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With the growth of information technology and computer networks, there is a vital need for optimal design of distributed databases with the aim of performance
improvement in terms of minimizing the round-trip response time and query transmission and processing costs. To address this issue, new fragmentation,
data allocation, and replication techniques are required. In this paper, we propose enhanced vertical fragmentation, allocation, and replication schemes
to improve the performance of distributed database systems. The proposed fragmentation scheme clusters highly-bonded attributes (i.e., normally accessed
together) into a single fragment in order to minimize the query processing cost. The allocation scheme is proposed to find an optimized allocation to
minimize the round-trip response time. The replication scheme partially replicates the fragments to increase the local execution of queries in a way that
minimizes the cost of transmitting replicas to the sites. Experimental results show that, on average, the proposed schemes reduce the round-trip response
time of queries by 23% and query processing cost by 15%, as compared to the related work.
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1. INTRODUCTION

Today, distributed databases have developed in business
organizations because of their advantages such as consistency,
scalability, availability, and accessibility [1].

With the growth of communication and information techno-
logy, DDBMS becomes increasingly essential, leading to the
need for fast and efficient access to distributed databases [2]. As
these databases are located in different servers and connected
with different link speeds, they can profoundly impact the
response time and subsequently, the transmission cost and
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performance of distributed databases. So, there is a need for
an effective design of a distributed database in order to achieve
the desired reliability and performance.

There exists considerable work such as [4–9] that aims at
addressing the fragmentation or allocation/replication problem
separately. However, few works such as [10,11,12,14], have
addressed all three issues integrally. Moreover, most recent
works have concentrated on minimizing the transmission
cost, access cost, or the query processing cost and are not
concerned about minimizing the delays incurred by transmission
and processing times (including queuing delays), which are
important for Internet-based systems [16]. Few works such as
[14–16] have considered the importance of minimizing response
time in distributed database design. Round-trip response time is
defined as the time elapsed between the arrival of a query to
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a network site and the time when the response to the query is
received at the query source. In other words, round-trip response
time consists of transmitting a query from its source site to a
server site, processing the query and generating a response at
the server site, and transmitting the response back to the source
site [14]. Also, most works have proposed heuristic algorithms
for addressing DDB fragmentation and allocation, and only a
few have proposed mathematical programming formulations.

In this paper, we address the three above mentioned issues
in a distributed database by proposing vertical fragmentation,
allocation, and replication schemes to minimize the round-trip
response time. The contributions are summarized as follows:

– We propose a vertical fragmentation scheme that partitions
the data into fragments such that bonded attributes (i.e.,
accessed together by the queries) locate in a single
fragment, thus reducing the access cost to those attributes
by the queries. The proposed scheme utilizes a weighted
graph (with attributes as the vertices and the bonds
between attributes as edges) and partitions it to subgraphs
(i.e., fragments) with maximum connectivity between the
relevant vertices (i.e., attributes) of each partition. The
graph partitioning is done in a way that prevents the creation
of too small or too big partitions. The fragmentation scheme
aims to minimize the query processing cost. More details
can be found in Section 4.1.

– We propose a static allocation scheme that takes advantage
of simulated annealing metaheuristic technique to solve
the NP-hard problem of optimized allocation to minimize
the round-trip response time. Instead of considering a
random allocation sequence for the initial allocation in the
simulated annealing process, the allocation scheme creates
a targeted initial allocation pattern by considering the
fragment access ratios and allocating fragments with higher
access ratios to the sites with higher processing speeds. This
targeted initialization will decrease the required time for the
simulated annealing algorithm to find the optimal allocation
pattern. Moreover, in order to avoid the bottleneck problem
(allocating high demand fragments to low processing speed
sites), the proposed allocation scheme considers the site
capacity constraints.

– We propose a replication scheme that performs partial
replication of fragments to increase the local execution of
queries. The fragments are replicated in a way to minimize
the cost of transmitting replicas to the sites. In order to
find an optimal replication solution, the proposed scheme
utilizes the simulated annealing technique and considers
two constraints:

i) a fragment is replicated to a site only if there is a need
for the fragment on that site and

ii) the fragment is replicated to a site only if the site
capacity constraint is preserved.

The remainder of the paper is organized as follows: Section 2
reviews the works concentrating on vertical fragmentation,
allocation, and replication in distributed database design.
Section 3 expresses the preliminaries and basic concepts
referenced throughout the paper. The detailed description of

the proposed approach is explained in Section 4. Section 5
presents the simulation results and the validation of the proposed
approach as well as a comparative. Finally, Section 6 concludes
the paper.

2. RELATED WORK

Fragmentation and allocation have been known as the main
procedures for reliable performance and an efficient design for
a distributed database and investigated in many articles. The
work in [4] developed an integrated methodology for frag-
mentation and allocation, which incorporated concurrence
control and communication network cost in distributed environ-
ments. Authors in [11] proposed a clustering-based technique
for vertical fragmentation and allocation in distributed database
systems. Their proposed scheme created query clusters to form
fragments. They assume that each fragment is a set of attributes
accessed together by a particular query Similarly, authors in [12]
proposed a heuristic approach to reduce transmission costs of
distributed queries. They also proposed a site clustering algo-
rithm to ensures the creation of highly-balanced clusters. They
also suggested several advanced allocation scenarios with data
replication consideration. The work in [17] proposed a new
vertical fragmentation algorithm using a graphical technique and
an Attribute Usage Matrix (AUM), which represents the essential
queries whose primary purpose, unlike iterative binary partition-
ing methods, is to create all fragments by one iteration. The work
in [18] proposed an algorithm to measure the similarity between
any pair of attributes. This method clusters attributes into sub-
relations, which are called fragments. For this purpose, the
relations are divided into sub-relations at the design cycle. The
works in. [19, 20] presented an objective function to evaluate
the “goodness” of fragmentation algorithms. The work in [21]
developed a vertical fragmentation approach where an attribute
affinity table was used as input to the proposed approach. A
dynamic table for fragmentation and allocation was proposed
in [22], which monitors the access pattern of network sites to
data tables and utilizes it to perform fragmentation, replication,
and re-allocation to maximize the number of local accesses. The
work in [23] presented a mathematical optimization model
called DFAR that unifies the fragmentation, allocation and
dynamical migration of data in distributed database systems
considering the storage capacity of network sites. Their model
utilizes the Threshold Accepting algorithm to solve the DFAR
problem. The works in [14–16] presented a new mathematical
model for the fragmentation and the allocation problem, called
VFA-RT, which aims to minimize the round-trip response time
of queries. VFA-RT model is made of a non-linear objective
function and a group of constraints. In order to solve the model,
Threshold Accepting (TA) and Tabu Search (TS) metaheuristic
algorithms were used. The work in [24] proposed the Adaptive
Distributed Request Window Algorithm (ADRW) to achieve
fragmentation and dynamic allocation of data. This approach
is compatible with the access patterns changes of requests for
attributes and makes decisions on the replications according to
their “read/write” requests for data and total servicing part. The
purpose of this algorithm is to adjust data allocation patterns to
reduce the total servicing cost of the full read/write requests of
data. The work in [25] presented a genetic algorithm approach
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Table 1 Summary of Related Work.
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addressed

Fragmentation * * * * * *
Allocation * *
Fragmentation + Allocation * * * * *
Re-allocation
Replication * * *

Value to
minimize

Query Transmission Cost * * * * *
Query Processing Cost * * *
Round-trip Response Time * * *

to solve the combined problems of vertical fragmentation and
access path selection. Choosing the access path is a kind of
mechanism which is capable of conducting an effective search
for the physical sites of data. The work in [26] presented a new
heuristic approach for fragmentation. This approach reduces the
transfer cost of fragments to different sites using a mathematical
model. In this approach, fragmentation and allocation are done
simultaneously. Authors in [7] propose a linear approach to
distributed database optimization that gathers incremental online
knowledge about data access patterns and database statistics
for online re-allocation of the fragments in order to continually
optimize the query response time. In [6], the authors proposed a
method based on a particle swarm optimization algorithm to
solve the data allocation problem that aims to minimize the
query execution time and transaction cost. In [27,28] authors
discussed the data allocation issue in the purpose of minimizing
data transmission across network sites using an ant colony
optimization algorithm. The proposed procedure in [8] was
a vertical fragmentation model with the two-phase allocation
process. Unlike most earlier studies, the tradeoffs between
different allocation scenarios were discussed for finding an
optimal way of attribute assignment over sites. However, the
model presented in [9] was an extension for [8] and could
considerably reduce communication costs and query response
time.

The work in [5] considered the data allocation problem
in distributed databases where the query execution strategy
affects allocation decisions. Authors in [29] propose a vertical
partitioning algorithm that uses graphical techniques and starts
from the attribute affinity matrix by considering it as a
complete graph. Then, forming a linearly connected spanning
tree, it generates all meaningful fragments simultaneously by
considering a cycle as a fragment.

Table 1 summarizes the most relevant and recent works
discussed above. As can be observed, many works have
only dealt with the fragmentation problem, and many works
have addressed the integration of fragmentation and allocation
problems. However, few works have considered addressing
the fragmentation, allocation, and replication problems inte-
grally. Replicating fragments has been shown to result in more
reliability, accessibility, traffic reduction of network, increase
of scalability, and better performance compared to the lack of
replications [1, 22, 29]. In this article, we are going to propose
solutions for all these three issues.

Moreover,most of the works have concentrated on minimizing
the query processing/transmission cost, and only a few (e.g.,
[14]) have dealt with round trip time minimization. In our
proposed allocation scheme, we also consider minimizing this
parameter. It is worth mentioning that our work is different from
the works in [14–16] since we address the replication problem
as well as the fragmentation and allocation problems. Moreover,
we have some innovations in the fragmentation and allocation
schemes compared to other related works. More detail about the
proposed schemes can be found in Section 4.

3. PRELIMINARIES AND ASSUMPTIONS

3.1 Basic Definitions:

Vertical fragmentation divides an original relation (DB table)
into some sub-relations (fragments) in a way that the combi-
nation of the fragments generates the primary relation [1]. If
R denotes a relation with a set of attributes (columns) A =
{A1.A2. . . . AL}, vertical fragmentation is partitioning R into
some sub relations Fi , such that Fi s are derived from Equation 1:

Fi =
∏

PK ,Ai
R ∀ Ai ∈ A

R = F1∞F2∞ . . .∞FN

(1)

Where
∏

is the projection operator of relational algebra
[1], and PK is the primary key that should be replicated in
all fragments. Relation R should also be reconstructable by
applying the join operator ∞ on the resultant sub-relations (i.e.,
fragments), as illustrated in the above Equation. So, vertical
fragmentation on a relation R is defined as determining sub-
relations F1, F2, . . . , FN , such that query execution cost is
optimized concerning some criterion (here, minimizing the
query processing cost).

Since vertical partitioning puts in one fragment those attributes
usually accessed together, there is a need for some measure
that would define more precisely the notion of “togetherness”
[1]. Query execution frequency (f) and access frequency (the
frequency of accessing an attribute by a query) are two crucial
factors that define this notion. For each query Qi (1 ≤ i ≤ K )

and each attribute A j (1 ≤ j ≤L), we associate an attribute
access value, which equals to 1 if query Qi references attribute
A j , and zero otherwise. The set of all access values can be
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Table 2 Notation Description.

Notation Description
S The set of sites (sites), S = {S1, S2, . . . SSN }
F The set of fragments, F = {F1, F2, . . . FN }
LFi Number of attributes in fragment Fi (1 ≤ i ≤ N)

LSj Number of fragments in site SJ (1 ≤ j ≤ SN)

Q The set of important queries, Q = {Q1, Q2, . . . Qk}
A The set of attributes, A = {A1, A2, . . . AL}
AAM The K × L matrix showing the attribute access values (which are either 1 or 0)
fqi The execution frequency of query Qq on site Si (expressed in queries/sec.)
-
∫

q The execution frequency of query Qq

1/Mq Mean length of query Qq (expressed in bits/query)
1/MR Mean length of query response (expressed in bits/response)
Cij Transmission speed between site Si and site Sj (expressed in bits/sec.)
C j The procession capacity of site Sj (expressed in queries/sec.)
Y jq The existence/non-existence of one or more attributes used by query q in site j (is either 1 or 0)
ABM The L × L matrix showing the number of queries that have accessed two attributes together (i.e., bound attributes)
Wij The number of attributes existing in local fragment Fi and to which the query Q j accesses.
Rir j Set of relevant attributes not existing in local fragment Fi and must be accessed remotely by query Q j in fragment Fr

nir j Total number of attributes that are in fragment Fi accessed remotely with respect to fragment Fr by query Q j

Ri j The numbebr of relevant attributes not existing in local fragment Fi and must be accessed remotely by query Q j .
ni The number of attributes that exist in fragment Fi .
Ti j Transmission cost between site Si and site Sj .
M Kq The number of executions of query Qq

PKq The ratio of execution of query Qq to the total number of queries’ executions
CSj The storage capacity of site Sj .
AF M The L × N matrix showing whether an attribute belongs to a fragment or not
QF M The K × N matrix showing whether a query needs a fragment to be executed.
FSM The N × SN matrix showing whether a fragment is allocated to a site
AR j The access ratio of all queries to Fragment Fj

AV A vector of size N showing the access ratios (ARs) of all fragments

represented by a K × L matrix called AAM1 as expressed by
Equation 2.

AAM(Qi , A j ) =
{

1, if an attribute A j is accessed by Qi

0, Otherwi se
(2)

Similarly, we define an attribute bond value that measures
the strength of an imaginary bond between the two attributes.
Attribute bond value represents the number of times two
attributes are accessed together by all queries at all sites. The
set of all bond values can be represented by a L × L matrix
called ABM2, as expressed by Equation 3.

ABM(Ai , A j ) =

⎧
⎪⎨

⎪⎩

∑K
q=1 AAM(Qq , Ai )∗

AAM(Qq , A j ) i �= j

0, Otherwi se

(3)

Attributes that are accessed by queries are called relevant
attributes, and every fragment that contains most of the relevant
attributes is defined as the local fragment [25]. Wij shows
the number of attributes existing in local fragment Fi and to
which the query Q j accesses. The number of attributes not
locating in the local fragment Fi must be accessed remotely
by query Q j in fragment Fr are defined by Rir j . Note

1Attribute Access Matrix
2Attribute Bond Matrix

that in a typical environment, there may be many queries
being executed. However, typically, only important queries (for
example, 20% of the whole active queries that have made 80%
of data accesses) have been taken into consideration [1]. Table 2
presents a detailed description of the notations used in the paper.

3.2 Assumptions:

In this paper, we assume of having a client-server architecture
where the server is responsible for performing the proposed
fragmentation and allocation schemes, and clients (i.e., sites)
store the fragments that are defined and allocated by the
server. We also assume a static environment in which, the
queries that are to be performed are read-only (i.e., do not
modify the database) and are known beforehand (i.e., there
exists information about what queries are going to be performed
on what sites and what attributes are going to be accessed by
these queries). We also assume that fragments are disjoint for
all attributes except for the primary key PK, which should be
repeated in all fragments of a relation (for reconstruction).

3.3 Cost Model

As mentioned previously, vertical fragmentation and allocation
are to be done to minimize the query processing costs. The
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cost of a distributed query processing can be expressed by two
factors: local query processing cost (cost of accessing irrelevant
local attributes) and remote query processing cost (the cost of
accessing the remote relevant attributes). In this article, we
consider the cost model in which, the cost of executing operations
such as select, project, and join are not considered. In other
words, since CPU time is negligible in comparison with I/O
time, we do not consider the processing cost (which includes
the time of executing operations such as select, and join) and
only consider the cost of accessing the attributes by these
operations.

In vertical fragmentation, a query does not usually require
retrieving all the attributes of a fragment during query process-
ing. Each attribute that is not required by a query but exists
in the local fragment causes irrelevant local attribute access
cost. Attributes that are not required to be accessed by a query
(but accessed because they reside within the retrieved fragment)
are called irrelevant attributes. The existence of the irrelevant
attributes in the local fragment may lead to the growth of the
number of local access. This, in turn, may result in the rise of
the number of disk access, and hence, the local query processing
cost increases. Equation 4 expresses the irrelevant local attribute
access cost, as described in [17]:

Costlocal =
N∑

i=1

K∑

j=1

[
f 2

j × |Wij | ×
( |Wij |

ni

)]
(4)

Similarly, there are attributes that are required by the queries
but do not exist in the local fragment. These attributes are called
relevant remote attributes. A greater number of relevant attributes
that are in the remote fragments may also lead to an increase in
the remote query processing cost. [17] Equation 5 expresses the
relevant remote attribute access cost [19]:

Costremote =
K∑

j=1

min
i=1,N

N∑

r=1
r �=i

[
f 2
j × |Rir j | ×

( |Rir j |
nir j

)]
(5)

So, the total query processing cost, denoted by TCost, is
expressed by Equation 6, as mentioned in [19]. This parameter
will be further used in Section 5 in order to evaluate the
performance of the proposed fragmentation scheme.

T Cost = Costlocal + Costremote (6)

4. PROPOSED VERTICAL
FRAGMENTATION, ALLOCATION
AND REPLICATION SCHEMES

In the following, we describe the proposed fragmentation,
allocation, and replication schemes. The fragmentation scheme
partitions attributes into fragments to minimize the query
processing cost. The allocation component then optimally
allocates the fragments to the sites to minimize the round-
trip response time. Once the allocation is done, data that are
commonly accessed by queries are replicated on the query’s
local site to increase the locality of reference and reduce the
communication cost. A detailed description of each component
has been presented below.

4.1 Vertical Fragmentation Scheme

The fragmentation scheme is responsible for dividing a database
into fragments to minimize the query response cost. As
mentioned in Section 3.3, the query processing cost is affected
by the cost of accessing irrelevant local attributes and the cost
of accessing relevant remote attributes. So, in order to reduce
these costs, it is required that relevant attributes which are
accessed together by the queries are located in a fragment. The
intuition behind this idea is that fragmenting relevant attributes
together will decrease the number of irrelevant attributes within
that fragment, thus reducing the irrelevant access cost. Besides,
locally fragmenting relevant attributes reduces the need for a
query to access them remotely, thus reducing the relevant remote
attribute cost. The fragmentation process, as proposed by this
component, is as follows.

In order to identify the attributes that are to be located within
a fragment, we make use of AAM. As mentioned previously in
Section 3, AAM defines whether a query accesses an attribute or
not. Next, ABM is constructed using Equation 3. Remember that
ABM defines the number of times two attributes are accessed
together by all queries running on a site. A more detailed
description of AAM, ABM and bond values has been presented
previously in Section 3.

In the next step, Graph G is created based on ABM in
which, vertices resemble attributes and edges connect those
two vertices (i.e., attributes) that are bonded together. The
weight of an edge between two bond attributes Ai and A j

is obtained from ABM [i, j]. Once the graph is created, it is
partitioned into subgraphs. As mentioned above, putting highly-
bonded attributes in one partition (i.e., fragment) results in the
reduction of access cost. So, partitioning is done in a way
that each subgraph has the maximum bond values between its
vertices. These subgraphs are then considered as fragments. So,
in order to do the partitioning, at the first step, we find the
edges with the lowest weights and remove them from the graph
provided that it does not lead to the graph disconnection. This
process can be expressed as finding a maximal spanning tree for
the graph, which connects all the graph vertices and includes the
edges with higher weights (i.e., bond values).

Once the maximal spanning tree is constructed, we begin
partitioning it to subgraphs. A useful parameter in partitioning
is the partition size. Partition size is defined as the number of
attributes that reside inside a partition. If the partition size is
too large, it leads to an increase in the irrelevant local attribute
access cost. The same stands for the partition size being too
small, which leads to the increase in the relevant remote attribute
access cost. In order to create subgraphs, we start removing the
edges with the lowest weights. If there are multiple edges with
equal weights, we remove the edge that partitions the graph into
sub-partitions (i.e., subgraphs) with the least difference in their
partition size. This will prevent the creation of too small or too
large partitions. The partitioning is done until N − 1 edges are
removed, resulting in the creationof N subgraphs. Each subgraph
is considered as a fragment.

The output of the fragmentation component is the AFM3

(expressed in Equation 7), which is a L × N matrix that shows
whether an attribute belongs to a fragment or not.

3Attribute Fragment Matrix
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AFM(Ai , Fj ) =
{

1, if an attribute A j belongs to Fragment Fj

0, Otherwi se
(7)

4.2 Allocation Scheme

Once fragments are created, the next step is allocating the
fragments to the sites. Such allocation is done in a way to
minimize the round-trip response time. In other words, we are
looking for an optimal fragment allocation that minimizes the
round-trip response time.

As described previously, round trip response time is defined
as the time elapsed between the arrival of a query to a site
and the time the query response is received at the query
source. In other words, the average round-trip response time
using is described by three terms: average transmission delay
of queries incurred by their transmission from query sources to
the servers, average processing delay of queries at the servers,
and average transmission delay of queries response back to their
sources. Specifically, the objective function, as described in
[14], is minimizing round trip response time (RRT) described as
Equation 8.

RRT = 1∑
j

∑
q

∑
i fqi y jq

⎡

⎣
∑

i j

1
Mq Ci j∑
q fqi y jq

− 1

+
∑

j

1
C j∑

q
∑

i fqi y jq
− 1

+
∑

i j

1
MRCij∑
q fqi y jq

− 1

⎤

⎦ (8)

As mentioned before, the general problem of minimizing
round trip response time is NP-hard. Therefore the proposed
solutions are based on heuristics. In this paper, we have utilized
the simulated annealing (SA) metaheuristic approach to find
an optimal value for RRT. The SA algorithm starts from an
initial solution and calculation of the objective function. It then
improves the value of the objective function in order to search
for an optimal solution.

In our proposed allocation component, instead of considering
a random fragment allocation pattern as the initial solution,
we provide an efficient initial allocation pattern that considers
fragment priorities in the initial allocation. More details are
described in Section 4.2.2.

4.2.1 Bottleneck Problem

In real situations, server sites may have different processing
speeds. Considering the minimization of round-trip response
time as an objective inherently leads to the selection of sites with
higher processing speeds to decrease the processing delay. This
may result in the heavily-loaded sites with a massive amount of
traffic, which leads to the increase in the transmission delay of
queries from query sources to the server sites. This is an example
of a bottleneck problem.

In order to avoid the bottleneck, we assume that sites have
storage capacity constraints, and this constraint should be
considered in fragment allocation. In other words, the sum of
the sizes of all fragments assigned to site Sj must not exceed the
storage capacity of site Sj (CSj ).

Let us assume that at j denotes whether attribute At is allocated
on site Sj or not (if yes, equals to 1; if not, equals to zero), lt is
the length of attribute At in bytes, and CA is the cardinality of
the relation R, then the mean size of all fragments on site S j (in
bytes), denoted as µS j is calculated by Equation 9.

µS j = C A
L∑

t=1

lt · at j (9)

The above-mentioned capacity constraint is then defined by
Equation 10.

µS j ≤ CSj , ∀ j ; 1 ≤ j ≤ SN (10)

This constraint should be considered both in the formation of
the initial allocation pattern (as the initial solution) and during
the execution of the SA algorithm to find the optimal allocation
pattern.

4.2.2 Fragment Prioritization

Consider a situation in which, there is a fragment that is widely
accessed by a large number of queries. If such a fragment is
allocated to a site with low processing capability, it results in
an increase in processing delay, which contradicts the allocation
objective (i.e., minimizing the round-trip response time). So,
there is a need to compute the access ratio of each fragment
(by all queries) and give allocation priority to those with higher
access ratios. In order to do so, the following steps should be
done:

1. At first, we calculate the number of executions of query
Qq , denoted by MKq , which is the sum of the execution
frequency of query Qq per all sites, as expressed by
Equation 11.

M Kq =
SN∑

i=1

fqi (11)

2. We then calculate the ratio of the execution of query Qq to
the execution of all queries, denoted by PKq , as expressed
by Equation 12.

PKq = M Kq∑K
q=1 M Kq

(12)

3. Next, we need to define whether the query needs a fragment
or not. This is done by calculating a matrix called QFM4

as expressed by Equation 13, in which, operator � denotes
the Boolean product.

QF M = AAM � AF M

QF M(Qi , Fj ) =
{

1, if query Qi needs Fragment Fj

0, Otherwi se

(13)

4. In the next step, we compute the access ratio of each
fragment Fi , denoted by ARi , as shown in Equation 14.

ARi =
K∑

q=1

QF M[q][i ] × PKq (14)

4Query Fragment Matrix
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5. Based on the access ratios obtained from the previous
step, we are now able to create an access ratio vector of
sizeN,denoted by AV, in which, each element AV[i] is
initialized by the access ratio of Fragment Fi , i.e., AV i =
ARi . The access ratios can be regarded as the priority of
fragments in the allocation process.

6. Finally, in order to create an initial allocation pattern,
we first create an ordered list of sites based on their
processing speed and then allocate the fragments to the
sites based on their priorities: the fragment with the highest
priority (e.g., highest access ratio) will be allocated to
the site with the highest processing speed. This step is
done until all fragments are allocated. Note that in order
to prevent the bottleneck problem discussed above, the
capacity constraints of sites, as described in Section 4.2.1,
should be considered.

The result of the above steps is an initial allocation pattern
of fragments to the sites, described as FSM5, as expressed
by Equation 15.

FSM(Fj , Sj ) =
{

1, if fragment Fi is allocated to node Sj

0, Otherwi se
(15)

This initial allocation is then fed to the SA algorithm to find
an optimal fragment allocation.

4.3 The Replication Scheme

As mentioned previously, fragment replication allows the
retrieval queries to be processed locally and quickly, which
results in the reduction of transmission time, and subsequently,
the round-trip response time of query executions.

In our proposed replication method, we replicate fragments to
the sites to minimize the total transmission cost of replicas. The
total transmission cost (Costtr ) is expressed by Equation 16.

Costtr =
∑

j

∑

k

∑

i

Ti j Si zek FSMki Xkj , ∀i �= j (16)

Where Ti j is the cost of transmitting a byte from site Sj to site
Sj , Si zek is the size of fragment Fk in bytes,FSM is the Fragment
Site Matrix which is initial allocation pattern of fragments to the
sites, and Xkj is a decision making variable, which is 1 or 0,
indicating whether fragment Fk should be replicated to site Sj

or not.
In the replication method mentioned earlier, there are a set

of constraints that should be considered. The first constraint, as
expressed by Equation 17, denotes that a fragment is replicated
on a site if there is a need for the fragment on that site. In order to
determine whether a fragment is needed on a site, we consider
two parameters. The first parameter is ∅q j , which equals 1 if
the execution frequency of a query Qq on a site Sj (i.e., fq j )
is greater than zero, and 0 otherwise. The second parameter is
QF Mqk , which, as described by Equation 13, specifies whether
a query Qq needs a fragment Fk or not. The multiplication of
these two parameters denotes whether a fragment Fk is needed

5Fragment Site Matrix

by query Qq on site Sj . So, if a fragment is not needed by any
of the queries running on a site, Xkj (which indicates whether
fragment Fk should be replicated to site Sj) should be zero. The
second constraint is similar to the one expressed by Equation
10. Replicas are stored in a site as long as the storage capacity
constraint of the site is not violated. In other words, the fragment
will be replicated on a site if at least one single access to the
fragment has been done AND there exists enough storage on
that site to store the replicated fragment.

In order to find an optimal solution for the replication of
fragments, the Simulating Annealing Algorithm (SA) has been
used. The algorithm begins with an initial answer of Xkj for
the replication of fragments. At every iteration, the cost of
the obtained replication solution is calculated (considering the
constraints mentioned above) and compared with the previous
one. The process is continued until an optimal solution that
minimizes Costtr is obtained.

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed
schemes. First, we explain the experimentation setup, the
scenarios we consider for performance evaluation, and the
datasets we used in experiments in Section 5.1. We then make
an initial analysis of our proposed fragmentation scheme in
Section 5.2, based on the cost model mentioned in Section 3.3.
Then, we compare our proposed schemes with other methods in
Section 5.3.

Xkj ≤
∑

q

QF Mqk × ∅q j ∀k, j (17)

5.1 Experiment Setup

We implemented the proposed schemes in Matlab 8.1 and con-
ducted a series of experiments to evaluate their performance. For
these experiments to be done,we randomly created 100 instances
and grouped them into five different scenarios S1 to S5 (each
having 20 instances) such that the instances in each scenario are
similar to each other. We aimed to create scenarios with different
loads (i.e., number of queries) and capacities (i.e., number of
sites), from fewest (S1) to the highest (S5). Table 3 shows the
data used to generate the instances which are variable coefficients
for expressions in Section 4. It is worth mentioning that the data
values presented in this table are typical values that can be found
in real cases.

5.2 Cost Analysis

Figure 2 demonstrates the behavior of the two components of
the query processing cost, as mentioned in Equations 4 and 5
(i.e., local irrelevant attribute access cost and remote relevant
attribute access cost) as a function of the number of fragments
for two scenarios S1 and S2. As demonstrated in figure 2.a, the
increase in the number of fragments results in the reduction of
irrelevant local attribute access cost. This is because when the
fragments are few, they each contain a higher number of local

vol 35 no 2 March 2020 105



ENHANCED SCHEMES FOR DATA FRAGMENTATION, ALLOCATION, AND REPLICATION IN DISTRIBUTED DATABASE SYSTEMS

Table
3

T
he

data
valuses

for
generating

the
instances.

Scenario
N

o
of

A
ttributes

L

N
o.of

Q
ueries

K

N
o.of

sites
SN

E
xecution

Frequency
fq

i

A
A

M
Processing
C

apacity
C

j

Storage
C

apacity
C

S
j

T
ransm

ission
Speed

C
ij

T
ransm

ission
C

ost
T

ij

L
ength

of
A

ttribute
lt

M
ean

Q
uery

L
ength

1
/M

q

M
ean

R
esponse

L
ength

1
/M

R

S1
6

4
3

2–60
0–1

50–500
100-

200
100000–400000

0–25
4–12

1000
5500

S2
5

5
3

5–50
0–1

50–500
110–245

100000–400000
0–25

4–12
1000

5500

S3
5

7
3

5–150
0–1

50–500
100–312

100000–400000
0–25

4–12
1000

5500

S4
10

8
4

0–19
0–1

50–500
90–230

100000–400000
0–25

4–12
1000

5500

S5
20

15
6

5–150
0–1

50–500
122–400

100000–400000
0–25

4–12
1000

5500

106 computer systems science & engineering



M. NIAZI TORSHIZ ET AL.

 

 

 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

Ir
re

le
va

nt
 L

oc
al

 A
ttr

ib
. A

cc
es

s C
os

t

Number of Fragments

Irrelevant Local Attrib. Access
Cost- Proposed Scheme

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

Ir
re

le
va

nt
 L

oc
al

 A
ttr

ib
. A

cc
es

s C
os

t

Number of Fragments

Irrelevant Local Attrib. Access Cost-
Proposed Scheme

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6

R
el

ev
an

t R
em

ot
e 

A
ttr

ib
. A

cc
es

s C
os

t

Number of Fragments

Relevant Remote Attrib. Access Cost-
Proposed Scheme

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9 10

R
el

ev
an

t R
em

ot
e 

A
ttr

ib
. A

cc
es

s C
os

t

Number of Fragments

Proposed Scheme

a) Evolution of irrelevant local attribute access cost in S1 and S2 scenarios 

b) Evolution of relevant remote attribute access cost in S1 and S2 scenarios 

(×
 1

04
)

(×
 1

04
)

(×
 1

04
)

(×
 1

04
)

Figure 2 The impact of the number of fragments on attributes access costs.

attributes and so, the local attribute access cost will be high. On
the other hand, when the number of fragments increases,we have
a fewer number of attributes in each fragment. So, when a query
gets access to a fragment, it will encounter a fewer number of
irrelevant attributes. As the number of fragments increases, the
reduction of the number of irrelevant attributes continues until it
reaches zero, as shown in figures 2.a. In contrast, an increase in
the number of fragments leads to the increase in the number of
relevant remote attributes, thus increasing the irrelevant remote
attribute access cost, as illustrated in Figure 2.b.

5.3 Evaluation Result

In the following, we compare the performance of our proposed
model with other related models for the different S1 to S5
scenarios.

5.3.1 S1 Experiment Results

To evaluate the proposed fragmentation and allocation schemes,
we consider the cost model described in Section 3.3. First, in
order to obtain the optimal number of fragments, we evaluate the
irrelevant local attribute access cost and relevant remote attribute

access cost for different number of fragments, as illustrated in
Figure 3.a. The optimal number of fragments is acquired when
remote and local attribute access cost curves meet, which is 2
for this scenario. Figure 3.b confirms that the least amount of
query processing cost is acquired when the number of fragments
is 2.

Next, we compare the performance of the proposed model
with the VFA-RT model [14–16] based on the round-trip response
time, expressed in Equation 8. Remember from Section 4.2
that the aim of the allocation process is allocating fragments
into sites in a way that minimizes the round-trip response time
of queries. Figure 3.c illustrates the round-trip response time
obtained from running the experiment on 20 instances of the S1
scenario. As this figure shows, our proposed model has shown
better performance in regards to obtaining less amount of round-
trip response time. On average, the proposed approach has
resulted in the 26% reduction of round-trip response time, as
compared to the VFA-RT method, for S1 scenario.

5.3.2 S2 Experiment Results

Figure 4 illustrates the query processing cost and the round-
trip response time for the second scenario S2, respectively. As
figure 4.a shows, the minimum amount of query processing
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Figure 3 S1 Experimental Results.

cost is obtained when the fragment number equals 2. Figure 4.b
compares the performance of the proposed model and the VFA-
RT model based on the round-trip response time for different
instance numbers in S2. Again, the proposed model has achieved
better outcomes resulting in a 30% reduction of the average
round-trip response time.

5.3.3 S3 Experiment Results

Figure 5.a illustrates the query processing cost and the number
of optimal fragments for scenario S3, which is 2. Figure 5.b
compares the performance of the proposed schemes with
VFA-RT based on the round-trip response time of the queries
for 20 instances of S3. As has been shown in this figure,
applying the proposed fragmentation and allocation scheme
has resulted in a 15% reduction of round-trip response
time.

5.3.4 S4 Experiment Results

Figure 6.a illustrates the query processing cost obtained with
different fragment numbers. As obtained from this figure, the
optimal number of fragments which leads to the minimum cost
equals to 3. Figure 6.b demonstrates the comparison results
between the proposed allocation model and the VFA-RT model

based on the round-trip response time for different instance
numbers. As shown in this figure, the proposed allocation scheme
method outperforms the VFA-RT model in regards to less amount
of round-trip response time. On average, our proposed model has
acquired a 27% reduction in round trip response time, compared
to the VFA-RT model.

5.3.5 S5 Experiment Results

Figure 7.a shows the processing cost of queries in regards to
the different numbers of fragments for scenario S5. According
to Table 3, the number of queries and attributes in S5 are the
highest numbers among all. The optimal number of fragments is
3. Figure 7.b demonstrates the evolution of round-trip response
time for 20 instances in S5. A comparison between the results
of the proposed method and VFA-RT indicates that the proposed
approach has caused a 21% reduction in the average round-trip
response time.

5.3.6 Query Processing Time Evaluation

As mentioned previously, fragmentation aims to partition
attributes into fragments in a way to minimize the processing cost
of the queries needing those attributes. In Table 4, we compare
the query processing cost of the proposed fragmentation scheme
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Table 4 Query Processing Cost for the Proposed Fragmentation Scheme and VFA-RT.

Scenario
Query Processing Cost (×104)

VFA-RT Proposed Fragmentation
Scheme

S1 1.2144 0.9564
S2 0.3145 0.2993
S3 1.3297 0.8348
S4 0.9564 0.6846
S5 1.9821 1.4901

and the VFA-RT model for all S1 to S5 scenarios. As has been
shown in this table, the proposed fragmentation scheme has
shown better performance in comparison with VFA-RT model
and acquired less query processing cost.

5.4 Impact of the Proposed Replication Scheme

As mentioned previously in Section 4.3, once fragments are
allocated to the sites, the replication scheme replicates some

fragments, based on some criteria, with the aim of local execution
of queries and reducing both the communication cost between
sites and the queries’ execution time. In order to observe the
impact of such replication, we evaluate the round-trip response
time for different S1 to S5 scenarios in two different situations:
the situation where the replication scheme is applied and the
one without replication. The results that have been shown in
Figure 8 demonstrate that replicating the fragments will cause
a substantial reduction in round trip response time for all
scenarios.
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6. CONCLUSION

With the growth of information technology and computer
networks, there is a vital need for optimal design of distributed
databases. Three main challenges in the design of a distributed
database are fragmentation, data allocation, and replication. In
this article, we present new approaches for vertical fragmen-
tation, allocation and replication for distributed databases. The
proposed vertical fragmentation scheme partitions the data into
fragments such that those bonded attributes (i.e., accessed
together by the queries) are located in a single fragment, thus
reducing the access cost to those attributes and minimizing
the query processing time. The allocation scheme utilizes the
benefits of the simulated to minimize the round-trip response
time of queries running on the sites. We also propose a
replication that aims to perform partial replication of fragments
to increase the local execution of queries. We compare the
performance of our proposed schemes with other related work,
considering different scenarios. Results show that the proposed
fragmentation scheme can reduce the query processing cost by
15% as compared to the VFA-RT model. Moreover, the allocation
scheme achieves a 23% reduction (on average) in the round-trip
response time of queries. Considering the replication scheme
also results in a 10% reduction in the round-trip response time,
as compared to the situation where replication has not been
considered.
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