Rfs

� �
�af g; (51)
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where

Ei½ � ¼ 1

g

X
Sf

Z :

�e

NTN
� �

d�e

2
64

3
75 and Gis½ � ¼ G½ � þ 1

h0
Rtis½ �: (52)

4.2.4 Coupled Motion of the Gate and the Fluid
After replacing �af g by �€�X

n o
in Eq. (51), the resulting equation is defined as follows:

Ei½ � €pf g þ Gis½ � �pf g ¼ qf Rfs

� � €�X
n o

: (53)

Hence, Eq. (11) may be rewritten as follows:

M½ � €�X
n o

þ K½ � �Xf g ¼ fs

 �

; (54)

where the forcing term fs

 �

is

fs

 � ¼ �

X
Sfs

Z :

�e

Ns½ �Tpd�e ¼ � Rfs

� �T
�pf g: (55)

Substituting the fs

 �

in Eq. (54), the resulting equation is defined as follows:

M½ � €�X
n o

þ K½ � �Xf g þ Rfs

� �T
�pf g ¼ 0f g; (56)

€�X
n o

¼ � M½ ��1 K½ � �Xf g þ Rfs

� �T
�pf g

n o
: (57)

After rearranging the Eqs. (53)–(57), the symmetric matrices for the coupled system is yielded as follows:

K½ � 0

0
Ei½ �
qf

2
4

3
5 €�X

n o
€pf g

( )
þ

K½ � M½ ��1 K½ � K½ � M½ ��1 Rfs

� �T
Rfs

� �
M½ ��1 K½ � ½Gis�

qf
þ Rfs

� �
M½ ��1 Rfs

� �T
2
64

3
75 �Xf g

�pf g
� �

¼ 0f g
0f g

� �
: (58)

Eq. (58) is the coupled free vibration equation of the gate structure in which the Eigen frequencies are
evaluated by using Jacobi’s iteration technique. The iteration continues till the convergence up to third
decimal place. The evaluated frequencies of the lock gate are presented herein in the non-dimensional
form as

�2 ¼ qptpx
2b4p=Dp; (59)

where qp is the mass density of the gate material, x is the angular frequency of the gate, bp is the width of the
gate, tp is the thickness of the gate and Dp is the flexural rigidity of the gate material. Here Dp is taken as

Dp ¼ Et3p=12 1� l2
� �

; (60)

where E and l are the Young modulus and Poisson’s ratio of the gate material, respectively.
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5 Numerical Examples and Results

In order to verify the applicability of the present model, non-dimensional frequencies of lock gate are
evaluated and compared with published results. The gate material is isotropic, having the mass density of
7850 kg/m3, Young’s modulus of 2.0 × 105 N/mm2, and Poisson’s ratio of 0.3. The mass density of the
fluid is 1000 kg/m3. A number of examples are studied to establish the applicability of developed codes
to a wide variety of lock gate problems. To check the optimum mesh division, a convergence study is
carried out, which is necessitated to minimize the computational error in the evaluated frequencies of the
gate. Computational time depends on the hardware configuration of the computer. The results computed
here are using a personal computer of Lintel(R) Core (TM) i7-2600 CPU @ 3.4 GHz with 4.00 GB
RAM. The number of nodes on the interacting surface of the lock gate is decided, and consequently, the
fluid domain is discretized. Another convergence study is also carried out to measure the possible
closeness of the truncation boundary from the gate wall. Numerical problems are solved to investigate the
effects of varying dimensions of the fluid domain and the lock gate. Frequencies of the lock gate in
contact with the reservoir fluid differ considerably from those without fluid. A series of examples are
studied herein to demonstrate the precise results and to observe the effects of linearized free surface wave
on the natural frequencies of the lock gate, which is scanty in literature.

Example 1. This example is studied to select an optimummesh division, required to achieve a minimum
error in the evaluated frequencies of lock gate without fluid coupling. A square plate of size 1.0 m × 1.0 m
and thickness of 0.01 m is taken for the study, and the results are presented in the non-dimensional form. Both
eight and nine noded isoparametric plate bending elements with seven degrees of freedom at each node are
considered for evaluating the frequencies, and the results of fundamental frequency for different boundary
conditions are illustrated in Fig. 3. Keeping the computational time in mind, it is observed that when all
the edges are simply supported, results tend to converge at 6 × 6 mesh for 8-noded element and at 4 × 4
mesh for 9-noded element. Similarly, the results tend to converge at 10 × 10 mesh for 8-noded element
and at 5 × 5 mesh for 9-noded element when the gate is clamped on all edges. It is clear that the results
for 9-noded element converge at lower mesh size for both the boundary conditions. Hence, the 9-noded
simple supported gate can be discretized by 4 × 4 mesh and the clamped gate by 5 × 5 mesh. The same
mesh division can be adopted for the fluid domain to synchronize the nodes in between the fluid and the
gate. Since nine noded element is used to discretize the lock gate structure, the twenty-seven noded

Figure 3: Fundamental frequency of lock gate. (a) Simple supported plate. (b) Clamped plate
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hexahedron element can be used to discretize the fluid domain such that the nodes of fluid domain match
exactly with the nodes of lock gate at the interface.

Example 2. In this example, the natural frequencies of the lock gate without fluid coupling are evaluated
for both the boundary conditions. A square plate of size 1.0 m × 1.0 m and a thickness of 0.01 m is taken for
lock gate. A similar problem was solved by Zhou and Cheung [2] using Kirchoff’s plate bending theory with
a semi-analytical approach; Pani and Bhattacharyya [8] using Mindlin’s plate bending theory with finite
element approach. Present results are compared with the reported results for the similar type of geometry
and boundary conditions except for the element types in FEM. Lock gate frequencies for the first six
modes are presented in Tab. 1 and the graphical representations are illustrated in Fig. 4 for the reader’s
lucidity. One may see that the present results are found to be close proximity to the reported results.

Example 3. At the next step, the natural frequencies of the lock gate are evaluated when the gate
interacts with the reservoir fluid. The reservoir fluid is assumed to be undisturbed. Lock gate of size
1.0 m × 1.0 m × 0.01 m is used for the investigation. The first six modes of frequencies of lock gate in
contact with fluid are presented in Tab. 2. The present results are compared with the reported results, in

Table 1: Comparison of frequencies of a square lock gate in absence of fluid

Boundary Investigator Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

CCCC Pani et al. [8] 37.496 82.094 82.094 121.402 169.027 169.738

Zhou et al. [2] 36.007 73.460 73.460 108.370 131.770 132.330

Present result 35.964 73.832 73.832 108.617 136.180 136.847

SSSS Pani et al. [8] 20.081 52.590 52.590 84.643 116.216 116.216

Zhou et al. [2] 19.739 49.348 49.348 78.957 98.696 98.696

Present result 19.742 49.714 49.714 79.451 103.012 103.012

Figure 4: Frequencies of a square lock gate without contact with fluid. (a) Simple supported plate. (b)
Clamped plate
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which the geometry and boundary conditions of the problem domain match. Fig. 5 shows the comparison
of results for both the boundary conditions of the lock gate when in contact with the fluid. The results
shown in figure appear to be very close with that of Zhou et al. [2] and Pani et al. [8], who had solved
this problem using the different approaches, as mentioned above. Also, the results are found to be much
closer to lower modes of frequency and a little variation for higher modes. These observations certainly
validate the present development.

Example 4. This example is studied to assess the effectiveness of the far boundary of fluid domain,
developed for the possible closeness of the truncation boundary from the lock gate wall. Here a rectangular
lock gate is considered to evaluate the natural frequencies of gate for both the boundary conditions. The
plate size of 1.5 m width, 1.0 m height, and 0.01 m thick is taken for the investigation. The first six modes
of frequencies with varying positions of the truncated boundary are presented in Tabs. 3 and 4 for SSSS
and CCCC edges, respectively. The present results are compared with the reported results by Pani et al. [8].
For SSSS edges, the frequencies converge when the far boundary is located at a distance of 1.0 time the
height of the lock gate (i.e., the height of the fluid domain). But for CCCC edges, results are about to
converge at a distance of 1.5 times the height of the lock gate. Further, in the case of SSSS edges, the
results are observed to be on the higher side for lower modes of frequency and are closed for higher modes

Table 2: Comparison of frequencies of a square lock gate in contact with fluid

Boundary Investigator Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

CCCC Pani et al. [8] 25.960 67.072 67.623 104.983 142.936 149.136

Zhou et al. [2] 25.773 60.981 61.352 94.460 112.83 116.720

Present result 25.518 62.361 63.528 104.088 130.808 136.978

SSSS Pani et al. [8] 13.928 43.092 43.569 73.491 100.569 103.382

Zhou et al. [2] 13.558 39.944 40.381 67.683 84.169 86.493

Present result 14.365 44.469 45.669 77.783 95.017 97.703

Figure 5: Frequencies of a square lock gate in contact with fluid. (a) Simple supported plate. (b) Clamped plate
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of frequency. However, in the case of CCCC edges, the results are found to be much closer for lower modes of
frequency and are in the lower side for higher modes of frequency.

One may say that the developed code produces satisfactory results on different lock gate configurations
with varying locations of the truncated boundary. Motivated by the acceptability of present development,
established in the aforementioned example problems, some parametric studies are taken up.

Example 5. In particular, this example is studied to observe the variation of lock gate frequencies with
varying depth and width of reservoir fluid. The effect on frequencies due to reservoir fluid extends to all sides
of gate edges, shown in Fig. 6, is investigated. Where bs is the equal extent of fluid on both the sides (i.e., left

Table 3: Frequencies of simply supported lock gate for different positions of the truncated boundary

L/h0 Investigator Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.25 Pani et al. [8] 9.878 24.708 42.863 48.657 56.466 80.231

Present result 12.219 26.625 43.358 49.041 55.863 79.815

0.50 Pani et al. [8] 10.997 25.175 43.253 48.941 56.659 80.323

Present result 13.075 27.281 43.788 49.253 56.120 80.181

0.75 Pani et al. [8] 11.403 25.286 43.281 49.020 56.668 80.327

Present result 13.080 27.286 43.792 49.254 56.151 80.227

1.0 Pani et al. [8] 11.572 25.328 43.283 49.052 56.668 80.328

Present result 13.082 27.288 43.793 49.255 56.160 80.241

1.25 Pani et al. [8] 11.627 25.342 43.283 49.063 56.668 80.327

Present result 13.082 27.288 43.794 49.255 56.164 80.246

1.5 Pani et al. [8] 11.629 25.343 43.283 49.063 56.668 80.327

Present result 13.082 27.289 43.794 49.255 56.166 80.248

Table 4: Frequencies of clamped lock gate for different positions of the truncated boundary

L/h0 Investigator Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

0.25 Pani et al. [8] 20.085 39.018 67.250 68.893 83.123 108.984

Present result 23.121 40.069 65.780 67.359 79.547 105.051

0.50 Pani et al. [8] 22.072 39.587 67.752 69.384 83.328 109.088

Present result 23.591 40.476 66.189 67.962 79.961 105.249

0.75 Pani et al. [8] 22.769 39.717 67.921 69.418 83.337 109.094

Present result 23.590 40.381 66.277 67.942 79.950 105.247

1.0 Pani et al. [8] 23.055 39.765 67.993 69.421 83.338 109.094

Present result 23.522 40.591 66.791 67.841 79.871 105.242

1.25 Pani et al. [8] 23.148 39.781 68.017 69.421 83.338 109.094

Present result 23.586 40.270 67.159 67.926 79.939 105.246

1.5 Pani et al. [8] 23.150 39.781 68.017 69.421 83.338 109.094

Present result 23.636 40.629 67.439 67.993 79.990 105.249
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and right) of the lock gate, dt is the extent of fluid domain above the top, and db is the depth of the fluid domain
below the base of the lock gate. A square lock gate of size 1.0 m × 1.0 m and a thickness of 0.01 m is taken for
both SSSS and CCCC edges. At each depth of fluid (h0) i.e., 1.0, 1.25, 1.5, 1.75 and 2.0 m, width of fluid (b) is
varied as 1.0, 1.5 and 2.0 m and the length of truncated boundary is kept invariable as 1.0 m for SSSS edges.
Further, at each depth of fluid (h0) i.e., 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m, width of fluid (b) is varied as 1.0, 1.4 and
1.8 m and the length of truncated boundary is kept invariable as 1.5 m for CCCC edges. The variations of depth
and width of the fluid domain for both the edges come naturally as the simply supported gate is discretized by 4
× 4 mesh and the clamped gate by 5 × 5 mesh. Frequencies of the gate for SSSS and CCCC edges are presented
in Tabs. 5 and 6, respectively. It is observed that the frequency decreases with the depth of fluid and increases

Figure 6: Model of reservoir fluid extending beyond the edges of lock gate

Table 5: Frequencies of simply supported lock gate with varying fluid depths

h0 b Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

1.0 1.0 14.365 44.469 45.669 77.783 96.017 97.703

1.5 14.430 44.657 46.364 78.070 96.463 97.717

2.0 14.445 44.698 46.417 78.114 96.693 97.721

1.25 1.0 14.031 43.398 45.383 77.682 95.075 97.688

1.5 14.181 43.918 46.058 77.995 95.792 97.706

2.0 14.230 44.068 46.150 78.054 96.171 97.712

1.5 1.0 13.792 42.581 45.332 77.594 94.374 97.676

1.5 14.014 43.367 45.952 77.930 95.270 97.697

2.0 14.098 43.644 46.047 78.003 95.764 97.705

1.75 1.0 13.573 41.863 45.315 77.514 93.771 97.667

1.5 13.862 42.856 45.898 77.871 94.809 97.689

2.0 13.981 43.252 45.989 77.956 95.398 97.698

2.0 1.0 13.361 41.214 45.308 77.438 93.238 97.658

1.5 13.714 42.372 45.866 77.815 94.387 97.683

2.0 13.868 42.875 45.951 77.912 95.059 97.693
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with the width of fluid. This is caused due to the effect of the kinetic energy of the surrounding fluid. These
observations are clearly shown in Fig. 7, which illustrates the fundamental frequency of lock gate with
varying dimensions of the fluid domain.

Table 6: Frequencies of clamped lock gate with varying fluid depths

h0 b Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

1.0 1.0 25.518 63.361 63.528 104.088 130.808 136.978

1.4 25.548 64.066 63.609 104.129 130.949 136.983

1.8 25.583 64.256 63.616 104.208 131.055 136.984

1.2 1.0 24.239 61.509 63.455 103.538 130.166 136.973

1.4 24.520 62.639 63.556 103.832 130.589 136.980

1.8 24.637 63.048 63.572 103.963 130.759 136.982

1.4 1.0 23.446 60.697 63.423 103.221 129.791 136.970

1.4 23.911 61.891 63.529 103.585 130.298 136.978

1.8 24.127 62.421 63.549 103.760 130.522 136.980

1.6 1.0 22.756 60.120 63.402 102.949 129.473 136.968

1.4 23.392 61.342 63.511 103.368 130.044 136.976

1.8 23.705 61.946 63.534 103.580 130.311 136.979

1.8 1.0 22.147 59.648 63.386 102.714 129.196 136.967

1.4 22.913 60.884 63.497 103.174 129.817 136.975

1.8 23.316 61.543 63.520 103.415 130.118 136.978

2.0 1.0 21.576 59.241 63.374 102.508 128.953 136.965

1.4 22.462 60.482 63.485 102.999 129.611 136.974

1.8 22.946 61.185 63.509 103.263 129.941 136.976

Figure 7: Fundamental frequency of lock gate with varying width and depth of fluid domain. (a) Simple
supported plate. (b) Clamped plate
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Example 6. As the natural step forward, next to the undisturbed free surface condition, the linearized
free surface condition is considered for investigation. Frequencies of a square lock gate are evaluated for
both the boundary conditions. The size of lock gate is 1.0 m × 1.0 m × 0.01 m. The truncated length of
fluid domain is considered to be 1.0 m for the simple supported gate and 1.5 m for the clamped gate. The
first six modes of frequencies are demonstrated in Fig. 8 for both SSSS and CCCC edges. It is observed
that the frequency of the gate (Fig. 4), falls considerably when the effect of the linearized free surface
condition is taken into consideration. This is certainly because of the increase in the surrounding fluid’s
kinetic energy due to the involvement of convective mass. These values are very low and sensitive to the
dam-reservoir system, which may be very critical during the small-magnitude earthquakes. One may see
that the variation of the plot is not similar to that of undisturbed free surface condition (Fig. 5).

The fluid may extend beyond the edges of the lock gate during natural disasters. Further, the frequency
of lock gate with varying fluid domain dimensions considering the linearized free surface condition is
investigated in the following examples.

Example 7. This example is studied to observe the variation of frequencies of the lock gate with varying
depth of the fluid domain. Frequencies of the gate are evaluated for both the boundary conditions. A lock gate
of size 1.0 m × 1.0 m × 0.01 m is taken for the investigation. The first six modes of frequencies are illustrated
in Fig. 9 for SSSS and CCCC edges. It is observed that the frequency decreases with the increase in depth of
the fluid domain. It may be caused as the size of the free surface remains the same, and so is the effectuality of
the amount of convective mass. The results drop-off for fundamental frequency and converged for higher
modes of frequency when the depth of the fluid is increased.

Example 8. Next to the varying depth of fluid, frequencies of the lock gate are evaluated with a varying
fluid domain width. The size of the lock gate is 1.0 m × 1.0 m × 0.01 m. The results of the first six modes of
frequencies are demonstrated in Fig. 10 for both SSSS and CCCC edges. For undisturbed free surface
condition, the frequencies increase with the width of the fluid domain. But for linearized free surface
condition, the frequency decreases with the increase in width of the fluid domain, and the frequencies
tend to converge when the width of the fluid is increased. It may be because when the width of fluid
domain is increased, the size of free surface increases, thereby convective mass.

Figure 8: Frequencies of lock gate when interacting with fluid
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6 Conclusions

A three-dimensional finite element model was developed based on pressure formulation for the reservoir
fluid and displacement for the lock gate structure. This is important since the higher order plate element
interacting with the 27-noded hexahedron fluid element. The condition developed at the far boundary of
the fluid domain was used efficiently for the numerical truncation of an infinite extent of the fluid domain
to a finite one. This concept reduces the computational time to a great extent. The frequencies of the lock
gate structure were determined considering the effects of reservoir fluid. Many findings were observed
when the gate is interacted with or without the reservoir fluid. The results may be useful to the designers
for solving the problem of the lock gate structure. On the basis of the present study, the following
conclusions are drawn.

Figure 9: Frequencies of lock gate with varying depth of fluid. (a) Simple supported plate. (b) Clamped plate

Figure 10: Frequencies of lock gate with varying width of fluid. (a) Simple supported plate. (b) Clamped plate
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� The frequencies of gate reduce significantly due to fluid presence; when compared in the absence of fluid.
� For simply supported edges, the far boundary is located at a distance of 1.0 time the height of the lock

gate, but for clamped edges, it is located at a distance of 1.5 times the height of the lock gate.

� Consideration of the fluid that extends to each side of the gate increases the frequencies of the lock
gate and the frequencies gradually remain constant when the extension on each side becomes equal to
that of the width of the gate. However, the effect of fluid on each side is significant for lower modes of
frequencies, but this effect gradually vanishes for higher modes.

� The effect of fluid below the bottom edge of the gate is significantly less and may be neglected.
However, fluid above the top edge affects the lower modes significantly, and insignificantly small
for higher modes of frequencies

� When the extent of the fluid domain increases above the gate’s top edge, the frequencies reduce and
the values appear to be converged when the depth of fluid domain above the top edge exceeds twice
the height of the gate.

� The frequencies of the lock gate drop considerably when the linearized free surface condition is taken
into account. The variations are significant when compared to the results for undisturbed free surface
condition. However, the variation is quite small for the linearized free surface condition because of the
convective mass involvement.
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