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Abstract: The idea of fractional derivatives is applied to several problems of viscoelastic 
fluid. However, most of these problems (fluid problems), were studied analytically using 
different integral transform techniques, as most of these problems are linear. The idea of 
the above fractional derivatives is rarely applied to fluid problems governed by nonlinear 
partial differential equations. Most importantly, in the nonlinear problems, either the 
fractional models are developed by artificial replacement of the classical derivatives with 
fractional derivatives or simple classical problems (without developing the fractional 
model even using artificial replacement) are solved. These problems were mostly solved 
for steady-state fluid problems. In the present article, studied unsteady nonlinear non-
Newtonian fluid problem (Cattaneo-Friedrich Maxwell (CFM) model) and the fractional 
model are developed starting from the fractional constitutive equations to the fractional 
governing equations; in other words, the artificial replacement of the classical derivatives 
with fractional derivatives is not done, but in details, the fractional problem is modeled 
from the fractional constitutive equations. More exactly two-dimensional magnetic 
resistive flow in a porous medium of fractional Maxwell fluid (FMF) over an inclined 
plate with variable velocity and the temperature is studied. The Caputo time-fractional 
derivative model (CFM) is used in the governing equations. The proposed model is 
numerically solved via finite difference method (FDM) along with L1-scheme for 
discretization. The numerical results are presented in various figures. These results 
indicated that the fractional parameters significantly affect the temperature and velocity 
fields. It is noticed that the temperature field increased with an increase in the fractional 
parameter. Whereas, the effect of fractional parameters is opposite on the velocity field 
near the plate. However, this trend became like that of the temperature profile, away from 
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the plate. Moreover, the velocity field retarded with strengthening in the magnetic 
parameter due to enhancement in Lorentz force. However, this effect reverses in the case 
of the temperature profile. 
 
Keywords: Viscoelastic fluid, Cattaneo-Friedrich Maxwell model, variable heating, 
magnetohydrodynamic (MHD),  porous medium, fractional derivatives. 

1 Introduction 
In the last 10 decades, it is recognized that fractional calculus can describe hereditary 
properties and memory effects of materials. It has a wide range of applications in real-
world problems which include chaos, diffusion, chemical reaction, dynamics, and 
viscoelasticity [Khan, Saqib and Ali (2018); Saqib, Shafie, Khan et al. (2020); Sheikh, 
Ali, Saqib et al. (2017)]. Recently, fractional derivatives are in practice to describe the 
complicated trends of viscoelastic materials in various physical and industrial areas 
which include biometric foods, extrusion of polymer fluid, colloidal solutions, cooling of 
metallic plates, exotic lubricants, glass fiber production, and glass blowing [Haque, Awan, 
Raza et al. (2018)]. Makris et al. [Makris and Constantinou (1991)] were indicated that it 
will unconvincing for the Maxwell model with conventional derivatives to obtain enough 
experimental date because of dissimilar frequencies range. Though Friedrich [Friedrich 
(1991)] discovered a link between molecular theory and constitutive equations of the 
Maxwell model with fractional derivatives. Markis et al. [Makris, Dargush and 
Constantinou (1993)] suggested that an excellent agreement with experimental data can 
be established when the ordinary Maxwell model restructured with fractional derivatives. 
Lei et al. [Lei, Liang and Xiao (2018)] demonstrated the development of two parallel 
fractional Maxwell’s fluid (FMF) models to discuss the thermochemical trend of 
amorphous thermoplastics, viscous flow, and generate solutions for complex modulus 
and stress relaxation modulus.  
Nearly, all the polymetric materials possess a viscoelastic trend which is difficult to 
interpret using conventional derivatives. Lin et al. [Liu and Liu (2018)] investigated the 
boundary layer flow (BLF) of FMF by introducing some suitable variables which enabled 
the conversion of the irregular boundaries of the stretching sheet to the regular one. The 
fractional governing equations were solved numerically using L1-scheme. Zhang et al. 
[Zhang, Shen, Liu et al. (2019)] studied the influence of thermophoresis, Brownian 
motion, diffusive heat transfer, and mass concentration in the flow of FMF near a moving 
plate. The numerical results were developed using L1-scheme and shifted the Grünwald 
formula with the introduction of novel dimensionless variables. Anwar et al. [Anwar and 
Rasheed (2018)] communicated the influence of Microscopic description of Joule 
heating, electric field, and MHD in nonlinear viscoelastic flow using fractional Cattaneo-
Maxwell model. It was explored that fractional Cattaneo-Maxwell model is fit to control 
the temperature and concentration in resistive flow, oscillations, and relaxation processes 
that lead to memory formalism and delay of diffusion and thermal flux. Sadiq et al. 
[Sadiq, Imran, Fetecau et al. (2019)] analyzed the rotational flow of FMF in a cylindrical 
tube with a static couple shear stress via the joint Laplace and Henkel transforms. Yang et 
al. [Yang, Qi and Jiang (2018)] numerically studied the flow of FMF in a rectangular 
microchannel with the electroosmotic effect. Some recent developments which show the 
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supremacy of the FMF model over the Maxwell model with convectional derivative can 
be seen in Bai et al. [Bai, Huo, Zhang et al. (2019); Chen, Yang, Zhang et al. (2019); 
Raza and Asad Ullah (2020)] and the references therein.  
The study of electrically conducting viscoelastic fluid flow with magnetohydrodynamic 
(MHD) effect in a porous media is very important because of its industrial, agricultural, 
astrophysical and geothermal applications [Ali, Saqib, Khan et al. (2016); Ali, Saqib, 
Khan et al. (2017a)]. It is established that when fluids comprising residues of minerals, 
flow under the action of the magnetic field generates Lorentz force. This force alters the 
physical characteristics of solid particles in the fluids, inhibiting the motion of heat 
exchanger along with the removal of viz if formed. The MHD filters and Meckling’s 
MHD units are used in the heat exchanger to control scaling. The Mackling’s MHD units 
are demonstrated to be advantageous for irrigation to improve the production of crops. 
These days, the idea of convection heat transfer in a porous media has been enormously 
applied in MHD flows to control the boundary layer of the fluids in close proximity to the 
boundaries, enhanced recovery of gas and petroleum, geothermal energy extraction, 
metallurgy, stirring of molten metal and improved the performance of various 
engineering tools such as controlled thermonuclear reactors, MHD flow-meters, MHD 
accelerators, MHD pumps, and MHD energy generators. Keeping in observation the 
significance and importance of MHD [Khan, Hussanan, Saqib et al. (2019)], MHD flow 
in a porous medium is considered.  
These days (this year and the last few years) in the literature, several articles in applied 
mathematics, fluid dynamics, and thermal engineering are published using fractional 
derivatives (Caputo; Caputo-Fabrizio and Atangana Baleanu derivatives) studied fluid 
motion, heat transfer, mass transfer for different geometries. The idea of these fractional 
derivatives is also applied to several problems of viscoelastic fluids [Ali, Saqib, Khan et 
al. (2017b); Saqib, Ali, Khan et al. (2018); Saqib, Khan and Shafie (2018, 2019)]. 
However, most of these problems (fluid problems), were studied analytically using 
different integral transform techniques, as most of these problems are linear. The idea of 
the above fractional derivatives is rarely applied to fluid problems governed by nonlinear 
partial differential equations. Most importantly, the fractional models are developed by 
artificial replacement of the classical derivatives with fractional derivatives that are 
solved for fractional results. In the present article, (i) the unsteady nonlinear non-
Newtonian fluid problem (Cattaneo-Friedrich Maxwell (CFM) model) is considered and 
(ii) the fractional model is developed from the initial fractional constitutive equations to 
the fractional governing equations, more exactly, the artificial replacement of the 
classical derivatives with fractional derivatives are not done but in details, the fractional 
problem is modeled from the fractional constitutive equations. More exactly, the flow of 
FMF over an inclined plate with variable velocity and temperature using the Cattaneo-
Friedrich Maxwell model is studied.  

2 Mathematical formulation  
The incompressible 2D MHD flow of FMF together with variable radiative heat transfer 
over an inclined moving plate, parallel to the x-axis, has been considered using Cattaneo 
and Friedrich constitutive equations for heat flux and shear stress respectively. An incline 
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magnetic field is applied to the y-direction whereas the fluid velocity is assumed in the x-
direction. The velocity field is chosen of the following form 

( ) ( )( ), , , , , ,0V= u x y t v x y t            (1) 

Here the v  component of the velocity vector in the y-direction is neglected in the energy 
and momentum equations because the fluid flow is assumed to be in the x-direction 
(horizontal direction). Taking into account the Boussinesq approximation, the momentum 
equation of the proposed model is written as Shafie et al. [Shafie, Saqib, Khan et al. (2019)] 

0u v
x y
∂ ∂

+ =
∂ ∂

      (2) 

( )2
0 sin cosxy

x T
u u uu v B u R g T T
t x y y

τ
ρ σ φ ρ β ψ∞

∂ ∂ ∂ ∂
+ + = − + + − ∂ ∂ ∂ ∂ 

     (3)
 

where ρ  is density, u  is x-component of velocity, v  is y-component of velocity, µ  is 
dynamic viscosity, σ  is electrical conductivity, 0B  is the magnetic field in the y-
direction, xR  is the Darcy’s resistance, g  is the gravitational acceleration and Tβ  is 
volumetric thermal expansion. The fractional constitutive equation of Maxwell fluid 
proposed by Friedrich [Friedrich (1991)] is given by 

1xy t xy
uD
y

α ατ λ τ µ ∂
+ =

∂
,   (4) 

which yield to 

( )11 t xy
uD
y

α αλ τ µ ∂
+ =

∂
,   (5) 

where 1λ  is relaxation time and ( ),.,tDα  is Caputo time-fractional derivative with 
fractional order α ; 0 1α< <  which can be expressed as [Ali, Sheikh, Khan et al. (2017)] 

( ) ( ) ( ) ( ) { }1

0

1 , 1 ,
nt

n
t n

f s
D f t t s ds n e n n

n s
αα α

α
− − ∂

= − − <ℜ < ∈
Γ − ∂∫ 

,  (6) 

with ( ).Γ  is Gamma function given by [Ali, Sheikh, Khan et al. (2017)] 

( ) { }1 , , 0zz e d z e zηη η− −Γ = ∈ ℜ >∫


 .    (7) 

Eliminating xyτ  from Eqs. (3) and (5) yield to  
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( ) ( )

( ) ( ) ( )

2
2

1 1 02

1 1

1 1 sin

1 1 cos .

t t

t x t T

u u u uD u v D B
t x y y

D R D g T T

α α α α

α α α α

ρ λ µ λ σ φ

λ λ ρ β ψ∞

 ∂ ∂ ∂ ∂
+ + + = − + ∂ ∂ ∂ ∂ 

+ + + + −

,   (8) 

where ( )11 /t x pD R k uα αλ µϕ+ = −  satisfy the Darcy’s in Eq. (8). The plate temperature is 

assumed to be wT  and on the surface of the plate, it is supposed to be T∞  (the room 
temperature). The radiative temperature gradient is given by 

.qp
T T TC u v
t x y

ρ
 ∂ ∂ ∂

+ + = −∇ ∂ ∂ ∂ 
,    (9) 

where pC  is the heat capacitance, and q  is the heat flux. As the heat flux is assumed in 
a vertical direction so, Eq. (9) takes the following form  

q
p

T T TC u v
t x y y

ρ
 ∂ ∂ ∂ ∂

+ + = − ∂ ∂ ∂ ∂ 
.  (10) 

The heat flux q in terms of the fractional derivative is generalized by Cattaneo [Cattaneo 
(1958)] using Fourier’s law as 

( )21 qt
TD k
y

β βλ ∂
+ = −

∂
.  (11) 

Eliminating q  from Eqs. (10) and (11) yield to 

1
2 2

2

2 2

t

t t

p

T T Tu v D T
t x y TC k

yT TD u D v
x y

β β

β β β β

λ

ρ
λ λ

+∂ ∂ ∂ + + + ∂ ∂ ∂ ∂  =
  ∂ ∂ ∂ + +    ∂ ∂    

.  (12) 

Lastly, Eqs. (2), (8) and (12) Govern the proposed problem in terms of the fractional 

derivative as  

0u v
x y
∂ ∂

+ =
∂ ∂

       (13)
 

subject to the following appropriate physical initial and boundary conditions   
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, (2) 

subject to the following appropriate physical initial and boundary conditions   

0, 0, at 0,
0, 0, at 0, 0,

0, at 0, 0,
0, at , 0.

W

u v T T t
u v T T x t

u T T y t
u T T y t

∞

∞

∞

= = = ≤ 
= = = = > 


= = = > 
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. (16) 

The following non-similarity variables are introduced  

* * * * *
2 2

0 0

* *
1 1 2 22 2

, , , , ,

, ,
w

t y x u dvt y x u v
d d U d U

T T
d d T T
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 (17) 

into Eqs. (13)-(16) and propping * symbol for simplicity yield to  

0u v
x y
∂ ∂

+ =
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, (18) 

2
1

1 1 1 2
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2
1

2 2 2 2

1
Prt t tu v D D u D v
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, (20) 
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0, 0, 0 at 0,
0, 0, 0 at 0, 0,
0, 1 at 0, 0,
0, 0 at , 0.

u v t
u v x t
u y t
u T y t

= = Φ = ≤ 
= = Φ = = > 
= Φ = = > 
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, (21) 

where 

( )22 2
0

2
0

, , ,Prp pT wk Cd g T Td BM K Gr
d U k

µβσ
µ ϕ ν

∞−
= = = =  

is the magnetic parameter, permeability of the porous medium, thermal Grashof number, 
radiation parameter, and Prandtl number respectively. 

 

Figure 1: Consequence of α  on velocity and temperature filed when 0.5β = , / 4φ π= , 
/ 4ψ π= , 0.2Gr = , 2K = , 0.5M = and Pr 5=  

3 Numerical scheme 
This section concisely discusses the numerical method utilized for the solutions of Eqs. 
(19)-(21). The FDM together with L1-scheme [Liu, Zhuang, Anh et al. (2007)] for the 
discretization of fractional derivative appears in the model, is used for the numerical 
solutions. The numerical solutions are explicitly and semi-implicitly analyzed with two 
sorts of discretization. It is noticed that this method depends on the correct choice of 
fractional parameters α , β  and choices as L2 and L2C are discussed in the literature for 
the discretization of fractional derivatives [Lynch, Carreras, del-Castillo-Negrete et al. 
(2003)].  It is indicated in the literature that the selection of L2-scheme is suitable for fast 
convergence when 1.5α > . However, L2C-scheme shows better results for 1.5α < . 
Liu et al. [Liu, Zhuang, Anh et al. (2007)] are the pioneer of L1-scheme. They indicated 
that L1-scheme for fractional terms involved and FDM for the non-linear convective part 
of the model. The L1-scheme is superior to the other two because it is independent of the 
discretization choice and values of the fractional parameter α . In the open literature, 
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some substantial numerical results are obtained from various fractional models using this 
method see, [Cao, Zhao, Wang et al. (2016); Khan and Rasheed (2019)] and the 
references therein. The L1-scheme and finite difference methods are the best fit for the 
problem under consideration. The detailed discretization can be found in Khan et al. 
[Khan and Rasheed (2019)]. 

 

Figure 2: Consequence of β  on velocity and temperature filed when 0.5α = , / 4φ π= , 
/ 4ψ π= , 0.2Gr = , 2K = , 0.5M = and Pr 5=  

4 Result and discussion 
This section presents the physical aspects of the numerical solutions obtained via FDM 
and the newly introduced L1 scheme. The numerical results are displayed in various 
graphs and the influence of fractional parameters ,a β , magnetic parameter M , angle of 
inclination of the magnetic field φ , the permeability of the porous medium K , thermal 
Grashof number Gr , angle of inclination of the plate ψ , and Prandtl number Pr on the 
temperature and velocity profiles are studied. Finally, the three-dimensional view of the 
temperature and velocity profiles are portrayed. 
Figs. 1(a) and 1(b) depict the effect of fractional parameter α chosen for the momentum 
equation on temperature and velocity profiles. It is observed from Figs. 1(b) that the 
velocity profile shows a dual behavior. Near the plate, the velocity profile decreases with 
increasing values of ;0 1α α< < . Though, away from the plate, it shows an identical 
trend as a temperature profile. Both the temperature and velocity profiles increase with 
increasing values of α . This trend indicates that both the thermal and momentum 
boundary layers thickness increases with increasing values of α  which give rise to 
temperature and velocity profiles. Nevertheless, this trend cannot be generalized because 
it depends on the values of other involved parameters and change in the trend can be 
noticed for some other values of the involved parameter. The thickness in thermal and 
momentum boundary layers in the flow domain can be observed.  
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Figure 3: Consequence of M  on velocity and temperature filed when 0.5α = , 0.5β = , 
/ 4φ π= , / 4ψ π= , 0.2Gr = , 2K = , and Pr 5=  

 

Figure 4: Consequence of φ  on velocity and temperature filed when 0.5α = , 0.5β = , 
/ 4ψ π= , 0.2Gr = , 2K = , 0.5M = and Pr 5=  

The effect of radiative heat transfer is with fraction Cattaneo heat flux of fractional 
parameter β  is which similar as α . In Figs. 2(a) and 2(b), a similar trend to α  on 
temperature and velocity profiles is observed. This is because the mixed convection takes 
place due to the temperature gradient. Increasing values of β  offer a substantial increase 
in the temperature and velocity boundary layers.  
The impact of the normal magnetic field on temperature and velocity profiles is presented 
in Figs. 3(a) and 3(b). These figures indicate that the effect of M on temperature and 
velocity profiles is the opposite. The velocity profile decreases with increasing values of 
M  due to the increase in Lorentz forces which are similar to drag forces. Physically, 
when Lorentz forces increased it give rise to magnetic resistance, as a result, the velocity 
retarded. However, this trend is opposite in case of temperature profile since high 
resistance produces more heat due to high frictional force. 
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The influence of the angle of inclination φ  of the magnetic parameter M  is depicted in 
Figs. 4(a) and 4(b) on temperature and velocity profiles. The case 0φ =  corresponds to 
the flow of FMF in the absence of a magnetic field. In this case, the velocity is high at a 
lower temperature because of the nonappearance of magnetic resistance. Although, the 
velocity decreases with increasing value of φ  and became a minimum when the 
magnetic field is normal for that reason the resistance strengthens at this stage. On the 
other hand, the temperature goes high due to high resistance. Figs. 5(a) and 5(b) present 
the consequence of permeability of porous medium K  on the temperature and velocity 
profiles. The velocity increases with increasing values of K . Greater values of K  
corresponds to high permeability which reduces the friction of porous medium, as a result, 
the velocity increases. But the temperature profile shows a decreasing trend since with 
high permeability, the frictional force decreases which decrease in the temperature field.  

 

Figure 5: Consequence of K  on velocity and temperature filed when 0.5α = , 0.5β = , 
/ 4φ π= , / 4ψ π= , 0.2Gr = , 0.5M = and Pr 5=  

Figs. 6(a) and 6(b) show variation in temperature and velocity profile for various values 
of Gr . The velocity of FMF increases with increasing values of values Gr . Physically, 
greater values of Gr giving rise to buoyancy force, for this reason, additional mixed 
convection occurs subsequently the velocity significantly increases. Nevertheless, this 
trend is the opposite of the temperature profile. 
Figs. 7(a) and 7(b) are plotted to study the influence of the Prandtl number Pr on 
temperature and velocity profiles. Prandtl number is the ratio of viscous forces to the 
thermal conductivity. From the governing equation, it can be clearly seen that viscous 
forces are directly related to the velocity and temperature of FMF. When the Prandtl 
number increase it gives rise to viscous forces and falls in the thermal conductivity due to 
which both the temperature and velocity profile show a decreasing trend. In Figs. 8(a) 
and 8(b) and Figs. 9(a) and 9(b) are plotted to show the three-dimensional view of 
temperature and velocity and profiles which indicate excellent stability and convergence 
of the adopted numerical scheme 
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Figure 6: Consequence of Gr  on velocity and temperature filed when 0.5α = , 0.5β = , 
/ 4φ π= , / 4ψ π= , 2K = , 0.5M = and Pr 5=  

5 Concluding remarks 
This manuscript presented the unsteady incompressible MHD flow of non-linear 
fractional Maxwell fluid over an inclined plate. The governing equations of the flow 
phenomena are modeled using Cattaneo-Friedrich fractional approach. An inclined 
magnetic field is applied to the plate with variable temperature and velocity boundary 
conditions. The numerical solutions are obtained using FDM and L1-schemes. The 
obtained results are plotted and studied physically. The two fractional parameters α  and 
β  are introduced in momentum and energy equations respectively. The major findings 
of this study are as follow 
1. It studied that both the fractional parameters behave in a similar manner. However, 

near the plate, the behavior of α  on velocity profiles is opposite to that of the 
temperature profile. But this trend is not general. It depends on the other parameters 
involved in the model. 

2. It is noticed the normal magnetic resistance is high which reduces the velocity but 
increases the temperature due to frictional force. 

3. The thermal Grashof number increases the velocity due to the occurrence of additional 
mixed convection. 

4.  Prandtl number decreases the velocity and temperature profiles because of the fall in 
thermal conductivity and the strengthen of viscous forces. 

5. Finally, the three-dimensional view is observed that indicates that the chosen 
numerical scheme is stable and shows an excellent convergence. 
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Figure 7: Consequence of Pr  on velocity and temperature filed when 0.5α = , 0.5β = , 
/ 4φ π= , / 4ψ π= , 0.2Gr = , and 0.5M =  

 

Figure 8: Three-dimensional temperature filed when 0.5α = , 0.5β = , / 4φ π= , 
/ 4ψ π= , 0.2Gr = , 0.5M = and Pr 5=  

 

Figure 9: Three-dimensional velocity filed when 0.5α = , 0.5β = , / 4φ π= , / 4ψ π= , 
0.2Gr = , 0.5M = and Pr 5=  
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