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Abstract: Lung cancer is the leading cause of death in cancer patients. Based on 
a modular and comprehensive analysis method, it is intended to identify their 
common pathogenesis. We downloaded data and analyzed differences in lung 
adenocarcinoma samples, lung squamous cell carcinoma samples, and normal 
samples. Co-expression analysis, enrichment analysis, and hypergeometric testing 
were used to predict transcription factors, ncRNAs, and retrospective target genes. 
We get 4596 differentially expressed genes in common differences in high 
multiples and clustered into 14 modules dysfunction. The 14 genes (including 
DOK2, COL5A1, and TSPAN8) have the highest connectivity in the dysfunction 
module and are identified as the core genes of the module. Module genes are also 
substantially involved in biological processes, including extracellular matrix, 
carbohydrate-binding and renal system development, and involved signal 
transduction including PPAR signal transduction, cGMP-PKG signal transduction, 
PI3K-Akt signal transduction, and Apelin signal transduction. We identified 
ncRNA pivot (miR-335-5p, ANCR, TUG1) and Transcription Factors pivot 
(RELA, SP1) to regulate dysfunction module genes primarily. The analysis 
showed that comprehensive co-expression analysis helped us to understand the 
transcription factor ncRNA. Moreover, it helps us understand the molecular 
pathogenesis of co-expression of modular genes that regulate lung 
adenocarcinoma and squamous cell carcinoma. It provides a precious resource and 
theoretical basis for further experiments by biologists. 
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1 Introduction  
Lung cancer is characterized by high morbidity and high mortality [1]. Lung cancer is broadly classified 

into non-small cell lung cancer and small cell lung cancer, of which the major histological subtypes of NSCLS 
are lung adenocarcinoma and lung squamous cell carcinoma [2]. Lung cancer patients usually have 
complications. The most common paraneoplastic diseases are Lambert-Eaton myasthenic syndrome and 
multifocal paraneoplastic encephalomyelitis, and the most common neurological complication is tumor brain 
metastasis [3]. Environmental and genetic factors cause lung cancer. Environmental factors include exposure 
to alfalfa, cooking fumes, asbestos, heavy metals, and environmental tobacco fumes, human papillomavirus 
infection [4,5]. In patients with non-small cell lung cancer, smokers are found to be more connected with 
squamous cell carcinoma than adenocarcinoma, and adenocarcinoma is more common in nonsmokers [6]. In 
genetics, there is a significant association between SNP rs920778 and rs1899663 in HOTAIR and 
susceptibility to primary lung cancer [7]. Mir-196a2 polymorphism affects the susceptibility of lung cancer 
[8]. The polymorphism of MIRLET7BHG (the MIRLET7B host gene at 22q13.31) may be a significant 
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predictor of asbestos exposure-connected lung cancer [9]. 
The researchers studied the pathogenesis of lung cancer subtypes from all aspects and achieved 

specific results. For example, Jin Y’s study confirmed that miR-375 is essentially up-regulated in lung 
adenocarcinoma and small cell lung cancer. However, the interpretation was down-regulated in squamous 
cell carcinoma, and it was found that miR-375 targets ITPKB to promote cell growth of small cell lung 
cancer [10]. The down-regulation of lncRNAs LINC00222 permanently inhibits the proliferation, migration, 
and invasion of lung adenocarcinoma cells [11]. Knockout USP33 inhibits migration, invasion, and 
metastasis of lung adenocarcinoma cells via IL-6 and SLIT2 / ROBO1 signal transductions [12]. MiR-372-
3p targeting FGF9 promotes cell proliferation and metastasis in lung squamous cell carcinoma [13]. 
MicroRNA-588 targets GRN to inhibit tumor cell migration and invasion in lung squamous cell carcinoma 
[14]. These findings deepen our understanding of the pathogenesis of lung squamous cell carcinoma and 
lung adenocarcinoma and provide theories for the study of their common pathogenesis. We conducted a 
systematic modular analysis and exploration. We identified standard dysfunction modules and core 
molecules between lung adenocarcinoma and lung squamous cell carcinoma to explore further pathways 
involved in the pathogenesis of lung adenocarcinoma and lung squamous cell carcinoma. 

 
2 Materials and Methods 
2.1 Data Resource 

It aims to apply high-throughput genomic analysis techniques to help people to obtain a better 
understanding of cancer while improving their ability to prevent, diagnose and treat cancer. The 
interpretation profile data of lung adenocarcinoma included 61 lung adenocarcinoma paired samples and 
56 normal samples. Expression profile data for lung squamous cell carcinoma included 48 lung squamous 
cell carcinoma paired samples and 48 normal samples. We screened ncRNA-mRNA interaction pairs with 
score ≥0.5 from the RAID v2.0 database [15], including 431937 interaction pairs involving 5431 ncRNAs. 
The RAID v2.0 database enrolls more than 5.27 million RNA-related interactions, referring to 130 000 
RNAs in 60 species/protein symbols, which can help us comprehensively observe various RNA-related 
interactions. At the same time, all human transcription factor target data was downloaded and used in the 
general database TRRUST v2 database [16] for transcriptional studies, involving 2492 transcription factors 
and 9396 interaction pairs. 

 
2.2 Difference Analysis 

For RNA-Seq data on lung adenocarcinoma and lung squamous cell carcinoma on TCGA, we used R 
language DEseq2 for differential analysis [17]. The R language DEseq2 analysis process has three main steps, 
including normalization, dispersion estimation, and differential interpretation testing. Normalization is 
performed using weighted conditional likelihoods. By simulating the dispersion in all samples, we detect and 
correct for too low dispersion estimates. BBSeq simulates the dispersion on the mean. DSS uses the Bayesian 
method to estimate the dispersion of individual genes. These genes can explain the heterogeneity of the 
dispersion values of different genes. BaySeq and ShrinkBayes estimate the a priori of the Bayesian model for 
all genes. The findings provide posterior probabilities and false discovery rates for differential interpretation. 
For differential genes, we screened for highly differential multiples of p < 0.01 and |logFC| > 1. 
 
2.3 Co-Expression Analysis 

To explore the synergistic interpretation of high differential fold genes in 4596 lung adenocarcinomas 
and lung squamous cell carcinomas, we used WGCNA [18]. We analyzed the interpretation profile matrix 
of high differential multiple genes and looked for gene modules for synergistic interpretation. We use the 
correlation coefficient weighting value and the N-th power of the gene correlation coefficient to get the 
correlation coefficient between any two genes. The connections between genes in the network are subject 
to scale-free network distribution, making the algorithm more biologically meaningful. Correlation 
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coefficients between genes construct a hierarchical clustering tree. Various branches of the clustering tree 
represent various gene modules, and various colors represent various modules. We got the association 
between ME and clinical features to determine the relevant modules. Gene significance (GS) is defined as 
the log 10 conversion of the p value (GS = 1 g P) in a linear regression between gene interpretation and 
clinical information. Module significance (MS) is defined as the average GS of all genes in the module, as 
well as the modules defined as clinical traits. 
 
2.4 Enrichment Analysis 

The exploration of gene function and the exploration of its signal transduction are often effective 
methods to study the molecular mechanism of disease. The function and pathway involved in the module 
gene can characterize the dysfunction mechanism of the module during the disease process. For the genes 
of 14 important modules of lung adenocarcinoma and lung squamous cell carcinoma, we used the R 
language Clusterprofiler package [19] for enrichment analysis on Go function (p-value cutoff = 0.05, 
qvalueCutoff = 0.05) and KEGG pathway (p-value cutoff = 0.05, qvalueCutoff = 0.05). 
 
2.5 Transcription Factors and Ncrnas That Regulate Dysfunctional Modules 

For each dysfunctional module, we specify that the pivot regulator refers to the number of targeted 
adjustments between each regulator and each module exceeding two. We obtained the interaction between 
the regulator and the module based on the hypergeometric test p-value <0.01. In the study, we used the 
ncRNA target data as the background set prediction. We wrote the R program to predict and obtained the 
pivotal regulator of the dysfunction module. Based on the human ncRNA-mRNA interaction pair in the 
RAID v2.0 database and all human transcription factor target data in the TRRUST v2 database, we 
retrospected the predicted ncRNA and TF back to the target gene. We obtained the target gene and the high 
difference in multiple gene intersections.  
 
2.6 Verification of Key Genes by qPCR 

Human blood samples were chosen according to international ethical guidelines for biomedical 
research involving humans and subjects. The study was approved by the Ethics Committee of Tangshan 
Workers’ Hospital and conducted following the provisions of the Ethics Committee. 

Specifically, total RNA in the blood was extracted, transcribed into cDNA using a reverse transcription 
kit, and qPCR reaction was carried out using the SYBR qPCR Detection Kit. The qPCR program begins 
the initial 3 minutes denaturation step at 95°C to activate the hot-start iTaqTM DNA polymerase. This was 
followed by 45 cycles of denaturation at 95°C for 10 seconds and annealing and extension at 60°C for 45 
seconds. The internal reference gene is beta-actin. 
 
3 Results 
3.1 Determining the Typical Expression of Dysregulated Molecules in Lung Squamous Cell Carcinoma 
and Lung Adenocarcinoma 

Differential interpretation analysis is an effective method for identifying the underlying genetic basis of 
disease. To screen for genes that may cause ADC and SCC, based on microarray interpretation profiling data, 
we performed differential gene screening for ADC, SCC, and normal samples in TCGA. The results showed 
that there were 5952 differentially differential genes in lung adenocarcinoma, and there were 8055 differentially 
differential genes in lung squamous cell carcinoma (Figs. 1A, 1B). The intersection of the two differential 
genomes showed that 4,596 differences were common (Fig. 1C). Among these genes, there may be related 
genes that have a significant effect on the development of ADC and SCC, which requires further analysis. 

 
 



 
 
110                                                                                                                                         Oncologie 2020, vol.22, no.2  

 
Figure 1: Differential interpretation of lung adenocarcinoma and lung squamous cell carcinoma. A & B is 
a volcano map of lung squamous cell carcinoma of lung adenocarcinoma, respectively. C. Differential gene 
Venn diagram of lung adenocarcinoma and lung squamous cell carcinoma 
 
3.2 Construction of Weighted Co-Expression Network and Identification of Key Genes 

An interpretation profile matrix was constructed in patient samples based on 4596 differential genes 
and their interaction genes. Based WGCNA, we learned that the genes exhibited significant group co-
expression in disease samples. By identifying the co-expression panel as a module, we obtained 14 
functional disorder modules, including 2965 differential genes (Figs. 2A, 2B). Based on the degree of gene 
connectivity of the gene co-expression network, the central gene with the highest connectivity in each 
module was identified, and 14 central genes including DOK2, COL5A1, and TSPAN8 were obtained. The 
co-expression network indicates that the central gene is an essential gene of the dysfunction module. The 
blue module and lung adenocarcinoma were negatively correlated with lung squamous cell carcinoma (Fig. 
2C). This suggests that the turquoise module may have functions in tumorigenesis of SCC, and the blue 
module has contributions in the development of ADC. Furthermore, the expression level of key genes was 
verified by qPCR. We found that the expression trend of key genes was consistent with the previous results. 

 



 
                                                                                                                                                     

Oncologie, 2020, vol.22, no.2                                                                                                                                                 111 

 

 
Figure 2: Synergistic interpretation of high differential fold genes in lung adenocarcinoma and lung 
squamous cell carcinoma in patient samples. A. The 14 co-expression panels obtained by clustering were 
identified as modules, and 14 colors represent 14 co-expression modules. B. Expression heat map of all 
genes in the sample and their interpretation behavior is clustered into seven co-expression modules. C. Each 
row represents a module, each column represents a phenotype, the color of each cell is mapped by the 
corresponding correlation coefficient, the value is from -1 to 1, the color transitions from blue to white, and 
then transitions to red 

3.3 Module Genes Involved in Functions and Pathways 
Function and pathway are essential mediators of the physiological response of the disease. The 

exploration of functional pathways involved in the exploration of dysfunctionality modules helps determine 
the relationship of genes in the same pathway within a module. They are also conducive to building 
molecular bridges between modules and diseases in systems biology and deepening the understanding of 
the underlying molecular mechanisms of disease. Enrichment analysis was performed on 14 modules and 
obtained 6431 biological processes, 728 cells, 1290 molecular functions, and 180 KEGG pathways. It was 
found that the genes of the six modules essentially participated in related biological processes such as 
extracellular matrix, carbohydrate binding and renal system development (Fig. 3A). Also, two modules of 
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genes are involved in PPAR signal transduction, cGMP-PKG signal transduction, PI3K-Akt signal 
transduction, and Apelin signal transduction (Fig. 3B). 

 
  

Figure 3: Functional and pathway enrichment analysis excerpts of the module gene. A. Module gene GO 
function enrichment analysis excerpt. The color increases from blue to purple, and the enrichment increases 
permanently. The larger the circle, the more significant the proportion of the gene in the module that 
accounts for the GO function. B. Module gene KEGG pathway enrichment analysis excerpt. The color 
increases from blue to purple, and the enrichment increases permanently. The larger the circle, the more 
significant the proportion of the gene in the KEGG pathway entry 

 
3.4 TF and ncRNA That Drive Lung Cancer Subtype Progression 

Transcription and post-transcriptional regulation of genes have always been considered as a critical 
regulator of disease occurrence and development. Transcription factors and ncRNA are regulators of 
common interpretation and function. We performed a pivotal analysis of the co-modules based on the 
targeted regulatory relationship of TF and ncRNA to the modular genes and explored vital transcriptional 
regulators that regulate the progression of lung adenocarcinoma and lung squamous cell carcinoma. The 
predicted results showed that a total of 341 ncRNAs involved 360 ncRNA-module regulatory pairs and 57 
transcription factors involved 62 TF-module target pairs. Besides, the number of pivot control modules was 
statistically analyzed, and the most dysfunctional modules with ncRNA (miR-335-5p, ANCR, TUG1, miR-
29c-3p) and TF (RELA, SP1) were obtained. By mediating dysfunctional modules, these transcription 
factors and ncRNAs regulate the progression of lung adenocarcinoma and lung squamous cell carcinoma. 
Potential regulators are identified as dysfunctional molecules of lung adenocarcinoma and lung squamous 
cell carcinoma. 

3.5 Retrospective Target Gene  
The snRNA, asRNA, snoRNA, miRNA, and piRNA in the cell are all synthesized by non-coding genes. 

The biological processes they participate in include gene activation, gene silencing, gene imprinting, does 
compensation, protein synthesis, and function regulation, and metabolic regulation. Finally, a combination 
of four core ncRNAs and five core TFs that drive the lung adenocarcinoma and lung squamous cell 
carcinoma co-expression modules, which regulate genes and genes involved in the pathway (Figs. 4A, 4B). 
We observed a relationship between the regulation of common differential gene regulation (transcriptional 
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and post-transcriptional) and gene-dependent pathways in lung adenocarcinoma and lung squamous cell 
carcinoma. By modulating the genes of modules 1, 2, 3, 6, 7, 13, we observed four core ncRNAs while 
understanding their involvement in the regulation of multiple signal transductions. Among the five core TF 
regulatory modules, genes 1, 2, 3, 7, and 10 participate in the regulation of multiple pathways. Among them, 
the most regulated genes of TUG1 and SP1 have the highest connectivity and has contributions in the 
pathogenesis of lung adenocarcinoma and lung squamous cell carcinoma, and are considered to be the most 
central regulatory factors. 

 

 
Figure 4: Regulation of the core regulatory factor regulatory module genes involved in signal transduction. 
A. Core ncRNA-Gene-pathway network diagram. The red hexagon represents the core ncRNA, the light 
red diamond represents the signal transduction, and the rest represents the genes within the module. B. Core 
TF-Gene-pathway network diagram. The red arrow represents the core TF, the light blue diamond 
represents the signal pathway, and the rest represents the genes within the module 
 
4 Discussion 

Lung cancer is a heterogeneous disease [20,21]. Pathologists performed subtype analysis to classify 
non-small cell lung cancer into lung adenocarcinoma, lung squamous cell carcinoma, and large cell 
neuroendocrine carcinoma [22]. In this study, we collected the RNA-Seq data of lung adenocarcinoma and 
lung squamous cell carcinoma on TCGA for differential analysis, and obtained differential gene with high 
difference fold. Therefore, these differential genes with high differential multiples are considered 
significant contributions in the dysfunctional mechanisms of lung adenocarcinoma and lung squamous cell 
carcinoma. Combining the weighted gene co-expression network, we identified 14 co-expression modules. 
The genes have synergistic interpretation behavior, and we believe that the synergistic interpretation of 
these genes promotes the occurrence of the disease. We observed the functions and pathways involved in 
the module, and the signal transductions involved in the genes of the two modules include PPAR signal 
transduction, cGMP-PKG signal transduction, PI3K-Akt signal transduction, and Apelin signal 
transduction. TGFβ induces PPAR γ signal transduction to promote EMT and has essential contributions 
in the invasion and migration of lung cancer cells [23]. For patients with advanced lung adenocarcinoma, 
signal transductions (MAPK, PI3K-Akt, Ras, and cGMP-PKG) are thought to be most likely connected 
with platinum resistance [24].  

Also, CK2α may regulate the invasion and migration of lung adenocarcinoma cells through the PI3K-
Akt signal transduction [25]. The silencing receptor tyrosine kinase ROR1 inhibits the proliferation of lung 
adenocarcinoma cells via the PI3K/AKT/mTOR signal transduction [26]. P53 regulates the survival of 
squamous cell carcinoma cells by inhibiting PI3K/AKT signaling [27]. At the molecular level, we identified 
14 central genes, such as DOK2, COL5A1, and TSPAN8, through a co-expression network. These genes 
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are essentially differentially expressed and have critical regulatory contributions in the dysfunction module. 
DOK2 has been identified as a gene for tumor suppressor of EGFR mutant lung adenocarcinoma [28]. Liu 
W’s study found that COL5A1 may promote the metastasis of lung adenocarcinoma cells [29]. The up-
regulation of TSPAN8 promotes cell viability and proliferation, leading to non-small cell lung cancer [30]. 
We also identified 341 ncRNA-driven modules that function, including the long non-coding gene (ANCR, 
TUG1) and the small non-coding gene (miR-335-5p, miR-29c-3p). ANCR downregulates the TGF-β1 
pathway to inhibit migration and invasion of NSCLC cells [31].  

The upregulation of TUG1 is connected with increased tumor size, a degree of differentiation, lymph 
node metastasis, distant metastasis, and TNM staging. It is the most promising diagnostic marker for 
patients with lung adenocarcinoma [32]. TUG1-mediated HOXB7 interpretation affects cell proliferation 
in non-small cell lung cancer [33]. Increased interpretation of miR-335-5p inhibits cell proliferation in 
NSCLC cells [34]. We explored 57 transcription factors (HDAC2, NANOG, RELA, SP1, and SP3) that 
mediate differential gene co-expression networks in lung adenocarcinoma and lung squamous cell lung 
cancer, thereby regulating the pathogenesis of lung cancer subtypes. HDAC2 upregulates fibronectin by 
NF-κB to initiate migration and invasion of NSCLC cells [35]. NANOG is expressed in various cancers, 
and its interpretation is connected with poor survival in cancer patients [36]. With platinum-based 
chemotherapy, advanced non-small cell lung cancer, NANOG can be a poor predictor [37]. Co-expression 
of RELA and ACTN4 induces apoptosis in non-small cell lung cancer cells [38]. In the early stage of lung 
cancer, SP1 mediates the interpretation of miR-182, which inhibits the interpretation of FOXO3 and 
stimulates the proliferation of lung cancer cells. Down-regulation of advanced SP1 and miR-182 increases 
the interpretation of FOXO3 leading to metastasis of lung cancer cells [38-40]. SP1 regulates cell 
proliferation during the development of non-small cell lung cancer [41]. Key regulatory factors have 
regulatory contributions and have an essential impact on the formation of lung adenocarcinoma and lung 
squamous cell carcinoma. 
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