
Computers, Materials & Continua CMC, vol.65, no.3, pp.1869-1890, 2020

CMC. doi:10.32604/cmc.2020.011758 www.techscience.com/journal/cmc

Edge-Computing with Graph Computation: A Novel Mechanism
to Handle Network Intrusion and Address Spoofing in SDN

Rashid Amin1, *, Mudassar Hussain2, Mohammed Alhameed3,

Syed Mohsan Raza4, Fathe Jeribi3 and Ali Tahir3

Abstract: Software Defined Networking (SDN) being an emerging network control model
is widely recognized as a control and management platform. This model provides efficient
techniques to control and manage the enterprise network. Another emerging paradigm is
edge computing in which data processing is performed at the edges of the network instead
of a central controller. This data processing at the edge nodes reduces the latency and
bandwidth requirements. In SDN, the controller is a single point of failure. Several security
issues related to the traditional network can be solved by using SDN central management
and control. Address Spoofing and Network Intrusion are the most common attacks. These
attacks severely degrade performance and security. We propose an edge computing-based
mechanism that automatically detects and mitigates those attacks. In this mechanism, an
edge system gets the network topology from the controller and the Address Resolution
Protocol (ARP) traffic is directed to it for further analysis. As such, the controller is saved
from unnecessary processing related to addressing translation. We propose a graph
computation based method to identify the location of an attacker or intruder by
implementing a graph difference method. By using the correct location information, the
exact attacker or intruder is blocked, while the legitimate users get access to the network
resources. The proposed mechanism is evaluated in a Mininet simulator and a POX
controller. The results show that it improves system performance in terms of attack
mitigation time, attack detection time, and bandwidth requirements.

Keywords: Software Defined Networking (SDN), edge computing, Address Resolution
Protocol (ARP), ARP inspection, security, graph difference.

1 University of Engineering and Technology, Taxila, Pakistan.
2 University of Wah, Wah Cantt, Pakistan.
3 Jazan University, Jazan, Saudi Arabia.
4 Abasyn University Islamabad, Islamabad, Pakistan.
* Corresponding Author: Rashid Amin. Email: rashid.sdn1@gmail.com.
Received: 28 May 2020; Accepted: 25 July 2020.

1870 CMC, vol.65, no.3, pp.1869-1890, 2020

1 Introduction
Traditional networks have always been suffered and seriously affected by attacks such as
DDoS, link flooding, packet spoofing, etc. [Modi, Patel, Borisaniya et al. (2013)]. One of
the main symptoms of these attacks is traffic congestion is caused by the ARP broadcast
storm. In some other attacks such as Denial of Services (DoS), Brute Force, Browser,
Shellshock, Botnet [Sharafaldin, Gharib, Lashkari et al. (2018)], etc., the reliability and
efficiency of network services are extremely lowered. SDN has become an emerging
network control paradigm widely recognized as a management platform. It has recently
gained attention due to its efficiency in management tasks, where security issues are most
critical. Moreover, it has a central manager to control the entire network that may be
overwhelmed from thousands of users’ messages and queries from Amin et al. [Amin,
Reisslein and Shah (2018)]. Among the important and challenging security issues,
Distributed Denial of Service (DDoS) detection, ARP Spoofing, and network intrusion are
the most critical. In this context, several solutions and approaches have been developed.
Edge computing is an emerging paradigm to deal with these types of problems. Its main
feature is that the processing such as analysis and information engineering is performed at
the nearest devices from the request generator. It reduces the network latency and
bandwidth requirements among different network devices. This paradigm appears as a
game changer and it has revolutionized the entire computing mechanism.
SDN being the forerunner is the backbone of network applications. To control and
manage the network devices and services by using the abstraction of low-level
functionality, it decouples the network control plane from the forwarding plane [Nunes,
Mendonca, Nguyen et al. (2014); Shalimov, Zuikov, Zimarina et al. (2013)]. Moreover, it
offers valuable support for the complex digital networks in terms of scalability, dynamic
computing, and storage requirements. It also provides efficient network control and
operation cost-effectively. In SDN, two planes of traditional networking (control and data
plane) are effectively separated [Sezer, Scott-Hayward, Chouhan et al. (2013)], as the
data plane is left with forwarding mechanism while the control plane is shifted to the
controller as shown in Fig. 1. This separation results effectively in a centralized
application to deploy networking policies [Amin, Shah, Shah et al. (2016); Hussain and
Shah (2018); Hussain, Shah and Tahir (2019)], management tools [Moyano, Cambronero
and Triana (2017)], security measures [Dargahi, Caponi, Ambrosin et al. (2017)], etc.
Furthermore, it provides network virtualization functionalities [Siddiqui, Escalona,
Trouva et al. (2016)], data flow optimization, flexibility, accuracy and consistency in the
configuration as compared to the manual configuration of devices in the traditional
network [Scott-Hayward, O’Callaghan and Sezer (2013)]. In SDN, according to common
practice network security measures and control techniques are deployed at the controller
which secures the network users from various types of attacks. Due to the central
manager, for the entire network, most of the processing is performed at the controller
level and it is an almost overwhelming task. That also creates the latency and bandwidth
problem for all users and applications. To handle these limitations, a graph computing-
based approach is adopted to secure SDN. In this approach, ARP related processing is
shifted to an edge computer that handles and analyzes the ARP requests/replies.

Edge-Computing with Graph Computation: A Novel Mechanism 1871

Network security attacks like Link Flooding Attack (LFA) and Distributed Denial of
Service (DDoS) [Shin and Gu (2013)] attacks are mostly launched by using the famous
Address Resolution Protocol (ARP) spoofing [Abad and Bonilla (2007)] or sometimes the
Internet Protocol (IP) spoofing method. In a computer network, ARP packets are mostly
used to identify the MAC/IP address translation of the user/system. These ARP packets can
be easily altered by an attacker, and as such the IP/MAC address can be modified. Being
the prime element (brain) in an SDN, the controller is extremely susceptible to several
attacks. ARP spoofing is the most common attack where ARP packets are sent by a
malicious node (attacker), resulting in poisoning the network topology. Sometimes this
situation leads to a denial of services, serious hijacking, and it results in an entire network
failure. Moreover, along with ARP spoofing, link flooding and Man in the Middle attacks
are further considered with a brief description in the indexes.

Data Plane

Control
Plane

Management
Plane

Openflow
Switch

Figure 1: Software defined networking overview

To mitigate ARP spoofing attack and network intrusion, several approaches [Masoud,
Jaradat and Jannoud (2015); Xing, Zhao and Li (2010); Xu and Liu (2016)] are proposed
for SDN. These approaches comprise of various applications that are deployed on the
controller. If the network is under attack due to continuous packets arrival at the
controller ports then further execution at the controller is severely suffered. In Schneider
et al. [Schneider, Bifulco and Matsiuk (2016)], ARP poisoning attack is handled through
the SDN paradigm, a custom application is deployed on the controller that checks for the
possible ARP attacks. When an attack is launched, the controller may be unresponsive to
the entire network, thus, the performance is degraded. In mitigating techniques, a
legitimate user whose IP address is used for address spoofing can not restore to the
connected state. To mitigate this situation, we propose a graph computing-based network
intrusion and address spoofing attack detection and prevention mechanism. In this
technique, an edge computer is used to deal with address translation queries. On this edge
computer, packets are further analyzed for possible attacking conditions. The edge
computer is programmed to check the malicious packets against the legitimate host. A
malicious traffic blocking algorithm blocks the specific port after the detection of threats.
Moreover, to detect the position of an attacker or intruder in the network, graph
computation is performed by using a graph difference algorithm. After getting the exact

1872 CMC, vol.65, no.3, pp.1869-1890, 2020

location of the attacker, the respective port is blocked and the legitimate user is resumed.
In this way, the controller is spared from unnecessary processing that enhances its
performance and reliability. Our contributions are summarized as follows:
• We identify the potential problems of address spoofing and network intrusion in SDN

and their effects on the network.
• We propose an edge computing-based solution in SDN, to process the ARP related

traffic on an edge system, instead of the SDN controller that minimizes the influence
of the attack on the controller.

• We are original in devising edge computation methods to mitigate address spoofing
and network intrusion by taking snapshots of network status at different time intervals.

• We develop algorithms that automatically detect the attacker or intruder location in
the network and block its port.

• Our system is developed using event-driven POX controller functions. Simulation
results indicate the reduction in attack detection and mitigation time as well as
normalized overhead.

The remaining parts of the paper are arranged as follows. The related work is placed in
Section 2. Problem definition containing normal execution and attack condition is
explained in Section 3. The proposed solution consists of graph computation and graph
difference methods are presented in Section 4. In Section 5, simulation setup and
performance evaluation are discussed and Section 6 concludes the paper.

2 Related work
ARP cache poisoning attacks in Local Area Networks (LANs) are prevented using two
different scenarios as discussed in Alharbi et al. [Alharbi, Durando, Pakzad et al. (2016)].
The first one is an SDN DYN, where the network host is assigned a dynamic IP address
using the DHCP protocol. It looks for the mapped IP-MAC address of the gateway. Then,
it inspects all the ARP replies and drops the replies not matching the recorded IP address
to the MAC address table. The second scenario is an SDN STA, which indicates the
assignment of a static IP address. After the construction of the forwarding tables, the
controller records each sent packet and maps its IP address to the MAC address which is
obtained from the forwarding tables. Afterward, the controller checks if there is an ARP
response against the recorded pairs.
In the case of DDoS attacks, there is a great asymmetry between the inflows and outflows
of the victims [Masoud, Jaradat and Jannoud (2015)]. The proposed approach is based on
SDN’s flow steering capabilities consisting of two main parts. First, it installs control
rules in order to capture regular and anomalous flows in the network. Then, it measures
the available resources in the network (including the effective use of all available TCAM
inputs) to balance the coverage and granularity of attack detection by coordinating the
monitoring rules on all switches. Thus, it can quickly locate potential DDoS victims and
attackers [Xu and Liu (2016)] in this network. However, with all the encouraging results,
it still needs to be evaluated for real DDoS attacks.
Ma et al. [Ma, Ding, Yang et al. (2016)] discuss the security issues in large scale cloud
data centers based on the SDN paradigm. Man-in-the-Middle and Denial of Service

Edge-Computing with Graph Computation: A Novel Mechanism 1873

attacks (DoS) are considered to be resolved. To calculate the probability of occurrence of
an attack in Virtual Machine (VM), the Bayesian theorem is used. When an attack is
launched, prevention techniques are adopted to mitigate it. However, this mechanism
lacks in the detection of an attack, if the prediction algorithm does not respond timely and
the attacker succeeds to launch an attack, it results in the interception of network traffic
between a client and the controller [Wang, Li, Jiang et al. (2016)].
Cox et al. [Cox, Clark and Owen (2016)] address the ARP spoofing attacks in a
traditional network as well as in SDN. SDN offers more control and security over the
entire network than a traditional network. To protect the network from ARP spoofing
attacks, Network Flow Guard for ARP (NFGA) module is proposed by augmenting the
controller in order to detect and mitigate the address spoofing attacks which are triggered
by the unauthorized users as shown in Fig. 2. NFGA observes Dynamic Host
Configuration Protocol (DHCP) to build a table that contains MAC:IP:Port mapping plus
other similar information to get ARP traffic. In this way, NFGA detects any address
spoofing attack in the network.

Figure 2: Network flow guard for ARP

Rengaraju et al. [Rengaraju, Ramanan and Lung (2017)] discuss the DoS attack in cloud
and large scale networks. The authors propose a distributed firewall with Intrusion
Prevention System (IPS) for software designed clouds. In this mechanism, the IPS
module observes the network traffic at the frame level and detects the anomalous packets.
If anomalous packets are found, the Openflow switch informs the IPS. IPS and firewall
analyze these packets for some kind of security threats. If some malicious activity is
found then IPS mitigates the intrusion by indicating alarm, dropping these packets, and
taking severe actions against the malicious node. Finally, it blocks the port associated
with this malicious activity. The entire system is shown in Fig. 3.

1874 CMC, vol.65, no.3, pp.1869-1890, 2020

Figure 3: DoS attack and man-in-middle attack in the data center

Hameed et al. [Hameed and Ahmed Khan (2018)] propose a lightweight and efficient
collaborative DDoS scheme for SDN. A secure controller-to-controller (C-to-C)
communication protocol for multiple SDN controllers is designed. These multiple
controllers are mapped with several autonomous systems. This scheme provides many
benefits, i.e., blocking the malicious network flows inside the network and informing the
neighbor Autonomous System (AS) about the attack condition inside the domain.
Fan et al. [Fan, Xiao, Nayak et al. (2019)] discuss the security threats and issues in SDN.
They indicate the need for a mechanism that can evaluate the security measures of the
network in advance so that protection against attacks can be made early. This approach
handles the attacks, i.e., scanning attack, Openflow flooding attack, ARP attack, and
switch comprised attacks. For these four attacks, there are twelve characteristics offered
to mitigate these attacks. By using these characteristics, different states of the network are
measured from time to time by using a multi-observation Hidden Markov Model. This
model is deployed in the Ryu controller with Openflow switches to assess the network
status by using different test scenarios.
The existing studies discussed above and in Deng et al. [Deng, Gao, Lu et al. (2017);
Kalkan, Gur and Alagoz (2017); Khan, Gani, Wahab et al. (2016)] conclude that address
spoofing and network intrusion are not well addressed in past. In most of the solutions,
the proposed techniques are deployed on the SDN controller that is already considered as
a single point of failure. Therefore, it is required to find such a solution that can handle
the attack condition separately without influencing the controller’s performance.

3 Problem statement
The structure of an ARP packet is shown in Fig. 4 where the Ethernet frame contains the
ARP payload. This payload encompasses the MAC addresses, Target Hardware Address
(THA) and Sender Hardware Address (SHA). Similarly, each frame includes the two IP
addresses, the first is Sender Protocol Address (SPA) and the second one is Target Protocol
Address (TPA). The operation field denotes that the packet is a request for a response.

Edge-Computing with Graph Computation: A Novel Mechanism 1875

If a node wants to get an IP address of a node’s MAC address, then the ARP request is
sent by setting SHA to its current MAC address and SPA to its IP address. TPA field of
the frame is set as the IP address of the target node and THA field has a dummy value
00:00:00:00:00:00. When the target node receives this packet, it sets the THA field to its
own MAC address and generates a response to the sender. The main problem with ARP
is that it is a stateless protocol, it means, it considers each request or reply individually
regardless of past communication. Resultantly, a node accepts packets for gratuitous ARP
without any corresponding request information. There is no method to check the
authenticity of the ARP request or response or any integration of provided information.
In SDN, network intrusion and address spoofing attacks are not well addressed as
observed in the related work. These attacks affect the Controller ARP Table (CAT) by
inserting the wrong information, resulting in an entrance of the unauthenticated packet to
the restricted portions of the network. When an attack is launched successfully, it can
easily poison the network topology that is a basic building block for SDN core elements.
Due to this poisoned network topology, different network applications and SDN services
may be misconfigured. Sometimes, this condition leads to a severe security threat or
network hijacking. Some other attacks, i.e., Man-in-Middle and DDoS attacks are also
caused by address spoofing. The security of the entire network is on risk, thus, network
performance is degraded.

Figure 4: Structure of an ARP packet

From literature, it is obvious that the different SDN controllers, i.e., Floodlight [Wallner
and Cannistra (2013)], Open Daylight [Medved, Varga, Tkacik et al. (2014)], ONOS
[Berde, Gerola, Hart et al. (2014)], etc., can be easily poisoned by network intrusion and
address spoofing attacks. If the topology of the network is poisoned, all consequent
network applications and services are misconfigured. For example, the SDN controller
may experience the situation of a Man-in-the-Middle attack or black hole attack, if the
routing services are not working properly. Similarly, intruders can easily get into the
network to steal or modify critical files. The problem is expressed in detail by taking an
example of an enterprise network as shown in Fig. 5. Assuming, some organization
having different site offices, at one of the sites there is a network which comprises five

1876 CMC, vol.65, no.3, pp.1869-1890, 2020

SDN switches, i.e., OF1, OF2, OF3, OF4, and OF5. These switches are connected to each
other and to the SDN controller as shown in Fig. 5. There are ten users (user1 to user10)
using PCs (PC1 to PC10) having IP address range (12.0.0.1 to 12.0.0.10) are connected
to this network. Each switch has exactly two users connected, i.e., PC1 and PC2 are
connected to OF1. We show two possible conditions of the network, first is the normal
network operation when the network is running normally and the second one is attacking
condition when an attacker has launched an attack on the network.

Figure 5: Ideal condition

3.1 Normal network operation
In the normal network operation, user1 having IP address 12.0.0.1 wishes to
communicate with user8 having an IP address 12.0.0.8 as shown in Fig. 5. For this
communication, user1 needs MAC address of user8 which is obtained by sending ARP
packet to the SDN switch OF1. OF1 checks the flow entries to find the requested IP
address. If it exists then it is sent to the requester, otherwise, an ARP packet is forwarded
to the controller. If the controller does not have the MAC address, the controller
broadcasts the packet to all the switches to get the MAC address. The packets reach every
switch in the network and finally, it gets the required MAC address. The controller sends
the MAC address to the ARP request generator. Moreover, the SDN controller
implements the flow rules on the respective network devices to forward packets
accordingly. After this, packets move to the corresponding network device and get the
MAC address of the destination node. In this way, the normal system runs very well.

3.2 Attack condition
Suppose, an attacker using the Kali Linux system [Beggs (2014)] launches broadcast
gratuitous ARP packets for the user5 with an IP address (12.0.0.5). Gratuitous ARP
packets are the broadcast packets used to advertise any alteration by the network device
in their MAC or IPv4 address. By using these gratuitous ARP messages, the attacker
embeds the IPv4 address of user5 and captures all the network traffic of user5 as shown
in Fig. 6. Kali Linux is an OS in which some hacking tools are pre-installed and the

Edge-Computing with Graph Computation: A Novel Mechanism 1877

hackers use this OS for hacking purposes. In our case, Kali Linux is used to launch an
ARP spoofing attack which leads to network intrusion and Man-in-the-Middle attacks.
The network is hijacked by using a single attack, due to this successful attack, network
information stored on the controller is poisoned and the attacker can sniff the network
traffic. After getting the network information, the attacker can easily launch a DDoS
attack and can manipulate it as an intruder. These attacks keep the controller busy,
consequently, other users cannot access the controller.

Figure 6: Attack condition

In this way, the entire network is affected and the performance is degraded to an extent
that even legitimate users cannot interconnect the SDN controller. An intruder easily gets
access to the network resources and can affect critical files and configurations. Apart
from the loss of business, these situations may lead to damage to the client’s confidence
and organization reputation. To address this problem, we propose an edge computing-
based solution in which an edge system is used for the analysis of ARP traffic to detect
possible attack conditions. Moreover, graph computation is employed to further detect
the location of an attacker or intruder.

4 Problem formulation
To deal with the problems discussed in Section Problem Statement, automatic attack
detection, and mitigation techniques have been proposed that are based on edge
computing as well as graph computation. In this mechanism, an edge system is deployed
in the network in which the proposed algorithms are programmed. Initially, the Controller
ARP Table (CAT) maintains all the network device’s information by mapping IP and
MAC addresses. We collect data about the neighbors, hops, and links from the
forwarding tables to construct the entire network topology. After constructing network
topology, the corresponding graphs are generated for the topology. To detect an attack
condition, custom methods are used to indicate malicious traffic activities. The graph
difference algorithm detects the position of an attacker as well as a legitimate user. In this
way, the attacker is blocked for further processing, and the legitimate user is resumed.

1878 CMC, vol.65, no.3, pp.1869-1890, 2020

The system designed is shown in Fig. 7, which contains an edge computer with some
custom development. In the proposed solution, the first component gets topology
information and constructs the graph. The second one installs the flows on the devices to
forward ARP traffic to the edge computer. The third component analyzes the address
spoofing and intrusion-related activities and the fourth component performs graph
computation to detect the position of the attacker or intruder.

Figure 7: Overview of the proposed solution

4.1 Graph construction for network topology
When the network is established, Openflow network devices exchange their link-state
information with the controller. Then network topology is built, flow rules are installed to
redirect the ARP traffic towards the edge computer for analysis. The controller is
programmed to install respective flow rules at the network devices.

4.2 Flow rule installation
The link-state information is shared among the switches, hosts, and controller after the
establishment of the network, then flow rules are installed on the switches. These special
flow rules direct the ARP traffic towards the edge computer. To implement these flow
rules on all network devices, the SDN controller installs flow rules on the switches. After
this, ARP traffic is forwarded to the edge computer. The pseudo-code describes the flow
rule installation as depicted in Algorithm 1.
__
Algorithm 1: Installation of Flow rules for ARP traffic
Input: n nodes, m switches, controller
Output: Path to destination
1: n=total number of switches
2: m=total number of nodes
3: Controller get entire network topology from n,m
4: Controller examines the network traffic
5: if (Pkt.dest=broadcast) or (Pkt belongs to ARP) then

Edge-Computing with Graph Computation: A Novel Mechanism 1879

6: Pkts are moved to an Edge computer for further analysis
7: endif
8: else
9: Pkts are transferred to controller || Forwarded according to flow rules
10: Controller installs flow rules accordingly
11: endif

4.3 Analysis of ARP traffic and malicious activities
When ARP traffic arrives at the edge computer, an address spoofing attack is detected by
examining ARP request packets from a particular host. At the first step, we confirm that
either packet belongs to their network or it does not by sending an ARP request. If ARP
request is generated for this network, appropriate actions are taken which are explained in
the following situations:
In the first situation, when an ARP packet is forwarded by a user in the network, it arrives
at the Openflow switch where flow entries of the switch are checked for a possible match.
If there is a mismatch, then the packet is forwarded to the edge computer for further
analysis for the possible attack condition as shown in Fig. 8. Now, if these packets belong
to our network, then edge computer responds with the appropriate address, otherwise, it is
discarded. The following example illustrates the procedure in detail:

Figure 8: Architecture of the proposed mechanism with an edge computer

Assume, PC1 with IP address 12.0.0.1 initiate ARP packets to communicate with PC6 as
shown in Fig. 8. Openflow switch OF1 checks its flow table to find the requested entry. If
it does not find, then the packets are forwarded to an edge computer according to the
flows installed on the switch. The edge computer analyzes the respective packet whether
it pertains to this network or not. There may be two conditions, first, this packet belongs
to this network then proper actions are taken by sending with ARP reply message to PC1.
Now the sender is authenticated, and further communication is possible. As a second case,
if packets belong to some other network and are confirming through IP and MAC

1880 CMC, vol.65, no.3, pp.1869-1890, 2020

addresses of the packet with CAT then it is dropped. If these malicious ARP packets are
not dropped, then these can be used very easily by an attacker to launch an attack.
Hence, we are considering the second situation where an attacker impersonates as a
legitimate user and sends an ARP packet by spoofing the IP address of some other user.
These packets are analyzed by checking the IP address with already recorded MAC to IP
mapped table. If the respective entry for IP address is present, the source MAC address of
the packet is mapped to the MAC address table. In the case of mismatching, the packet is
dropped. Moreover, this malicious node continuously sends packets to the switch which
blocks the corresponding controller port. A graph computation mechanism checks the
attacker’s position in the network. All these steps are clearly shown in Algorithm 2.

 Algorithm 2: Detection of network intrusion or ARP spoofing
Input: packets containing ARP request or broadcast Address, k number of nodes
Output: Indicate Address spoofing malicious activity
1: CAT [] is initialized
2: for j in range (1,2, 3..., k) do
3: Store MAC Address and IP address in CAT[]
4: end for
5: if (Pkts.src is not in CAT[] table and Pkts.dst not in CAT[] table) then
6: discard the pkts
7: else
8: if (Pkts contain ARP request) then
9: check whether IP and MAC Addresses matching in CAT[] table or not
10: send respective IP/MAC address
11: endif
12: if (Pkts.dst==FF:FF:FF:FF:FF:FF && Pkts.Src in CAT[] table) then
13: Implement flows for broadcasting
14: endif
15: endif

4.4 Graph computation for detection of attacker or intruder location
Graphs are an important tool to manipulate network topology for different types of
operations, i.e., policy formation, shortest paths finding, security, etc. We use graph
computation for the identification of intruders or attackers. We compute the graph from
the network topology in which edges represent the links and nodes represent the vertices.
By taking these two components, we take the snapshot of the network at different time
intervals to get network status. It is used to discover network attacks by identifying the
position of the attacker. For this purpose, the snapshots of the network are taken initially
when the network is established and whenever topology is updated. If any malicious
activity occurs, that is identified by Algorithm 2 then graph computation is used to spot
the attacker’s position. For example, in Fig. 9(a), an initial network topology is shown
where multiple nodes are connected to four switches. After some time, the network
topology is updated when another node PC11 is connected to the network as shown in

Edge-Computing with Graph Computation: A Novel Mechanism 1881

Fig. 9(b). Graph difference technique identifies the location of an attacker or intruder as
well as a legitimate user.

(a) Initial Network Topology (b) Network topology after an Attacker’s

connection

Figure 9: Representation of topology change using Graphs

The following definitions are used to compute graph differences from the network
snapshots captured at different time intervals.

4.4.1 Definition a
A triple M=(P, R, µ) is described by the directed and labeled graph and signifies the
network topology for the time intervalδt, where:
• P represents the finite group of vertices
• R⊆P×P is the group of edges where g (k, j) represents the direction of the edge from k
to j
• µ:P → Ln is a function assigning unique labels to each vertex in M such that
µ(j)=µ(k) where j, k∈P and j=k
In this description, M represents the communication network topology having a group of
symbols indicating a unique node. A directed edge g (j, k) represents the directed link or
channel for network traffic from node j towards k.

4.4.2 Definition b
A bijective function f:P−>V is a graph isomorphism from M=(P, R, µ)
to M`=(P`, R`, µ`) if
• µ(a)=µ`(f (a)), a P
• For all P, Q P, the edge g=(P, Q) R, if the edge g0=(f` (P), f`(Q)) R

4.4.3 Definition c
A specified graph M=(P, R, µ) represents all available edit functions θon M as follows:
• (a→S`), a ∈ R: represent the deletion of a node ‘a’ from M and all edges in M indices
to a.
• (S`→a): represents the insertion of a node ‘a’ into M with specific node label µ(a) Ln (a)
• (g→S`), g∈R: represents the deletion of an edge g from M

1882 CMC, vol.65, no.3, pp.1869-1890, 2020

• (S`→g), g=(P, Q) and P, Q∈P: represents the Insertion of an edge g among two nodes
P and Q in M

4.4.4 Definition d
Assuming a graph M = (P, R, µ) with an edit operation θ on M, the edited graph θ (M)
becomes the graph θ (M)=(Pθ , Rθ , µθ) where:

4.4.5 Definition e
Assuming a graph M=(P, R, µ) and there are several edit operations performed in
sequence φ=(θ1 , θ2 , ..., θk), k≥1, the resultant succinct graph φ(M) becomes:
φ(M)=θk (. θ2(θ1(M)). . . .)

4.4.6 Definition f
Assume two graphs M=(P, R, µ) and M`=(P`, R`, µ`) are given and with φ represents the
number of edit operations performed in a sequence on M in such a way that φ(M) is a
graph isomorphic to M` the edit distance d(M, M`) between graphs M and M` becomes
the minimum sum of edit costs. d(M, M`)=C`(φ)

4.4.7 Definition g
Suppose a graph M=(P, R, µ) represents the network topology at certain time t, and
assume M`=(P`, R`, µ`) indicates the similar network topology at different time interval
t1 where t1=t+δt. The edit distance of the network d(M, M`) is described by:
d(M, M`)=|P|+|P`|−2|P∪P`|+|R|+|R`|−2|R∩R`|
The above equation shows the edit distance representing the change in network topology
and at different time interval δt. Edit distance shown in the above equation d(M, M`) is
nearly bounded below by d`(M, M`)=0 when M and M` are isomorphic to each other (i.e.,
there is no alteration), and above by d(M, M`)=|P|+|P`|+|R|+|R`| when M∩M`=0, the case
where the networks are completely altered.

Edge-Computing with Graph Computation: A Novel Mechanism 1883

Figure 10: Flow chart for the proposed system

If any malicious activity is reported, or continuous ARP packets are arriving at the
controller then graph difference algorithm is executed to detect the change in topology. In
this way, the location of the attacker or intruder is identified properly, and subsequent
actions are performed to block the respective port connecting that malicious node. Thus,
the legitimate user can access the resources with an updated IP address.
In Fig. 10, the flow chart indicates the actual processing of the proposed system. In this
system, the network topology is obtained, and the graph is constructed. Afterward, the
flow rules are installed on the network devices to redirect ARP traffic towards the edge
computer. The edge computer analyzes the malicious traffic and graph computation is
performed to indicate the position of an attacker or intruder.

Algorithm 3: Graph matching algorithm
Input: An undirected Graph M, matching of graph M’ on graph M
Output: An augmenting path P is found in graph M or empty route
1: function search augmenting route(M, M’) : P
2: T ← blank forest
3: Uncheck all nodes and links in M, check all link of M’
4: while there is an exposed vertex c
5: form a singleton type tree {c}, add this singleton tree to F

1884 CMC, vol.65, no.3, pp.1869-1890, 2020

6: end while
7: while there exists an unchecked node c in forest T having a distance(c, root(c
)) even do
8: while an unchecked link l={c, d} exist do
9: if d node is not the part of the forest T then
10: // d is matched, l and d’s matched links are added to T
11: x ← node matched to d in M’
12: add edges {c, d} and {d, e} to the tree of c
13: else
14: if distance(d, root(d)) is odd then
15: // do nothing
16: else
17: if root(c)=root(d) then
18: // Indicate an augmenting path in forest T { g }
19: P ← path (root(c) → ... → d) → (e → ... → root(e))
20: return P
21: else
22:// arrange a bloom in graph M and search for the respective route in the respective
 graph
23: B ← bloom made by g and edges on the path c → d in T
24: M”, M”’ ← contract M and M, by B
25: P’ ← search augmenting path(M”, M”’)
26: P ← lift P’ to M
27: return P
28: end if
29: end if
30: end if
31: mark edge e
32: end while
33: mark vertex v
34: end while
35: return an empty path
36: end function

5 Performance evaluation of proposed solution
In this section, we discuss the simulation setup and performance evaluation factors with
results. In order to evaluate the proposed solution, we performed experimentation on
Ubuntu Operating System with Virtual Machine having 6 numbers of cores and 8 GB of
RAM with hypervisor server [Huang, Griffioen and Calvert (2014)]. The hypervisor
consists of 16 GB of RAM with 32 logical cores. A famous simulation tool Mininet [De
Oliveira, Schweitzer, Shinoda et al. (2014)] is used which provides several features to
simulate Openflow switches functionality and operations. This tool provides a simulation-
based environment as well as a real-time network performance evaluation. POX SDN

Edge-Computing with Graph Computation: A Novel Mechanism 1885

controller is used along with Mininet to install network and security policies on the network
devices. Several scenarios are formed by using multiple SDN switches, hosts, and other
nodes. These nodes are connected using various network topology models and attackers are
also included in the topology to verify the system security and stability.
Our initial proposed topology is shown in Fig. 5 which consists of one SDN controller, 5
SDN switches, and at least 10 users. We increased the number of SDN switches to 50
gradually and the number of users to 150 for our experimentation and analyzed the
performance and efficiency of the system. An attacker node having IP address (12.0.0.11)
is also part of the system, where “Kali Linux” [Beggs (2014)] operating system is
installed. Kali Linux is mostly used by a hijacker for attacking purposes. The attacker is
used to generate ARP request packets and other types of spoofed packets to poison the
network topology. Our edge computer is connected to the controller for the data exchange
and flow rules installation on the SDN switches. To evaluate the performance of the
proposed system, we measured several parameters including successful packet delivery,
attack detection and mitigation time, bandwidth and round-trip time calculation, and
normalized overhead using different attack scenarios. Several attacks e.g., ARP request
attack, spoofed ARP request and ARP reply attacks are launched in the system.

• Attack Detection and Mitigation Time: It is the total time in which an adversary user
or party launches an attack on the network and the SDN controller detects the attack.
Mitigation time is the time to resolve the attack after the detection of the attack.

• Bandwidth and Round Trip Time (RTT): Bandwidth factor indicates the amount
of bandwidth available when attacks are launched and RTT is the amount of time it
takes for a packet to be sent plus the amount of time it takes for an acknowledgment.

• Successful Packet Delivery Percentage: It is the ratio of the total number of packets
that are delivered successfully to the total number of packets initiated from a source
when an attack is launched.

• Normalized overhead: It is the total number of packets transmitted, divided by the total
number of packets successfully received at the destination within a defined time interval.

5.1 Attack detection time
Fig. 11(b) shows the comparison of attack detection time for the proposed approach and
the existing technique. Based on the results, we can conclude that our proposed approach
performs better against malicious attacks than the existing approach. In this experiment,
we used 20 hosts to test the proposed approach. Due to the policy of port blocking, while
detecting any intruder or fake user by using ARP spoofing techniques, it has resulted in
the minimization of traffic load of the network. This increases 100% bandwidth of the
links between the hosts. The bandwidth per user is given as follows:
Bandwidth per user=(Total bandwidth)/(Number of users)
However, our proposed algorithm blocks intruder or hacker early, so the bandwidth of the
links is efficiently utilized which results in an increase of available bandwidth per user
which is computed via the below equation.
Bandwidth per user=(Total bandwidth)/(Number of users-Intruder or hacker)

1886 CMC, vol.65, no.3, pp.1869-1890, 2020

(a) Attack Mitigation Time (b) Attack Detection Time

Figure 11: Attack detection and mitigation time

5.2 Attack mitigation time
Fig. 11(a) shows ARP attack mitigation time in the case of the proposed approach and the
existing approach. The results suggest that the proposed approach takes less time to
mitigate attacks as compared to the existing approach. This is because the proposed
approach implements the ARP mitigation strategy more efficiently and effectively. When
an attack is launched by an adversary party then the proposed technique identifies the
malicious activity by analyzing the ARP traffic timely. After the identification of the
malicious user, the respective port is blocked to secure the entire network.

5.3 Bandwidth and RTT calculation
The bandwidth of the network is a key component of network traffic and transmission.
Network attacks mainly affect the network bandwidth for all users. In an ARP attack, the
network server is kept too busy to answer the queries of the legitimate users. In Fig. 12(a),
bandwidth consumption for a different number of attacks is shown. From Fig. 12(b), it is
observed that latency is on the lower side for the proposed approach than the existing
approach. It indicates the less RTT for the proposed approach. It is because ARP traffic
arrives at the edge computer that is examined for possible threat conditions.

(a) Available Bandwidth Ratio (b) Round Trip Time (RTT) calculation

Figure 12: Available bandwidth ratio and RTT

Edge-Computing with Graph Computation: A Novel Mechanism 1887

5.4 Successful packet delivery percentage
Fig. 13(a) shows successful packet delivery (SPD) percentage at different time intervals
in case of the proposed and existing approaches. The results indicate that a successful
delivery percentage is much better in the case of the proposed solution as compared to the
existing mechanism. This is because when an attack is launched then our system
automatically detects the attack and minimizes its effect on the system.
If the attack is launched in the network, then our system detects the attack and locates the
host in addition to blocking the desired port. Due to this mechanism, a large amount of
unnecessary traffic is minimized and SPD is increased.

 (a) Successful packet delivery (b) Normalized overhead

Figure 13: SPD and normalized overhead

The normalized overhead increases with the increase in SPD percentage in the case of our
proposed approach and decreases with the decrease in SPD percentage. If fewer packets
are lost due to the ARP attacks then normalized overhead decreases otherwise it increases.
The results in Fig. 13(b) show that normalized overhead in the case of our proposed
approach is lower than the existing approach in all instances of time. Although our
approach takes extra time to detect the attacks by analyzing the ARP packets, yet due to
the effective mitigation technique, the attack is detected and mitigated very quickly.
Therefore, the normalized overhead is minimum than the existing approach. This ensures
that the proposed approach performs well to detect and mitigate ARP attacks.

6 Conclusion
In communication networks, most of the attacks are launched by spoofing the ARP
packets and poisoning the network topology using the ARP spoofing method. ARP
spoofing and network intrusion are the most common attacks that affect network
performance very badly. Our proposed solution comprises an edge computer and
customized algorithms to mitigate the ARP spoofing attack and network intrusion. We
have used graph computation to locate the attacker or intruder and immediately blocked
its communication port. In this way, the entire network is secured and the legitimate users
gained access to the network resources. Simulation results prove that the proposed
technique is efficient and competent for attack detection and mitigation. In the future, we
wish to consider other attacks, i.e., Distributed DoS (DDoS), Man in the Middle attacks

1888 CMC, vol.65, no.3, pp.1869-1890, 2020

with distributed control planes where multiple controllers are deployed.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Abad, C. L.; Bonilla, R. I. (2007): An analysis on the schemes for detecting and
preventing ARP cache poisoning attacks. 27th International Conference on Distributed
Computing Systems Workshops, pp. 60-60.
Alharbi, T.; Durando, D.; Pakzad, F.; Portmann, M. (2016): Securing ARP in software
defined networks. IEEE 41st Conference on Local Computer Networks, pp. 523-526.
Amin, R.; Reisslein, M.; Shah, N. (2018): Hybrid SDN networks: a survey of existing
approaches. IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3259-3306.
Amin, R.; Shah, N.; Shah, B.; Alfandi, O. (2016): Auto-configuration of ACL policy in
case of topology change in hybrid SDN. IEEE Access, vol. 4, pp. 9437-9450.
Beggs, R. W. (2014): Mastering Kali Linux for Advanced Penetration Testing. pp. 20-40.
Packt Publishing Ltd. https://www.packtpub.com/networking-and-servers/mastering-kali-
linux-advanced-penetration-testing-third-edition.
Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M. et al. (2014): ONOS:
towards an open, distributed SDN OS. Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, pp. 1-6.
Cox, J. H.; Clark, R. J.; Owen, H. L. (2016): Leveraging SDN for ARP security.
SoutheastCon, pp. 1-8.
Dargahi, T.; Caponi, A.; Ambrosin, M.; Bianchi, G.; Conti, M. (2017): A survey on
the security of stateful SDN data planes. IEEE Communications Surveys & Tutorials, vol.
19, no. 3, pp. 1701-1725.
De Oliveira, R. L. S.; Schweitzer, C. M.; Shinoda, A. A.; Prete, L. R. (2014): Using
mininet for emulation and prototyping software-defined networks. IEEE Colombian
Conference on Communications and Computing, pp. 1-6.
Deng, S.; Gao, X.; Lu, Z.; Gao, X. (2017): Packet injection attack and its defense in
software-defined networks. IEEE Transactions on Information Forensics and Security,
vol. 13, no. 3, pp. 695-705.
Fan, Z.; Xiao, Y.; Nayak, A.; Tan, C. (2019): An improved network security situation
assessment approach in software defined networks. Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 295-309.
Hameed, S.; Ahmed Khan, H. (2018): SDN based collaborative scheme for mitigation
of DDoS attacks. Future Internet, vol. 10, no. 3, pp. 23.
Huang, S.; Griffioen, J.; Calvert, K. L. (2014): Network hypervisors: enhancing SDN
infrastructure. Computer Communications, vol. 46, pp. 87-96.
Hussain, M.; Shah, N. (2018): Automatic rule installation in case of policy change in

Edge-Computing with Graph Computation: A Novel Mechanism 1889

software defined networks. Telecommunication Systems, vol. 68, no. 3, pp. 461-477.
Hussain, M.; Shah, N.; Tahir, A. (2019): Graph-based policy change detection and
implementation in SDN. Electronics, vol. 8, no. 10, pp. 1136.
Kalkan, K.; Gur, G.; Alagoz, F. (2017): Defense mechanisms against DDoS attacks in
SDN environment. IEEE Communications Magazine, vol. 55, no. 9, pp. 175-179.
Khan, S.; Gani, A.; Wahab, A. W. A.; Guizani, M.; Khan, M. K. (2016): Topology
discovery in software defined networks: threats, taxonomy, and state-of-the-art. IEEE
Communications Surveys & Tutorials, vol. 19, no. 1, pp. 303-324.
Ma, H.; Ding, H.; Yang, Y.; Mi, Z.; Yang, J. Y. et al. (2016): Bayes-based ARP attack
detection algorithm for cloud centers. Tsinghua Science and Technology, vol. 21, no. 1,
pp. 17-28.
Masoud, M. Z.; Jaradat, Y.; Jannoud, I. (2015): On preventing ARP poisoning attack
utilizing Software Defined Network (SDN) paradigm. IEEE Jordan Conference on
Applied Electrical Engineering and Computing Technologies, pp. 1-5.
Medved, J.; Varga, R.; Tkacik, A.; Gray, K. (2014): Opendaylight: towards a model-
driven SDN controller architecture. Proceeding of IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks, pp. 1-6.
Modi, C.; Patel, D.; Borisaniya, B.; Patel, H.; Patel, A. et al. (2013): A survey of
intrusion detection techniques in cloud. Journal of Network and Computer Applications,
vol. 36, no. 1, pp. 42-57.
Moyano, R. F.; Cambronero, D. F.; Triana, L. B. (2017): A user-centric SDN
management architecture for NFV-based residential networks. Computer Standards &
Interfaces, vol. 54, pp. 279-292.
Nunes, B. A. A.; Mendonca, M.; Nguyen, X. N.; Obraczka, K.; Turletti, T. (2014): A
survey of software-defined networking: past, present, and future of programmable
networks. IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634.
Rengaraju, P.; Ramanan, V. R.; Lung, C. H. (2017): Detection and prevention of DoS
attacks in Software-Defined Cloud networks. IEEE Conference on Dependable and
Secure Computing, pp. 217-223.
Schneider, F.; Bifulco, R.; Matsiuk, A. (2016): Better ARP handling with InSPired
SDN switches. IEEE International Symposium on Local and Metropolitan Area Networks,
pp. 1-6.
Scott-Hayward, S.; O’Callaghan, G.; Sezer, S. (2013): SDN security: a survey. IEEE
SDN For Future Networks and Services, pp. 1-7.
Sezer, S.; Scott-Hayward, S.; Chouhan, P. K.; Fraser, B.; Lake, D. et al. (2013): Are
we ready for SDN? Implementation challenges for software-defined networks. IEEE
Communications Magazine, vol. 51, no. 7, pp. 36-43.
Shalimov, A.; Zuikov, D.; Zimarina, D.; Pashkov, V.; Smeliansky, R. (2013):
Advanced study of SDN/OpenFlow controllers. Proceedings of the 9th Central &
Eastern European Software Engineering Conference in Russia, pp. 1-6.
Sharafaldin, I.; Gharib, A.; Lashkari, A. H.; Ghorbani, A. A. (2018): Towards a

1890 CMC, vol.65, no.3, pp.1869-1890, 2020

reliable intrusion detection benchmark dataset. Software Networking, vol. 2018, no. 1, pp.
177-200.
Shin, S.; Gu, G. (2013): Attacking software-defined networks: a first feasibility study.
Proceedings of the Second ACM SIGCOMM workshop on Hot Topics in Software
Defined Networking, pp. 165-166.
Siddiqui, M. S.; Escalona, E.; Trouva, E.; Kourtis, M. A.; Kritharidis, D. et al.
(2016): Policy based virtualised security architecture for SDN/NFV enabled 5G access
networks. IEEE Conference on Network Function Virtualization and Software Defined
Networks, pp. 44-49.
Wallner, R.; Cannistra, R. (2013): An SDN approach: quality of service using big
switch’s floodlight open-source controller. Proceedings of the Asia-Pacific Advanced
Network, vol. 35, pp. 14-19.
Wang, L.; Li, Q.; Jiang, Y.; Wu, J. (2016): Towards mitigating link flooding attack via
incremental SDN deployment. IEEE Symposium on Computers and Communication, pp.
397-402.
Xing, W.; Zhao, Y.; Li, T. (2010): Research on the defense against ARP spoofing
attacks based on Winpcap. Second International Workshop on Education Technology and
Computer Science, pp. 762-765.
Xu, Y.; Liu, Y. (2016): DDoS attack detection under SDN context. IEEE INFOCOM the
35th annual IEEE International Conference on Computer Communications, pp. 1-9.

